EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 24. KÖIDE FÜÜSIKA * MATEMAATIKA. 1975, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 24 ФИЗИКА * МАТЕМАТИКА. 1975, № 4

https://doi.org/10.3176/phys.math.1975.4.07

УДК 535.375

Т. ХАЛЬДРЕ, Любовь РЕБАНЕ, О. СИЛЬД, Э. ЯРВЕКЮЛЬГ

ВРАЩАТЕЛЬНО-ЛИБРАЦИОННОЕ ДВИЖЕНИЕ ИОНА NO₂ В НЕКОТОРЫХ ЩЕЛОЧНОГАЛОИДНЫХ КРИСТАЛЛАХ ПО ДАННЫМ СПЕКТРОВ КОМБИНАЦИОННОГО РАССЕЯНИЯ

1. Введение

Молекулярные примесные ионы (O_2^- , OH⁻, CN⁻, NO_2⁻ и др.) частично сохраняют в щелочногалоидных кристаллах вращательные степени свободы, совершая заторможенное вращение и либрации [¹⁻⁶]. Исследование кристаллов с молекулярными центрами методом комбинационного рассеяния (КР) показало присутствие наряду с линиями КР внутримолекулярных колебаний некоторых дополнительных линий, которые были предположительно отнесены за счет либрационного движения молекул [^{3, 5}].

Изучение тонкой структуры вибронных спектров поглощения и люминесценции центров NO₂⁻ позволило придти к выводу, что в кристаллах KCl, KBr, RbCl ион NO₂⁻ совершает слабо заторможенное одномерное вращение вокруг молекулярной оси инерции a (ось a параллельна линии, соединяющей атомы кислорода) в кристаллическом поле с четырьмя эквивалентными минимумами, что соответствует ориентации оси параллельно направлениям <100> кристалла [^{6, 7}].

Уже первые измерения спектров КР иона NO_2^- в щелочногалоидных кристаллах показали [^{8, 9}], что они содержат богатую информацию о вращательно-либрационном движении примесной молекулы. В [¹⁰] при геометриях опыта, когда векторы электрического поля падающего и рассеянного света параллельны <100>, в спектре КР иона NO_2^- в кристаллах КСl, КВг и RbCl была зафиксирована преимущественно параллельная поляризация полосы антисимметричного колебания v₃ и обнаружена некоторая структура в полосах v₃ и v₁. Исследование поведения полосы при изменении температуры (T = 10, 80 и 300 K) показало, что эта структура связана с переориентациями иона NO_2^- . Лишь в кристалле KI поляризация полос молекулярных колебаний соответствовала фиксированной ориентации центра (см. также [^{11, 12}]).

Как было выяснено в [10], для объяснения параллельно поляризованной составляющей и структуры полосы v₃ оказываются непригодными как модель неподвижно ориентированного центра, так и модель центра, испытывающего одномерное вращение вокруг оси *a*.

Целью данной работы явилось детальное исследование поляризации полос молекулярных колебаний NO₂ в спектре КР при 5 К и геометриях опыта, включающих ориентацию электрического вектора по <100> и <110> направлениям. Тщательно промерен контур полосы v₃. Рассмотрены правила отбора и поляризация в спектрах КР для трех моделей центра: примесная молекула совершает свободное вращение вокруг оси *a*, фиксированной в направлении <100>; одномерное вращение вокруг оси *a* сопровождается либрацией вокруг осей *b* н *c*; примесная молекула совершает либрации вокруг всех трех осей инерции. Обсуждается вращательно-либрационное движение иона NO_2^- .

2. Экспериментальные результаты

Для измерения спектров КР использовалась установка, включающая лазер непрерывного действия (мощность генерации на линии 4879,87 Å около 0,5 вт), двойной решеточный монохроматор модели «Spex 1402» и систему счета фотонов (установка подробно описана в [¹⁰]). Спектры обрабатывались на автоматизированном комплексе, разработанном на базе многоканального анализатора NTA-512B и ЭВМ «Наири-2». Кристаллы помещались в парах гелия в термостатированной камере криостата; температура кристалла во время эксперимента поддерживалась с точностью 0,1 К. Образцы выкалывались из моноблока по плоскостям (100) или вырезались по плоскостям (110) с точностью не хуже 0,5° и поверхности образца шлифовались.

Были измерены спектры КР при следующих четырех геометриях опыта (где последовательно указаны направления лазерного луча, поляризации лазерного \vec{e} и рассеянного \vec{n} света и направление рассеянного света):

> [001]{[110][110]}[110] [001]{[110][110]}[110] [001]{[110][001]}[110] [001]{[110][001]}[110].

Из этих геометрий три являются независимыми, а четвертая взята для проверки. Оказалось, однако, что количественное сопоставление интенсивностей в разных спектрах связано с большими ошибками, т. к. вследствие неравномерности кристалла абсолютная интенсивность спектра изменяется в пределах 50% в зависимости от конкретного места кристалла, куда фокусируется лазерный луч.

В табл. 1 собраны результаты по поляризации полос внутримолекулярных колебаний. Приведены отношения интегральных интенсивностей полос в перпендикулярной и параллельной поляризациях при неизменном положении кристалла, в которые внесены также поправки на поляризующее действие спектрального прибора. Данные последних трех рядов таблицы получены при неизменном положении кристалла. Индексы показывают направления векторов падающего и рассеянного света. В случае равной заселенности эквивалентных ориентаций молекулы данные рядов 2 и 4 должны совпадать, что и наблюдается в таблице (кроме случая полосы v₃ в RbCl).

На рис. 1. изображены участки спектра КР иона NO_2^- в кристаллах KCl (*a*), KBr (б) и RbCl (*в*) при разных геометриях опыта и температуре 5 К. Видно, что линия v_3 имеет во всех основаниях структуру: в KCl сложную структуру с расстоянием между максимумами 5—6 см⁻¹, в KBr видна ступенька на расстоянии 8 см⁻¹ в высокочастотную сторону от основного максимума, в RbCl линия v_3 узкая и имеет две слабые ступеньки со стоксовой и антистоксовой сторон.

δ

Рис. 1. Спектр КР внутримолекулярных колебаний иона NO₂ в кристаллах КСІ (a), КВг (б) и RbCl (в) при разных геометриях опыта. Температура 5 К, спектральная ширина щели 2 см⁻¹, время накопления сигнала на канал для кристаллов КСІ и КВг 11 сек, для RbCl 6 сек.

Видно, что при разных геометриях контур полосы v_3 практически не меняется, что указывает на одинаковую поляризацию всех копонентов полосы. Линии v_1 и v_2 симметричны; в КВг и КСІ они имеют слабые максимумы на расстояниях 13 и 25 см⁻¹ от основного.

Контур полосы v₃ был измерен точнее, т. к. здесь наблюдаются наибольшие расхождения с моделью одномерного ротатора.

На рис. 2 показан участок спектра КР в области v₃ для кристалла KCl—NO₂⁻, полученный суммированием и сглаживанием шести спектров. Там же приведен контур v₃, вычисленный с учетом вращательнолибрационного движения молекулы (см. ниже). Кроме двух отмеченных выше максимумов, с низкочастотной стороны от основного виден

4*

еще один слабый максимум на расстоянии 6 см-1.

Далее, была прослежена зависимость от температуры полос КР для NO₂ в КСІ. В области 5—300 К полосы колебаний v₁ и v₂ не обнару-

419

Таблица 1

Отноше- ние I_{\perp}/I_{\parallel} при ори- ентациях	v ₁ 1326,	KC1 v_2 802,	ν ₃ 1288	v ₁ 1317,	KBr v ₂ 797,	v ₃ 1276	v ₁ 1308 1317,	KI v ₂ 804,	v ₃ 1252	v ₁ 1319,	RbC1 v ₂ 799,	v ₃ 1280
[100][001] [100][100]	0,38	0,20	0,31	0,56	0,61	0,6	0,42	0,35	10,1	0,73	0,25	0,21
[110][001] [110][110]	0,39	0,18	0,52	0,45	0,27	0,73	0,41	-	1,08	0,63	0,15	0,53
[110][110] [110][110]	0,06	0,08	1,59	0,25	0,11	1,4	0,30	0,31	0,08	0,56	-	0,93
[110][001] [110][110]	0,37	0,15	0,53	0,36	0,23	0,6	0,42	_	1,3	0,68	-	0,26

живали изменения структуры, а их полуширина увеличилась лишь вдвое; сохранялась неизменной также их поляризация. Полоса v_3 при повышении температуры значительно уширялась и ее пиковая интенсивность падала, но поляризация не менялась. При 25 К структура полосы v_3' уже не разрешается, при 80 К видна слабая широкая (~20 см⁻¹) полоса, а при 300 К полоса v_3 не выделяется над фоном. В КВг линия v_3 уширяется с температурой в меньшей степени, структура замазывается, пиковая интенсивность убывает, но интегральная интенсивность и положение максимума не меняется до 80 К. При

повышении температуры интенсивность линии в параллельной поляризации растет, а в перпендикулярной убывает, так что соотношение изменяется от 0,6 при 5 К до 0,25 при 35 К.

Рис. 2. Анализ контура полосы v_3 в спектре КР иона NO₂⁻ в КСl при 5 К; а) 1 — экспериментальная кривая, получена при спектральной ширине щели 2 cm^{-1} и общем времени накопления на канал 21 cex; 2 — теоретический контур; 3-5 — составляющие теоретического контура (начиная с нижнего: v_3 с вращательной структурой $\Delta K = \pm 1$, $v_3 + v_c^{\pi n 6 p}$ и $v_3 - v_c^{\pi n 6 p}$ с вращательной структурой $\Delta K = 0, \pm 2.$ б) зависимость поляризации и теоретического контура полосы v_3 от частоты $v_c^{\pi n 6 p}$.

Следует отметить, что спектр КР в кристаллах КСІ и КВг меняется при повышении концентрации ионов NO_2^- до 10^{20} см⁻³. Основные полосы несколько уширяются и появляются новые на частотах 1261 и 809 см⁻¹ в КВг, которые при температуре выше 80 К сливаются с полосами v_3 и v_2 соответственно. Выяснено, что эти новые полосы принадлежат не чистой фазе KNO₂, а, вероятно, комплексным (парным) центрам. Приведенные на рис. 1 спектры КР измерены на кристаллах, для которых контролировались спектры люминесценции. (Бесфононная линия люминесценции (см. [⁶]) состоит из двух компонентов, которые хорошо разрешены в кристаллах с концентрациями до $2 \cdot 10^{19}$, но полностью замазаны при концентрации 10^{20} см⁻³. При этом падает и интенсивность люминесценции.)

3. Правила отбора и интенсивности колебательных линий КР

Рассмотрим правила отбора и относительные интенсивности колебательных линий КР света на ионе NO_2^- в ориентации, где ось *а* направлена вдоль оси четвертого порядка C_4 кубического кристалла. Интерес представляют два случая: 1) молекула совершает свободное вращение вокруг оси *а* и либрирует вокруг осей *b* и *c*; 2) молекула либрирует вокруг трех осей *a*, *b* и *c*, причем оси *b* и *c* направлены вдоль осей второго порядка C_2 кубического кристалла. Углы вращения или либраций вокруг осей *a*, *b* и *c* молекулы обозначим через *A*, *B* и *C* соответственно.

Интенсивность I рассеянного примесной молекулой света пропорциональна

$$|\sum_{\alpha,\beta} n_{\alpha} R_{\alpha\beta} e_{\beta}|^2,$$

где n_{α} и e_{β} — единичные векторы электрического поля рассеянного и падающего света, а $R_{\alpha\beta}$ — тензор рассеяния [¹³]. Тензор рассеяния $R_{\alpha\beta}$, записанный в лабораторной системе координат, выражается через тензор рассеяния $R_{\gamma\delta}$, записанный в молекулярной системе координат, следующим образом:

$$R_{\alpha\beta} = \sum_{\gamma,\delta} O_{\alpha\gamma} R_{\gamma\delta} O_{\delta\beta},$$

где $O_{\alpha\gamma}$ — матрица вращения молекулы.

Например, ограничиваясь линейными членами разложения $O_{\alpha\gamma}$ по либрационным координатам B и C, имеем для одной из трех ориентаций оси a вращающейся молекулы

$$O = \begin{pmatrix} 1 & -C & B \\ C\cos A + B\sin A & \cos A & -\sin A \\ C\sin A - B\cos A & \sin A & \cos A \end{pmatrix}.$$
 (1)

Если тензоры $R_{\gamma\delta}$ для внутримолекулярных колебаний симметрии A_1 и B_1 записать

$$\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \quad H \quad \begin{pmatrix} 0 & d & 0 \\ e & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
(2)

то в лабораторной системе они принимают вид

$$\begin{pmatrix} a & (a-b)C\cos A + (a-c)B\sin A & (a-b)C\sin A + (c-a)B\cos A \\ (a-b)C\cos A + (a-c)B\sin A & \frac{b+c}{2} + \frac{b-c}{2}\cos 2A & \frac{b-c}{2}\sin 2A \\ (a-b)C\sin A + (c-a)B\cos A & \frac{b-c}{2}\sin 2A & \frac{b+c}{2} + \frac{c-b}{2}\cos 2A \end{pmatrix},$$

$$\begin{pmatrix} -(d+e)C & d\cos A & d\sin A \\ e\cos A & \frac{d+e}{2}(C+C\cos 2A+B\sin 2A) & \frac{d-e}{2}B+\frac{d+e}{2}(C\sin 2A-B\cos 2A) \\ e\sin A & \frac{e-d}{2}B+\frac{d+e}{2}(C\sin 2A-B\cos 2A) & \frac{d+e}{2}(C-C\cos 2A-B\sin 2A) \end{pmatrix}.$$
(4)

Последний тензор был получен в [14] в предположении, что d = e,

(3)

Тензоры (3) и (4) определяют правила отбора, относительные интенсивности и поляризацию колебательных линий КР. Последняя определена как отношение I_{\perp}/I_{\parallel} , где I_{\perp} и I_{\parallel} — интенсивности колеба-

тельной линии при $n \perp e$ и $n \parallel e$. Усреднение по ориентациям молекулы проведем в предположении равновероятного распределения по ним.

В табл. 2—5 приведены относительные интенсивности и правила

отбора для линий КР внутримолекулярных колебаний иона NO_2 и их комбинаций с либрационным колебанием вокруг оси *с*. Из них табл. 2 и 3 относятся к случаю свободного вращения вокруг оси *а* и либраций вокруг осей *b* и *c*, а табл. 4 и 5 — к случаю трехмерной либрации молекулы. Табл. 2 и 4 описывают опыт с поляризацией падающего и рассеянного света по осям четвертого порядка C_4 кубического кристалла, а табл. 3 и 5 — с поляризацией по осям второго порядка C_2 .

Рассмотрим табл. 2 (случай свободного одномерного вращения и

геометрии опыта с n, e || C4). Здесь без учета либрации колебательная линия типа A_1 имеет $I_{\perp} \neq 0$ и $I_{\parallel} \neq 0$, причем правило отбора для квантового числа K свободного вращения вокруг оси $a - \Delta K = 0, \pm 2;$ колебательная линия типа B_1 имеет $I_{\perp} \neq 0$ и $I_{\parallel} = 0$, причем $\Delta K = \pm 1$. Учет либраций придаст колебательной линии типа А1 либрационную структуру, причем только в интенсивности І и с правилом отбора $\Delta K = \pm 1$; колебательная линия типа B_1 приобретает в интенсивности I1 либрационную структуру с правилом отбора вращения $\Delta K = \pm 2$, а в интенсивности І имеются колебательно-либрационные переходы с правилом отбора $\Delta K = 0, \pm 2$. Через S(c) обозначена интенсивность либрационного перехода. Так как зависимости от либрационных координат в данной модели линейные, то правило отбора для либрационного квантового числа $\Delta l_c = \pm 1$. При низких температурах $S(c) \approx$ $\approx \sqrt{K/16V}$, где K — постоянная вращения молекулы вокруг оси c и V — высота потенциального барьера в либрации вокруг оси с. Отметим, что при высоких барьерах квант либрационного колебания равен приблизительно 47/КУ и может быть величины порядка нескольких десятков см-1 и больше.

Таким образом, для данной модели линия типа B_1 имеет параллельную поляризацию только благодаря либрации оси a; в линию типа A_1 эта либрация даст вклад только в перпендикулярной поляризации.

В случае геометрии опыта с $n, e \parallel C_2$ (табл. 3) правила отбора для K прежние, но интенсивности и поляризация другие. Линия типа B_1 имеет и $I_{\perp} \neq 0$ и $I_{\parallel} \neq 0$, причем, вероятно, $I_{\parallel} > I_{\perp}$ (симметричный тензор d = e дал бы $I_{\perp} = 0$). Учет либраций придаст линии типа A_1 либрационную структуру не в интенсивности I_{\perp} , а в I_{\parallel} .

Итак, из-за различных правил отбора ожидаются различия в структурах линий разного типа симметрии и линий параллельной и перпендикулярной поляризации.

В случае трехмерных либраций (табл. 4 и 5) вместо правила отбора для K следует установить правило отбора для квантового числа l_a либрации вокруг оси a (здесь S(a) — суммарная интенсивность либрационных переходов по либрации вокруг оси a). Если правило отбора для свободного одномерного вращения было или $\Delta K = 0, \pm 2$ или $\Delta K = \pm 1$, то для либрационного квантового числа l_a такого определенного правила отбора не существует. Другие выводы в основном сохраняются. В случае геометрии опыта с $n, e \parallel C_4$ по-прежнему линия

Таблица 2

Частота	$\overrightarrow{n} \perp e$	$\overrightarrow{n} \parallel \overrightarrow{e}$		
линии	I Правило отбора	. 1	Правило отбора	
0 == a <u>12</u> -{b+a}		$\frac{1}{3}a^2 + \frac{1}{6}(b+c)^2$	$\Delta K = 0$	
$v(A_1)$	$\frac{1}{24}(b-c)^2 \qquad \Delta K = \pm 2$	$\frac{1}{12}(b-c)^2$	$\Delta K = \pm 2$	
$v(B_1)$	$\frac{1}{6}(d^2 + e^2) \qquad \Delta K = \pm 1$	0		
$\nu(A_1) + \nu_c^{\pi u \delta p}$	$\frac{1}{3}(a-b)^2S(c) \Delta K = \pm 1$	0	<u></u> 0	
		$\frac{1}{2}(d+e)^2S(c)$	$\Delta K = 0$	
$v(B_1) + v_c^{\pi u \delta p}$	$\frac{1}{24}(d+e)^2S(c) \qquad \Delta K = \pm 2$	$\frac{1}{12}(d+e)^2S(c)$	$\Delta K = \pm 2$	

77		~					
	a	\mathbf{n}	12	11	11	14	-2
ι.	u	U.	12	u	u	u	 ,
					- 3		-

Частота	$\rightarrow \rightarrow n \perp e$		$\overrightarrow{n} \parallel \overrightarrow{e}$		
линии	I_{\perp}	Правило отбора	I	Правило отбора	
v(A1)	$\frac{\frac{1}{24}(2a-b-c)^2}{\frac{1}{16}(b-c)^2}$	$\Delta K = 0$ $\Delta K = \pm 2$	$\left. \frac{\frac{1}{24}(2a+b+c)^{2}+}{+\frac{1}{12}(b+c)^{2}} \right\}$	$\Delta K = 0$	
$v(B_1)$	$\frac{1}{12}(d-e)^2$	$\Delta K = \pm 1$	$\frac{1}{16}(b-c)^2 \\ \frac{1}{12}(d+e)^2$	$\Delta K = \pm 2$ $\Delta K = \pm 1$	
$v(A_1) + v_c^{\pi u \delta p}$	0		$\frac{1}{3}(a-b)^2S(c)$	$\Delta K = \pm 1$	
$y(B_i) \perp y^{\pi \mu \delta p}$	$\frac{3}{8}(d+e)^2S(c)$	$\Delta K = 0$	$\frac{1}{8}(d+e)^2S(c)^{-1}$	$\Delta K = 0$	
V(D1) + Vc	$\frac{1}{16}(d+e)^2S(c)$	$\Delta K = \pm 2$	$\frac{1}{16}(d+e)^2S(c)$	$\Delta K = \pm 2$	

типа B_1 имеет параллельную поляризацию только благодаря либрации оси a; в линию типа A_1 эта либрация даст вклад только в перпендикулярной поляризации. При геометрии опыта с $\vec{n}, \vec{e} \parallel C_2$ линия типа B_1 имеет и $I_{\perp} \neq 0$ и $I_{\parallel} \neq 0$, причем, вероятно, $I_{\parallel} > I_{\perp}$; учет либрации

423

Таблица 4

Частота	$\rightarrow \rightarrow n \perp e$	5-51	$\overrightarrow{n} \parallel \overrightarrow{e}$		
линии	IL	Правило отбора	I	Правило отбора	
v(A ₁)	$\frac{1}{12}(b-c)^2$	$\Delta l_a = 0$	$\frac{1}{3}a^2 + \frac{1}{6}(b+c)^2$	$\Delta l_a = 0$	
- TAII			$\frac{2}{3}(b-c)^2S(a)$	$\Delta l_a = \pm 1$	
	$\frac{1}{-(d^2+e^2)}$	$\Delta l_a = 0$			
$v(B_1)$	6 (110)		0		
	$\frac{1}{6}(d^2+e^2)S(a)$	$\Delta l_a = \pm 1$			
	$\frac{1}{3}(a-b)^2S(c)$	$\Delta l_a = 0$			
$v(A_1) + v_c^{\pi\pi\delta p}$	$\frac{1}{3}(a-b)^2S(c)S(a)$	$\Delta l_a = \pm 1$	0	A Calledo	
	$\frac{1}{12}(d+e)^2S(c)$	$\Delta t_a = 0$	$\frac{1}{2}(d+e)^2S(c)$	$\Delta l_a = 0$	
$v(B_1) + v_c^{\pi \mu \delta p}$	The state of t		$\frac{2}{3}(d+e)^2S(c)S(a)$	$\Delta l_a = \pm 1$	

оси *а* даст вклад в колебательную линию типа A_1 не в интенсивности I_{\perp} , а в I_{\parallel} .

Кроме различия в правилах отбора, определяющих структуру линий, переход от вращения вокруг оси *а* к либрации приводит к различию в поляризационных характеристиках и в их изменениях с изменением геометрии опыта.

4. Обсуждение

Начнем обсуждение с данных табл. 1, так как изменение ориентации осей молекулы относительно кристалла прежде всего сказывается на поляризации линий. Кроме того, данные о поляризации более надежны, тогда как разрешение структуры полос встречает большие экспериментальные трудности вследствие слабости сигнала КР.

Поляризация полос молекулярных колебаний NO_2^- в кристаллах KCl, KBr и RbCl, как уже отмечалось в [¹⁰], находится в противоречии с требованиями моделей фиксированного иона и иона, совершающего одномерное вращение вокруг фиксированной оси *a*, так как в обоих случаях полоса $v_3(B_1)$ в параллельной поляризации при геометрии $\stackrel{+\to}{\to}$ *n*, *e* || <100> (табл. 2 и 4, вторая строка) должна бы отсутствовать. С моделью одномерного ротатора не согласуется и поведение полосы $v_1(A_1)$: ее положение в спектре при разных геометриях опыта остается неизменным (рис. 1), хотя переход с $\Delta K = 0$ в перпендикулярной поляризации должен быть запрещен (табл. 2, первая строка).

Введение в модель переориентации осн *а* в виде учета переходов с возбуждением частоты v_c либрации вокруг оси *с* позволяет объяснить

Таблица 5

Частота	$\overrightarrow{n \perp e}$	DELETERAN	<i>n</i> <i>e</i>		
линии	, I _L	Правило отбора	I	Правило отбора	
v(A1)	$\frac{\frac{1}{24}(2a-b-c)^2}{\frac{1}{2}(b-c)^2S(a)}$	$\Delta l_a = 0$ $\Delta l_a = \pm 1$	$\left. \frac{\frac{1}{24}(2a+b+c)^{2}+}{+\frac{1}{6}(b^{2}+c^{2})} \right\}$	$\Delta l_a = 0$	
			$\frac{-}{6}(b-c)^2S(a)$	$\Delta t_a = \pm 1$	
(P)	$\frac{1}{12}(d-e)^2$	$\Delta l_a = 0$	$\frac{1}{12}(d+e)^{2}$	$\Delta l_a = 0$	
ν(<i>B</i> ₁)	$\frac{1}{12}(d-e)^2S(a)$	$\Delta l_a = \pm 1$	$\frac{1}{12}(d+e)^{2}S(a)$	$\Delta l_a = \pm 1$	
v(4.) + v. ^{nu6p}	0		$\frac{1}{3}(a-b)^2S(c)$	$\Delta l_a = 0$	
v (/11) + vc			$\frac{1}{3}(a-b)^2S(c)S(a)$	$\Delta l_a = \pm 1$	
N(B) La ^{Aug} p	$\frac{3}{8}(d+e)^2S(c)$	$\Delta l_a = 0$	$\frac{1}{8}(d+e)^2S(c)$	$\Delta l_a = 0$	
$v(D_1) + v_c$	$\frac{1}{2}(d+e)^2S(c)S(a)$	$\Delta l_a = \pm 1$	$\frac{1}{6}(d+e)^{2}S(c)S(a)$	$\Delta l_a = \pm 1$	

появление полосы v_3 в параллельной составляющей спектра КР: это может быть комбинированный переход $v_3 + v_c^{\text{либр}}$ и принадлежащая ему вращательная структура с $\Delta K = 0, \pm 2$ (табл. 2 и 4, последняя строка) или комбинированный переход $v_3 + v_c^{\text{либр}}$, сопровождающийся возбуждением кванта либрации вокруг оси *a* с правилом отбора $\Delta l_a = 0, \pm 1$ (табл. 4 и 5, последняя строка). Однако модель трехмерного либратора противоречит данным [^{1, 6}], свидетельствующим о вращении вокруг *a*, и не может быть принята.

Детальная интерпретация структуры полосы v_3 в спектре КР требует знания частоты $v_c^{\text{либр}}$. Поскольку в спектре КР имеется только одна полоса колебания v_3 , то следует принять частоту либрации малой, чтобы иметь возможность интерпретировать эту полосу как наложение полосы v_3 с вращательной структурой $\Delta K = \pm 1$ и полосы $v_3 + v_c^{\text{либр}}$ с $\Delta K = 0, \pm 2$. На рис. 2, *а* экспериментальный контур полосы v_3 сопоставлен с вычисленным для $v_c^{\text{либр}} = 1,5 \ cm^{-1}$. Отдельные составляющие полосы взяты гауссовыми с шириной $2 \ cm^{-1}$, использована определенная в [6] схема вращательных термов и заселенность уровней для температуры 5 К. Интенсивность либрационного перехода S(c), которая входит в табл. 2—5 как параметр, определяется средним значением либрационной координаты [12] $\bar{q}_c = \sqrt{2A_c/v_c^{\text{либр}}}$, где A_c — постоянная вращения вокруг оси c, $A_c = 0,43 \ cm^{-1}$. При конструировании теоретического контура была взято S(c) = 0,53, что хорошо согласуется как с принятой величиной $v_c^{\text{либр}}$, так и с поляризацией полосы, вычисленной согласно табл. 2. Зависимость расчетных контура и поляризации полосы от частоты либрации ус^{либр} демонстрирует семейство кривых на рис. 2, б.

Необходимость принять столь малые значения для частоты либрации показывает, что сама модель либрирующего ротатора работает плохо. Эта модель не дает также полного количественного объяснения

поляризации линий: при геометрии n, e || <110> поляризация полосы v₃ оказывается больше вычисленной; не удается найти набор компонентов тензора a, b и c для колебания v1, дающий правильные поляризации этой полосы в разных геометриях.

Частоте ~1 см-1 может соответствовать туннельное расщепление уровня $l_c = 0$. Значительное туннельное расщепление при переориентации оси а (что соответствует либрациям вокруг оси с) согласуется с

фактом почти полного упорядочения в ориентации NO2 в KCl, которое наблюдается при весьма малых упругих деформациях кристалла [7] и гелиевых температурах. Предположение о туннельном расщеплении уровня $l_c = 0$ согласуется также с наблюдаемой независимостью поляризации и структуры полосы v3 от температуры — при столь малой либрационной частоте должно было отчетливо проявляться изменение с температурой заселенности возбужденного либрационного уровня.

Проведенное обсуждение касалось лишь основных особенностей спектра КР и динамического поведения иона NO₂ в кристалле КСІ. В двух других кристаллах — КВг и RbCl — общий характер вращательно-либрационного движения NO2 сохраняется, но резко отличается в кристалле КІ. Для более глубокого понимания динамического поведения молекулярного иона NO₂ в различных основаниях необходимо последовательно учесть взаимодействие с кристаллическими колебаниями.

ЛИТЕРАТУРА

- Ребане Л. А., Физика примесных центров в кристаллах, Таллин, 1972, с. 353,
 Вгоп W. Е., Dreyfus R. W., Phys. Rev. Letters, 16, 165 (1966).
 Callender R., Pershan P. S., Phys. Rev. A, 2, 672 (1970).
 Klein M. V., Wedding B., Levine M. A., Phys. Rev., 180, 902 (1969).
 Klein M. V., Peascoe J. G., J. Chem. Phys., 59, 2394 (1973).
 Avarmaa R., Rebane L., Phys. Stat. Sol., 35, 107 (1969).
 Abapmaa P., Ont. и спектр., 29, 715 (1970).
 Evans A. R., Fitchen D. B., Phys. Rev. B, 2, 1074 (1971).
 Rebane K. K., Rebane L. A., Haldre T. J., Gorokhovski A. A., Adv Raman Spectroscopy, 1, 379 (1972).
 Ребане Л. А. Хальдре Т. Ю. Новик А. Е. Гороховский А. А.

- Raman Spectroscopy, 1, 379 (1972).
 10. Ребане Л. А., Хальдре Т. Ю., Новик А. Е., Гороховский А. А., ФТТ, 15, 3168 (1973).
 11. Хальдре Т. Ю., Ляпцев А. В., Киселев А. А., Ребане Л. А., ФТТ, 17, 635 (1975).
 12. Haldre T. J., Rebane L. A., Liapzev A. V., Kiselev A. A., Phys. Stat. Sol. (b), 70, No. 1 (1975).
 13. Ребане Л., Халлер К., Хальдре Т., Новик А., Изв. АН ЭССР, Физ. Матем., 24, 107 (1975).
 14. Киселев А. А., Ляпцев А. В., ФТТ, 16, 2426 (1974).

Институт физики Академии наук Эстонской ССР

Поступила в редакцию 2/VI 1975

T. HALDRE, Ljubov REBANE, O. SILD, E. JÄRVEKÜLG

NO2 - 100NI PÖÖRLEMIS-LIBRATSIOONLIIKUMINE MÕNEDES LEELIS-HALOGENIIDKRISTALLIDES KOMBINATSIOONHAJUMISSPEKTRITE PÕHJAL

Uuriti NO₂⁻⁻iooni molekulisiseste võnkumiste polarisatsiooni ja joonte struktuuri KCl, KBr ja RbCl kristallide kombinatsioonihajumisspektrites. Mõõtmised teostati temperatuuril 5 K, valguse elektrivektor oli katsetes suunatud piki <100> või <110> suunda. Vaadeldi ülemineku valikureegleid ja polarisatsiooniastet kolmel juhul: 1) lisandimolekul pöörleb kristallis <100> suunas fikseeritud a-telje ümber; 2) ühemõõtmelise pöörlemisega kaasneb pöörlemistelje libratsioon ümber b- ja c-telje; 3) molekul libreerib ümber kõigi kolme telje. Näidatakse, et mitte ükski neist mudeleist ei anna joonte polarisatsiooni ja struktuuri täielikku interpretatsiooni. Arutatakse a-telje tunnelüleminekute võimalusi.

T. HALDRE, Lyubov REBANE, O. SILD, E. JARVEKULG

ROTATIONAL-LIBRATIONAL MOTION OF THE NO₂-ION IN SOME ALKALI HALIDES ACCORDING TO RS SPECTRA

A detailed investigation of the polarization and contours of the inframolecular vibration bands in RS spectra of the NO_2^- ion in the KCl, KBr and RbCl crystals has been carried out at 5 K and orientations of the electric vector in <100> and <110> directions. The polarization and selection rules in RS spectra have been studied for three centre models: (1) the impurity molecule performing free rotation around the *a*-axis which is fixed in <100> direction; (2) one-dimensional rotation around the *a*-axis, accompanied by libration around the *c*-axis; (3) the impurity molecule performing librations around all three axes of inertia.

It has been shown that in none of these models the polarization and structure of the line in RS spectrum can be fully interpreted. The tunnel reorientation of the rotation axis a has been discussed.