EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 21. KÖIDE FOOSIKA * MATEMAATIKA. 1972, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 21 ФИЗИКА * МАТЕМАТИКА. 1972, № 4

https://doi.org/10.3176/phys.math.1972.4.14

УДК 541.128.7

Т. НЕЭМЕ

О КОЛЕБАТЕЛЬНЫХ ИЗМЕНЕНИЯХ СКОРОСТИ ОКИСЛЕНИЯ РАСТВОРОВ ГЛУТАТИОНА И ЦИСТЕИНА

Колебания титра SH-групп белков актомнозинового комплекса изучаются с 1963 г. [¹]. Аналогичное явление обнаружено у препаратов креатинкиназы [²]. Полученные эффекты, по-видимому, связаны с конформационными осцилляциями внутри белковой молекулы. Осцилляции сложных биохимических систем, в свою очередь, могут быть поняты с помощью более элементарных химических моделей.

При замене актомиозина аминокислотой, содержащей SH-группу, разброс SH-титра сохраняется [³]. В некоторых условиях вместо хаотического разброса наблюдалось волнообразное или ступенчатое изменение титра во времени. Предполагается, что окисление SH-групп комбинируется с явлением, увеличивающим аргентометрический титр [⁴]. В результате комбинации двух процессов и получаются эти упорядоченные изменения. Спектроскопические измерения благодаря их быстроте, безынерционности и непрерывности могут дать в этом случае ценную информацию. Однако спектроскопические измерения реакционных смесей отнюдь не определяют SH-группы столь однозначно, как метод амперометрического титрования.

Целью настоящей работы является спектроскопическое исследование окисления цистеина и глутатиона в условиях, аналогичных применявцимся нами ранее при измерениях титра SH-групп [^{4, 5}].

Методика

Работа проводилась на спектрофотометре ультрафиолетовой и видимой области типа SPECORD UV-VIS. Регистрация спектров в диапазонах волновых чисел 42 000—30 000 см⁻¹ (237—334 ммк) и 48 000— 36 000 см⁻¹ (208—278 ммк) осуществлялась в течение 36 секунд. Через минуту можно было продолжать запись кинетики реакций. Скорость движения планшеты при этом составляла 12 мм/мин. В случае длительных измерений включенный параллельно потенциометрический самописец работал с такой же скоростью движения ленты. Исходные вещества измерялись в стандартных 10-миллиметровых кюветах, спектры реакционных смесей и кинетика исследовались в таких же кюветах, но в крышки были вмонтированы гладкие стеклянные палочки диаметром 1,2 мм, вращавшиеся со скоростью 800 об/мин при помощи синхронного мотора СД-54, и капиллярные трубки для наполнения кювет непосредственно в спектрометре. Обогащение реакционной смеси газами

Рис. 1.

происходило посредством специальных круглых кювет из стекла пирекс с кварцевыми окнами (рис. 1). Аргон направлялся через капиллярную трубку 1, отверстие на конце которой было тщательно отшлифовано под бинокулярной лупой МБС-1. Выходящие из трубки 1 очень маленькие пузырьки газа создавали в трубке 2 перемешивающую турбулентность; трубка препятствовала рассеиванию пузырьков в объеме кювет. 10-миллиметровые кюветы с рабочим объемом 5,5 мл заполнялись вначале буфером, затем при помощи стеклянного шприца с длинной иглой в буфер добавлялись разные порции 10-3 н. раствора тиола. Постоянство давления газов поддерживалось двумя соединенными последовательно редукторами и игольчатым вентилем, а скорость протекания газа измерялась ротаметром со шкалой от 3 до 25 л/ч.

Реактивы: L-цистеин хлоргидрат (Chemapol, Чехословакия); глутатион восстановленный (фирма Merck, ФРГ).

Результаты и обсуждение

Кинетика реакции (при волновом числе 40 000 с m^{-1}) одной части свежего холодного 10⁻³ н. раствора восстановленного глутатиона в шести частях 0,2 н. аммиачного буфера представлена на рис. 2. Реакция проводилась в круглой кювете при непрерывном перемешивании продуванием аргона. Амплитуда колебания составляла примерно 20% оптической пропускаемости. Через 30 минут после начала реакции характер колебаний изменился. Полной воспроизводимости подобных состояний пока не получено.

Рис. 2. Изменение оптической пропускаемости (в %) раствора глутатиона в аммиачном буфере при перемешивании продуванием аргона в течение 30 мин.

В круглой кювете увеличение скорости протекания струи газов от 3 до 25 n/4 не влияло существенно на кинетику реакции. В наших работах по амперометрическому титрованию перемешивание растворов тиола и буфера пузырьками газа осуществлялось в длинной трубе (бюретка объемом 100 *мл*) и в электролизере [⁵]. Как видно из рис. 2 и 3 работы [⁴], изменение способа перемешивания отражалось на характере реакции. Если через круглую кювету пропускать более мощный поток газа, то раствор из кюветы уносится слишком быстро и возможно изменение состава смеси. Поэтому дальнейшие опыты проводились в снабженных мешалкой прямоугольных кюветах. Изменение скорости вращения гладкой мешалки влияло на ход реакции.

На рис. З представлены спектры реакционной смеси из одной части цистеина и четырех частей буфера (свежие растворы при непрерывном

Т. Неэме

444

Рис. 4. Кинетика изменений оптической пропускаемости (в %) раствора цистеина в аммиачном буфере, измеренная в течение 100 *мин.* при перемешивании с воздухом.

перемешивании). Кривая 1 отражает начало реакции. На рис. 4 представлена кинетика изменений абсорбции при волновом числе 40 000 cm^{-1} сразу после записи спектра 1. Через 20 минут, когда колебательные изменения еще наблюдались, был снят второй спектр реакционной смеси (кривая 2 на рис. 3). На 45-й минуте обнаружилась остановка мешалки. Однако после возобновления перемешивания с увеличенной скоростью наблюдалось новое потемнение раствора, вслед за которым возникло еще несколько малозаметных волн (на 80 и 90-й минутах). Суммарный спектр реакционных компонентов и продуктов представлен кривой 3 рис. 3. В приведенном случае существование кслебательной кинетики до известной степени подтверждается спектральными данными. Кроме того, обнаружилось, что не только при волновом числе 40 000, но и при 33 000 cm^{-1} происходят характерные колебания степени абсорбции цистеина в аммиачном буфере.

Количественное исследование подобных нестационарных состояний ограничивается пока их недостаточной воспроизводимостью. Вероятным источником загрязнений является аммначный буфер. Распространенное мнение и наши собственные эксперименты вряд ли допускают, что окисление с заметной скоростью возможно без катализатора. И все же, как было установлено в [⁵], при длительном хранении у водных растворов глутатиона и цистеина тенденция к ступенчатому окислению SH-групп увеличивается.

Использованный далее 10⁻³ н. раствор цистеина был изготовлен в условиях минимального соприкосновения с кислородом в термостатируемой бюретке при 29° С. На рис. 5 представлен исходный спектр двухмесячного раствора в бидистилляте (кривая 1), а на рис. 6 — кинетика изменений этой же порции раствора при волновом числе 42 000 см⁻¹ в условиях непрерывного перемешивания в течение 15 часов. В процессе опыта велась непрерывная запись кинетики. Затем был снят

445

суммарный спектр реакционной смеси и реакционных продуктов (кривая 2 на рис. 5). Цифры 1, 2 на рис. 6 обозначают время регистрации спектров 1 и 2 рис. 5. Пунктиром на рис. 6 показана кинетика изменений однонедельной порции того же раствора цистеина. В этом опыте

Рис. 5. Спектры анаэробных (———) и аэробных (—————) водных растворов цистеина (в интервале волновых чисел 20 000—48 000 см⁻¹) при перемешивании с воздухом (кривые 2—5, 5—12) и без перемешивания (кривые 1, 7, 8).

первый спектр реакционной смеси только количественно отличался от кривой 1 на рис. 5. Время первого измерения на рис. 6 обозначено цифрой 1'. По истечении двух часов спектры реакционной смеси стали похожими на спектр 2 рис. 5; это время на рис. 6 обозначено цифрой 2'. За несколько минут до получения спектра 3 скорость перемешивания была резко увеличена, и через полчаса был получен спектр 4. После 12-часового перерыва перемешивание было возобновлено и были зарегистрированы спектры 5 и 6.

Таким образом, водный раствор цистеина при длительном хранении в довольно анаэробных условиях может приобретать свойства, сильно отличающиеся от свойств «ленивых редокссистем» (sluggish systems) [⁶], изученных в условиях свежего приготовления. Некоторые намеки в этом направлении были получены методом амперометрического титрования. Так, на рис. 1 работы [⁴] уже в 33-часовом аммиачном растворе при непрерывном слабом перемешивании колебания наблюдались еще до начала быстрого ступенчатого окисления. На рис. 2 работы [⁵] показаны как «спонтанные» колебания, так и колебания, связанные с продуванием газов, вплоть до исчезновения SH-групп в ходе опыта.

В приведенных случаях аммиачный буфер временно ускорил связывание ионов серебра. Может быть, одновременно с катализом окисления буфер создает в растворе анаэробные условия, аналогичные возникающим спонтанно при длительном стоянии водных растворов.

Изоляция от кислорода при изготовлении растворов является необходимым условием. Кривая 7 на рис. 5 представляет спектр свежего 10-3 н. раствора цистеина в бидистилляте, изготовленного обычным способом; кривая 8 — спектр раствора аналогичного изготовления, но простоявшего в лаборатории 44 дня и не имевшего колебательной кинетики; кривые 9—12 — спектры реакционных смесей 44-дневного раствора, полученные при интенсивном встряхивании.

Дальнейшие исследования колебаний нестационарного состояния должны показать, в какой мере здесь участвует сульфгидрильная динамика. Параллельно со спектроскопическими измерениями следует провести измерения SH-титра на установке амперометрического титрования. И хотя описанные здесь колебания не говорят о работе системы в автокаталитическом режиме, все же полученные данные не исключают такой возможности.

Выражаю глубокую признательность профессору Э. Липпмаа за ценные дискуссии по содержанию настоящей работы.

ЛИТЕРАТУРА

- Шноль С. Э., Смирнова Н. А., Биофизика, 9, 532 (1964).
 Рыбина В. В., Четверикова Е. П., В сб.: Колебательные процессы в биологических и химических системах, 2, 29 (1971).
- З. Неэме Т., Липпмаа Э., Мат-лы IV биохим. конфер. Прибалт. республик и
- Неэме Т., Липпмаа Э., Маглы ТV онохим. конфер. Приодит. респустия и Белорусской ССР, Вильнюс, 1970, с. 145.
 Неэме Т. Г., В сб.: Колебательные процессы в биологических и химических системах, 2, 33 (1971).
 Неэме Т., Липпмаа Э., Изв. АН ЭССР, Физ. Матем., 20, 309 (1971).
 Ваггоп Е. S. G., In: Advances in enzymology and subjects of biochemistry, 11, 201 (1951).
- 201 (1951).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 12/VI 1972

T. NEEME

GLUTATIOONI JA TSÜSTEIINI LAHUSTE OKSÜDEERUMISKIIRUSTE **VÕNKUVATEST MUUTUSTEST**

Teatatakse tsüsteiini ja glutatiooni lahuste optilise tiheduse võngetest ammoonium-puhvris, mis olid mõõdetud lainearvul 40 000 cm⁻¹. Esitatakse võnkumise ajal mõõdetud teaktsioonisegude spektrid. Kahe kuu vanuse tsüsteiini anaeroobse vesilahuse segune-misel õhuga registreeriti suur aeglane ja peaaegu täielikult pöörduv optilise tiheduse wõnge lainearvul 42 000 cm⁻¹. Esitatakse värskelt tehtute ja vanade aeroobsete ning. vanade anaeroobsete lahuste spektrid enne õhuga segunemist ja segunemise ajal.

T. NEEME

OSCILLATORY CHANGES OF THE OXIDATION SPEED OF GLUTATHIONE AND CYSTEINE SOLUTIONS

Damped oscillations of optical density at the wave number 40 000 cm⁻¹ of cysteine and glutathione solutions in ammonia buffer have been recorded. Spectra of the reaction mixture during oscillations are represented. A considerable and slow, almost completely recovering oscillation of optical density at the wave number 42 000 cm⁻¹ was obtained, when two-months-old aqueous anaerobic solution of L-cysteine hydrochloridehad been measured while stirring with air. Some corresponding spectra have been represented. Spectra of freshly made and old aerobic solutions as well as spectra of old: anaerobic solution have been obtained.

448