EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 20. KÕIDE FOUSIKA * MATEMAATIKA. 1971, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 20 ФИЗИКА * МАТЕМАТИКА. 1971, № 4

https://doi.org/10.3176/phys.math.1971.4.13

УДК 621.43.011:533+621.5:533

А. ЭПШТЕЙН, В. ЕМЕЛЬЯНОВ

О РАСЧЕТЕ ТУРБУЛЕНТНОЙ СТРУИ В СНОСЯЩЕМ ПОТОКЕ

Исходные положения

Данная работа посвящена расчету турбулентной струи круглого начального сечения, вытекающей под отличным от 0 или л углом в неограниченный поток, имеющий постоянные скорость и плотность. Рассмотрим элемент струи толщиной δl (рис. 1).

Введем предварительно следующие обозначения:

- координата, совпадающая с направлением сносящего потока;
- у координата, перпендикулярная х в плоскости симметрин струи;
- скорость струи в произвольном сечении;
- v₀ начальная скорость струи;
- *v_m* скорость на оси струи;
- w скорость сносящего потока;
 - е плотность струи в произвольном сечении;
- Qw плотность сносящего потока;
 - S, S₀ площадь поперечного сечения струи, текущая и начальная соответственно;
 - D₀ диаметр выходного сечения струи;
 - r радиус кривизны траектории струи:

Как показано в [¹], если кривизна струи не слишком велика, при записи уравнений движения струи можно не учитывать влияние поперечных перемещений частиц внутри струи; кроме того, можно считать

6 ENSV TA Toimetised F*M-4 71

Рис. 1. Схема струн в сносящем потоке,

α, α₀ — угол наклона касательной к траектории струи относительно направления *x*, текущий и начальный соответственно.

практически незначительным количество движения, вносимое в струю с тыловой поверхности, где параметры окружающей среды отличны от параметров невозмущенного потока. Все это дает возможность приближенно рассматривать элемент струи как материальную точку переменной массы, имеющую среднюю плотность

$$\overline{\varrho} = \frac{s}{s}$$
(1)

и движущуюся по криволинейной траектории со средней скоростью

$$\overline{\mathbf{v}} = \frac{s}{S} \,. \tag{2}$$

Координата указанной точки должна совпадать с местом в данном поперечном сечении струй, где

$$\frac{\int \varrho(\mathbf{v} - \mathbf{w}) ds}{\frac{s}{S}}.$$
 (3)

Tak kak w = const, to v - w = v - w.

С учетом сказанного выше уравнение движения элемента струи относительно окружающей среды в векторной форме имеет вид

$$\frac{d}{dt} \left[\lambda_{1\overline{Q}} \left(\overline{\mathbf{v}} - \mathbf{w} \right) S \delta l \right] = \delta \mathbf{F}$$
(4)

или после дифференцирования левой части (4)

$$\overline{\varrho S} - \frac{d}{dt} (\lambda_1 \overline{\mathbf{v}}) \, \delta l = \delta \mathbf{F} + \lambda_1 (\mathbf{w} - \overline{\mathbf{v}}) \frac{d}{dt} (\overline{\varrho} S \delta l).$$
(5)

Здесь λ_1 — коэффициент корреляции между ϱ и v — w, связанный с различными профилями скорости и плотности; очевидно, если плотность струи постоянна и равна плотности окружающей среды, то $\lambda_1 = 1$. С точки зрения кинетостатики соотношение (5) представляет собой условие равновесия элемента струи под действием сил: внешней — δF , инерционной — δI (член в левой части уравнения, взятый с обратным знаком) и импульсной — $\delta \Phi$ (второй член в правой части уравнения). Последняя сила связана с приращением секундного количества движения элемента за счет присоединения вещества из окружающей среды. Уравнение (5) можно переписать в проекциях на направления главной нормали n и касательной τ

$$\lambda_{1\varrho}^{2-\overline{c}} \frac{(\overline{v})^{2}}{r} \delta l = \delta F_{n} + \lambda_{1} w \sin \alpha \frac{d}{dt} (\overline{\varrho} S \delta l), \qquad \left(6a \right)$$

$$\overline{\varrho S} - \frac{d}{dt} (\lambda_1 \overline{v}) \delta l = \delta F_{\tau} + \lambda_1 (w \cos \alpha - \overline{v}) - \frac{d}{dt} (\overline{\varrho} S \delta l).$$
(66)

Согласно высказанному в [1] предположению, для струи в сносящем потоке следует различать два режима перемешивания — режим эжекции и режим торможения. Последний является практически основным для такой струи, и в данной работе мы ограничимся лишь его рассмотрением. Тогда можно записать

$$\frac{d}{dt} \left(\overline{\varrho} S \delta l \right) = \chi \varrho_w w b \sin \alpha \delta l. \tag{7}$$

Если условия течения таковы, что плавучесть струи отсутствует или ничтожно мала, то единственной внешней силой, действующей на элемент, будет разность давлений между фронтальной и тыловой его поверхностями. Следовательно, $\delta F_{\tau} = 0$ и по аналогии с обтеканием твердого тела

$$\delta F_n = c_n \frac{\varrho_w w^2 \sin^2 \alpha}{2} b \delta l, \tag{8}$$

где коэффициент сопротивления c_n должен определяться на основе опытных данных.

Траектория струи

Траектория струи определяется путем интегрирования уравнения (6а). Выберем направление координатных осей *x* и *y* согласно рис. 1. В качестве вспомогательного соотношения воспользуемся уравнением количества движения в проекции на ось *y*, записанным для произвольного поперечного сечения струи

$$\lambda_{2Q}(\overline{v})^{2}S\sin\alpha = \varrho_{0}v_{0}S_{0}\sin\alpha_{0} - c_{n}\frac{\varrho_{w}w^{2}}{2}\int_{0}^{t}\sin^{2}\alpha\cos\alpha\,b\,dl =$$

$$= \varrho_0 v_0^2 S_0 \sin \alpha_0 - c_n \frac{\varrho_w w^2}{2} \int_0^y \sin \alpha \cos \alpha \, b \, dy, \tag{9}$$

где
$$\lambda_2 \overline{\varrho}(\overline{v})^2 = \overline{\varrho}\overline{v}^2 = \frac{s}{s}$$
,

 λ_2 — коэффициент корреляции между ϱ и $(v)^2$. Кроме того,

$$\sin \alpha = 1/(1 + x^{2})^{0,5}, \tag{11}$$

$$\cos \alpha = x'/(1+x'^2)^{0,5}, \tag{12}$$

$$r = -(1 + x^2)/x''. \tag{13}$$

Наконец, на основе опытных данных [^{2, 3}] примем следующую зависимость для изменения ширины струи:

$$b = cy, \tag{14}$$

где
$$c = c_1 q^{-n}$$
 и $q = \frac{Q_0 v_0^2}{Q_0 v w^2};$

6*

численные значения c_1 и *п* также определяются из опытных данных по измерению ширины струи.

Тогда с помощью (7) - (14) преобразуем (6а) к следующему уравнению в безразмерных координатах $\overline{x} = x/D_0$, $\overline{y} = y/D_0$:

$$\bar{y}/\bar{x}'' = A - 2m \int_{0}^{\overline{y}} \frac{\bar{x}'}{1 + {x'}^2} \bar{y} \, d\bar{y},$$
 (15)

(10)

где

$$A = \frac{\pi \lambda_1 q \sin \alpha_0}{4 \lambda_2 k c}, \quad m = \frac{\lambda_1 c_n c}{4 \lambda_2 k}, \quad k = \frac{c_n + 2\chi \lambda_1}{2\lambda_1^2}$$

в первом приближении здесь величины χ, *c_n*, λ, а следовательно, и *k* приняты постоянными.

Путь решения уравнения (15) указан в [4]. Там же приведен способ определения численной величины коэффициента c_n на основе опытных данных [²].

Ниже приводятся окончательные формулы для расчета траектории струи, полученные в результате интегрирования (15) при начальных условиях

$$\bar{x}(0) = 0, \quad \bar{x}'(0) = \operatorname{ctg} a_0$$
 (16)

и численных значениях эмпирических коэффициентов $c_1 = 1,7$; n = 0,2 (см. [²]), $c_n = 0,8$; k = 1,2; $m = \frac{1}{6}$; $\lambda_1/\lambda_2 = 1$. Эти формулы являются приближенными, поскольку один из промежуточных интегралов в полном его виде не выражается в элементарных функциях. Однако, как показано в [⁴], погрешность, возникающая при упрощении этого интеграла, практически ничтожна.

1) в области ctg $a_0 \leq ctg a \leq 1$ ($a_0 \geq a \geq \pi/4$)

$$\overline{x} = \frac{0.43}{q^{1,2} \sin^{2/3} \alpha_0} \, \overline{y}^3 + \overline{y} \operatorname{ctg} \alpha; \tag{17}$$

2) В ОБЛАСТИ 1
$$< \operatorname{ctg} a_0 < \infty (\pi/4 > a > 0$$
 ПрИ $a_0 > \pi/4$)
 $\bar{x} = \frac{0,2}{q^{1,2} \sin^{2/3} a_0} \left\{ \bar{y} [\bar{y}^2 + 0.38q^{1,2} \sin a_0 (1 + 2\operatorname{ctg} a_0)]^{1,5} + 0.58q^{1,2} \sin^{2/3} a_0 \times (1 + 2\operatorname{ctg} a_0) \bar{y} [\bar{y}^2 + 0.38q^{1,2} \sin^{2/3} a_0 (1 + 2\operatorname{ctg} a_0)]^{0,5} - 1.08q^{2,4} \sin^{4/3} a_0 \times (1 - \operatorname{ctg} a_0)^{0,5} - 0.54q^{2,4} \sin^{4/3} a_0 (1 - \operatorname{ctg} a_0)^{0,5} (1 + 2\operatorname{ctg} a_0) + 0.22q^{2,4} \sin^{4/3} a_0 (1 + 2\operatorname{ctg} a_0)^2 \left[\operatorname{Arsh} \frac{1.61\bar{y}}{2.4 + 1.64\bar{y}} - \frac{1.61\bar{y}}{2.4 + 1.64\bar{y}} \right]$

$$-\operatorname{Arsh} 1,41 \left(\frac{1 - \operatorname{ctg} \alpha_0}{1 + 2 \operatorname{ctg} \alpha_0} \right)^{0,5} \right] + 0,29q^{0,6} \sin^{1/3} \alpha_0 (1 - \operatorname{ctg} \alpha_0)^{0,5} (1 + 2\operatorname{ctg} \alpha_0);$$
(18)

3) в области 1 < ctg a < ∞ ($\pi/4 > a > 0$ при $a_0 < \pi/4$)

$$\overline{x} = \frac{0,2}{q^{1,8} \sin \alpha_0} \left[\bar{y} \left(\bar{y}^2 + 1,16q^{1,2} \cos^{2/3} \alpha_0 \right)^{1,5} + 1,73q^{1,2} \cos^{2/3} \alpha_0 \cdot \bar{y} \left(\bar{y}^2 + 1,16q^{1,2} \cos^{2/3} \alpha_0 \right)^{0,5} + 4,88q^{2,4} \cos^{4/3} \alpha_0 \operatorname{Arsh} \left(\frac{0,93}{q^{0,6} \cos^{1/3} \alpha_0} \right) \right].$$
(19)

Координаты переходного сечения при расчете по формулам (17) и (18) получаются следующими:

$$\bar{y}_1 = 0,88q^{0,6} \sin^{1/3} \alpha_0 (1 - \operatorname{ctg} \alpha_0)^{0,5}, \tag{20}$$

$$\bar{x}_1 = 0.29q^{0.6} \sin^{1/2} \alpha_0 (1 - \operatorname{ctg} \alpha_0)^{0.5} (1 + 2\operatorname{ctg} \alpha_0).$$
(21)

На рис. 2 дано сопоставление расчетов по формулам (17) - (21) с опытными данными работ [^{5,6}]. Переход в систему координат *ху*, связанную с центром выходного сечения струи, производится по формулам

456

$$\overline{\overline{X}} = \overline{x} - \overline{x}_{0}, \overline{Y} = \overline{y} - \overline{y}_{0},$$

$$(22)$$

где при $4 \leq q \leq 36$ координата полюса струи

$$\bar{y}_0 = q^{0,2/1,7},\tag{23}$$

а величину \overline{x}_0 дает подстановка (20) в (17); при q > 64 можно принимать $\bar{y}_0 = 0$. Совпадение теории с экспериментом можно признать удовлетворительным.

Интересно отметить, что расхождение между расчетами только по формуле (17) или по формулам (17) — (19) становится заметным лишь на больших расстояниях от источника, причем для опытов при $a_0 = \pi/2$ расхождение между расчетными кривыми меньше, чем естественный разброс опытных точек. Из этого можно сделать вывод, что используемое в ряде работ [7-9] допущение о сохранении импульса струи в направлении у (выражается равенством нулю интеграла в (9)) можно считать оправданным, по крайней мере, для струй при углах α₀, не очень отличающихся от π/2, на участке, где угол наклона оси струи α не слишком мал. Следует также отметить большое сходство теоретической формулы (17) с соответствующей эмпирической формулой, предложенной в [5].

Падение осевой скорости струи

Для нахождения зависимости скорости струи от расстояния до источника воспользуемся уравнением (6б).

На основании сказанного выше расчет скорости струи будем вести в предположении составляющей постоянства импульса струи в направлении у. Тогда, воспользовавшись соотношениями (7), (9) (без интеграла в правой ча-

Рис. 2. Сравнение расчетной траектории струи с опытными данными.

 $a - \pi p_{\mu} \alpha_0 = \pi/2$: 1-5 - q = 4,75; 25; 50; 100; 400 при 20/2 = 1; 6-8 - q = 12,5: 50; 200 при go/gw = 0,5.

- 6 при разных α_0 : 1-4 $\alpha_0 = 30^\circ$; 60° ; 120°; 135° при q = 100.
- расчет только по (17); расчет по (17), (18) в случае а, по (17)-(19) в случае б.

сти), (11), (12) и (14), получим из (6б) в предположении $\lambda_1 = \text{const}$ слєдующее дифференциальное уравнение:

$$\left(\frac{\upsilon}{\upsilon_0}\right)' = B\left(\frac{\upsilon}{\upsilon_0}\right) \left\{ \left(\frac{w}{\upsilon_0}\right) - \frac{\overline{x}'(\overline{y})}{\left[1 + \overline{x}'^2(\overline{y})\right]^{0.5}} - \left(\frac{\upsilon}{\upsilon_0}\right) \right\} - \frac{\overline{y}}{\left[1 + \overline{x}'^2(\overline{y})\right]^{0.5}}, \quad (24)$$

где

$$B = \frac{4\lambda_2 c_{Qw} w}{\pi \sin \alpha_0 Q_0 v_0}$$

а $\bar{x}'(\bar{y})$ определяется из решения для траектории струи в случае первого участка. Произведя в (24) замену переменной $p(\bar{y}) = (v/v_0)^{-1}$, получим линейное уравнение

$$p' + B\left(\frac{w}{v_0}\right) \frac{\bar{x}'\bar{y}}{(1+\bar{x}'^2)^{0,5}} p = A \frac{\bar{y}}{(1+\bar{x}'^2)^{0,5}}.$$
 (25)

В решение уравнения (25) входит интеграл

 $\int \frac{\bar{y} \, d\bar{y}}{\left[1 + \left(\frac{A}{2} y^2 + \operatorname{ctg} \alpha_0\right)^2\right]^{\frac{k-\lambda_1}{2h}}},$

который вследствие малости экспонента $\frac{k-\lambda_1}{2k}$ (при $\lambda_1 = 1$; k = 1,2 и $\frac{k-\lambda_1}{2k} = \frac{1}{12}$) может быть вычислен отдельно для двух участков, как это было сделано при определении траектории струи. Решение для первого участка получится при начальном условии

$$\frac{v}{v_0}\Big|_{\overline{y=0}} \to \infty, \quad p(0) = 0, \tag{26}$$

а для второго участка в качестве начального берется условие стыковки решения для двух участков

$$\left(\frac{v}{v_0}\right)_{\overline{y}=\overline{y_1}} = \frac{v_1}{v_0}, \quad p(\overline{y}_1) = \frac{v_0}{v_1}, \quad (27)$$

(28)

где v_1/v_0 определяется из решения для первого участка при $\bar{y} = \bar{y}_1$, а \bar{y}_1 — по формуле (21).

В случае ctg α₀ > 1, решение ведется только для второго участка при начальном условии (26).

Окончательные формулы для расчета средней скорости струи после подстановки численных значений эмпирических коэффициентов имеют следующий вид:

1) при
$$\left(\frac{1,3}{q^{4,2}\sin^{2/3}\alpha_{0}}\bar{y}^{2} + \operatorname{ctg}\alpha_{0}\right) \leq 1$$

 $\frac{v}{v_{0}} = 0,925\sin^{2/3}\alpha_{0}\left(\frac{-\varrho_{0}}{-\varrho_{w}}\right)^{1,2}\left(\frac{v_{0}}{w}\right)^{1,4} \times \frac{\left[1 + \left(1,3\frac{\bar{y}^{2}}{q^{4,2}\sin^{2/3}\alpha_{0}} + \operatorname{ctg}\alpha_{0}\right)^{2}\right]^{0,446}}{\bar{y}^{2}};$

2)
$$\Pi p_{H} \left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right) > 1 \quad \operatorname{H} \operatorname{ctg} \alpha_{0} \leq 1$$

$$\frac{v}{v_{0}} = \frac{w}{v_{0}} \frac{\left[1 + \left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right)^{2} \right]^{0,416}}{\left\{ \left[\left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right)^{0,833} - 1 \right] + 0,833(1 - \operatorname{ctg} \alpha_{0}) \right\}};$$

$$3) \quad \Pi p_{H} \quad \left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right) > 1 \quad \operatorname{H} \quad \operatorname{ctg} \alpha_{0} > 1$$

$$\frac{v}{v_{0}} = \left(\frac{w}{v_{0}} \right) \frac{\left[1 + \left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right)^{2} \right]^{0,416}}{\left[\left(\frac{1,3}{q^{1,2} \sin^{2/3} \alpha_{0}} \bar{y}^{2} + \operatorname{ctg} \alpha_{0} \right)^{0,833} - \operatorname{ctg}^{0,833} \alpha_{0} \right]}.$$

$$(30)$$

Чтобы перейти от средней скорости к скорости на оси струи, не решая внутренней задачи о распределении скорости по поперечным сечениям струи, следует прибегнуть к допущению о подобии. Предполагая подобие полей проекции относительной скорости струи на направление касательной, что находит определенное подтверждение в опытах [10], получим зависимость

 $\sqrt{q^{1,2}\sin^{2/3}\alpha_{0}}$

$$v_m - w \cos \alpha = k_v (v - w \cos \alpha),$$

где соза определяется с помощью (12) и (17).

На рис. З приведено сопоставление результатов расчета по формулам (28) и (29) (при $a_0 = \pi/2$) с опытными данными [5]. Удовлетворительное соответствие теории эксперименту достигается при $k_v = 1,55$.

ctg^{0,833} ao

Рис. 3. Сравнение расчетной скорости на оси струи с опытными данными. 1-3 - vo/w = 10; 7,1; 5 при go/gw = 1. 4, 5 — $v_0/w = 10$; 5 при $g_0/g_w = 0.5$.

ЛИТЕРАТУРА

- 1. Эпштейн А., Изв. АН ЭССР, Физ. Матем., 20, 323 (1971).
- Палатник И. В., Темирбаев Д. Ж., В сб.: Проблемы теплоэнергетики и прикладной теплофизики, вып. 4, 1967, с. 196.
 Иванов Ю. В., Эпштейн А., Изв. АН ЭССР, Сер. физ.-матем. и техн. н.,
- 14, 588 (1965).
- Эпштейн А., Злобин В., Изв. АН ЭССР, Физ. Матем., 18, 223 (1969).
 Иванов Ю. В., Эффективное сжигание надслойных горючих газов в топках, Таллин, 1969.
- 6. Шандоров Г. С., Истечение в сносящий поток из отверстия в стенке канала и распространение струи в сносящем потоке, М., 1955.

7. Абрамович Г. Н., Теория турбулентных струй, М., 1960. 8. Вахламов С. В., Инж.-физ. ж., 7, 112 (1964). 9. Эпштейн А. М., Инж.-физ. ж., 9, 451 (1965). 10. Гендриксон В., Изв. АН ЭССР, Физ. Матем., 17, 449 (1968).

Институт термофизики и электрофизики Академии наук Эстонской ССР

Поступила в редакцию 20/XI 1970

A. EPSTEIN, V. EMELJANOV

RISTVOOLUSES LEVIVA TURBULENTSE JOA ARVUTAMISEST

Lõpmatu väikese elemendi liikumisvõrrandi naturaalses koordinaatsüsteemis lahendamise tulemusena saadi vastavate lihtsustuste abil valemid ristvooluses leviva joa traektoori ja telgkiiruse arvutamiseks.

Näidatakse, et arvutuste tulemused on rahuldavas kooskõlas katseandmetega.

A. EPSTEIN, V. YEMELYANOV

ON THE CALCULATION OF A TURBULENT JET IN THE TRANSVERSAL STREAM

Formulae for the calculation of the trajectory and axial velocity of a jet are derived as a result of the solution of equations of motion in the natural system of coordinates for an infinitesmal element of the jet in a transversal stream, with corresponding assumptions.

The results of the calculation are in satisfactory agreement with experimental data.