EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 19. KÖIDE FOOSIKA * MATEMAATIKA. 1970, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 19 ФИЗИКА * МАТЕМАТИКА. 1970, № 4

https://doi.org/10.3176/phys.math.1970.4.17

А. АЙДЛА, Я. КИРС

ОПТИЧЕСКАЯ ВСПЫШКА И ТЕРМОВЫСВЕЧИВАНИЕ В МОНОКРИСТАЛЛАХ СУЛЬФИДА КАДМИЯ С ИНФРАКРАСНОЙ ПОЛОСОЙ ЛЮМИНЕСЦЕНЦИИ ($\lambda_{M} = 1.05 \ MKM$)

A. AIDLA, J. KIRS. OPTILINE SÄHVATUS JA TERMOSTIMULEERITUD LUMINESTSENTS INFRA-PUNASE KIIRGUSRIBAGA ($\lambda_{\rm M} = 1.05 \ \mu m$) KAADMIUMSULFIIDI MONOKRISTALLIDES A. AIDLA, J. KIRS. OPTICAL STIMULATION AND LUMINESCENCE GLOW IN SINGLE CRYSTALS

OF CADMIUM SULPHIDE WITH INFRARED LUMINESCENCE BAND ($\lambda_{\rm M} = 1.05 \ \mu {\rm m}$)

Исследованы монокристаллы сульфида кадмия, выращенные из паровой фазы методом возгонки (партия 63-R). Легирование кристаллоз осуществлялось в процессе их роста. Вводились медь (0,1% CuS) и хлор (0,2% NaCl). Концентрация примесей в монокристаллах не определялась.

Люминесценция исследовалась при температуре 77° К и возбуждалась ртутной линией с $\lambda = 365$ нм. Спектры свечения (см. рисунок) снимались с помощью монохроматора УМ-2, фотоэлектронных умножителей ФЭУ-27 и ФЭУ-83 и узкополосного усилителя (излучение модулировалось). Наряду с полосами излучения, представленными на рисунке, эти кристаллы имели также слабые полосы в области (1,5 ÷ 2,3) мкм.

Спектры оптической вспышки (OB) (рисунок) снимались с помощью системы затворов, автоматически осуществлявших процессы возбуждения и инфракрасной (ИК) стимуляции. Интенсивность возникающего излучения регистрировалась ФЭУ через настроенный на ту или иную длину волны монохроматор УМ-2. Источником ИК света служила лампа накаливания. Соответствующая спектральная область выделялась светофильтрами (ИКС-3 в случае зеленой и красной полос; Si в случае полосы с $\lambda_{\rm M} = 1,05 \ {\rm m}\kappa{\rm m}$).

Спектры термовысвечивания (ТВ) исследовались с помощью набора светофильтров путем неоднократного воспроизведения ТВ. Излучение надало через соответствующий светофильтр на фотскатод ФЭУ-83. Для сравнения при помощи этих же светофильтров регистрировалось и стационарное излучение. Результаты измерений приведены в таблице, где $\lambda_{\rm t,1}$ сбозначает ту длину волны на коротковолногом крае полосы пропускания светофильтра, при которой пропускается 1/10 доля падающего на него излучения. Сравнение соотношений ТВ и стационарной люминесценции, полученных при помощи различных светофильтров, показывает, что спектры ТВ и стационарного излучения достаточно хорошо повторяют друг друга, т. е. в ТВ проявляется как красная, так и ИК ($\lambda_{\rm M} =$ = 1,05 мкм) полосы излучения. Относительное уменьшение интенсивно-

Краткие сообщения * Lühiuurimusi

Спектры излучения (1) и оптической вспышки (2) при 77° К.

Светофильтр	λ _{0,1}	ТВ, относитель- ные единицы	Стационар- ная люми- несценция, относитель- ные едини- цы	ТВ стационарная люминесценция
KC-11	590	5,0	7,5	0,67
KC-19	690	4.0	5,5	0,73
ИКС-1	820	0,97	0,95	1,02
ИКС-2	890	0,39	0,38	1,03
ИКС-3	920	0,27	0 28	0.97
ИКС-З и 1	950	0,19	0,18	1,06
ИКС-З и 2	980	0,12	0,12	1,0
ИКС-3, 2 и 1	1000	0,085	0,085	1,0

сти ТВ в красной полосе связано, по видимому, с тем, что спектр стаинонарной люминесценции измерялся при 77° К, а спектр ТВ при температуре его основного максимума (100° К). С повышением температуры у сульфида кадмия наблюдается обусловленное температурным тушением уменьшение интенсивности свечения в коротковолнозых полосах излучения. Температура максимума кривой ТВ полосы 1,05 *мкм* исследованных кристаллов совпадает с температурой максимума ТВ красной полосы. Максимум термостимулированной проводимости наблюдается при 93° К.

Ранее нами было обнаружено ОВ в зеленой, оранжевой и красной областях и ТВ в оранжевой и красной областях спектра [^{1, 2}]. Было показано, что ОВ в кристаллах с интенсивным краевым излучением связано с освобождением дырок с центров захвага ИК светом [³]. Естественно предположить, что ОВ в кристаллах с несколькими полосами излучения и в кристаллах, обладающих в основном только лишь краевым излучением, имеет один и тот же механизм. У исследованных здесь кристаллов, как и у кристаллов с краевым излучением [³], при 77° К наблюдается длительное затухание фотопроводимости и несравненно более быстрое затухание люминесценция. В совокупности эти факты

483

свидетельствуют о том, что в предварительно возбужденных и выдержанных в темноте кристаллах дырки локализованы не на центрах свечения, а на центрах захвата [³]. ОВ в обеих группах кристаллов сопровождается тушением длительного компонента затухания фотопроводимости. Это говорит о том, что ОВ в зеленой и красной полосах и в полосе с $\lambda_{\rm M}$ = 1,05 *мкм* связана с оптическим освобождением дырок с центров захвата и их последующей рекомбинацией со свободными электронами на центрах свечения.

ТВ исследованных кристаллов связано, по-видимому, с термическим освобождением дырок с центров захвата. В пользу этой точки зрения говорит тот факт, что в интервале температур ТВ мы наблюдали температурное тушение запасенной кристаллом световой суммы ОВ. Облучение предварительно возбужденных кристаллов ИК светом приводит к исчезновению ТВ.

Термостимулированная проводимость исследованных кристаллов, как и в случае кристаллов с интенсивным краевым излучением [⁴], связана, очевидно, с освобождением электронов с электронных центров захвата.

В кристаллах с интенсивным краевым излучением ОВ связана с дырочными ловушками глубиной 0,13 эв [4]. Температурный интервал, в котором наблюдается основной пик ТВ и температурное тушение ОВ исследованных кристаллов, совпадает с температурным интервалом, в котором тушится ОВ кристаллов с интенсивным краевым излучением. Это свидетельствует о том, что в исследованных кристаллах основная часть сретовой суммы запасается на дырочных центрах захвата той же глубины.

Хорошее совпадение спектров излучения, ОВ и ТВ показывает, что заключительная стадия их механизмов одинакова и обусловлена рекомбинацией свободного электрона с локализовавшейся на центре свечения дыркой. Более слабая интенсивность зеленой полосы в спектре ОВ и отсутствие ТВ в этой полосе связано с температурным тушением краевого излучения.

Авторы выражают искреннюю благодарность Р. Каськ за выращивание монокристаллов.

ЛИТЕРАТУРА

Айдла А. К., Кирс Я. Я., Труды ИФА АН ЭССР, № 36, 246 (1968).
Айдла А., Кирс Я., Изв. АН ЭССР, Сер. физ.-матем. и техн. н., 15, 354 (1966).
Айдла А., Кирс Я., Изв. АН ЭССР, Физ. Матем., 18, 297 (1969).
Айдла А., Кирс Я., Изв. АН ЭССР, Физ. Матем., 17, 406 (1968).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 1/IV 1970