EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. 19. KÕIDE FOOSIKA * MATEMAATIKA. 1970, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ 19 ФИЗИКА * МАТЕМАТИКА. 1970, № 4

https://doi.org/10.3176/phys.math.1970.4.02

А. СИЙМОН

НЕКОТОРЫЕ МЕТОДЫ СХЕМНОЙ РЕАЛИЗАЦИИ КОНЪЮНКЦИИ СИГНАЛОВ В ПОТЕНЦИАЛЬНО-ИМПУЛЬСНОЙ ЭЛЕМЕНТНОЙ СТРУКТУРЕ

Данная статья является дополнением и расширением предыдущей работы [¹], поэтому применяем тот же аппарат и те же обозначения, что и в [¹]. Результаты работы [¹] применяем без ссылок на нее. Кроме того продолжаем нумерацию выражений, начатую в [¹].

Рассмотрим методы схемной реализации конъюнкции сигналов вида (1) при выполнении следующего условия:

$$(\exists I) (I \in (\mathfrak{G}_{2}^{(2)} \cup \mathfrak{G}_{2}^{(3)}) \supset h(\Omega_{I}) > 1).$$

$$(4)$$

Рассмотрим три варианта схемной реализации конъюнкции сигналов вида (1). Из-за ограниченности статьи алгоритмов не приводим.

Вариант 1

Для схемной реализации конъюнкции сигналов вида (1) применяем v_1 ($v = 1, 2, 3, \ldots, v_1$) односторонних нереверсивных счетчиков с позиционным двоичным кодированием [²], а сами эти счетчики называем v-ми счетчиками.

Во входных последовательностях сигналов для v-х счетчиков временное расстояние от непосредственно предшествующего до данного сигнала $X^*_{\omega_{IJ}} \in \mathfrak{X}^{(2)}_k$ или $X^*_{\omega_{IJ}} \in \mathfrak{X}^{(3)}_k$ должно быть соответственно не меньше, чем $\varepsilon_{2v}\delta$ или $\varepsilon_{3v}\delta$. Величины ε_{2v} и ε_{3v} определяем итеративным путем с учетом частотных характеристик элементов счетчиков и задержек из условия, что, с одной стороны, количество состояний каждого v-го счетчика определяется при всех значениях k ($k = 0, 1, 2, \ldots, k_0$) количеством всех сигналов $X^*_{\omega_{IJ}} \in \mathfrak{X}^{(2)}_k$, поступающих на вход данного счетчика. С другой стороны, для каждого значения k все сигналы $X^*_{\omega_{IJ}} \in (\mathfrak{X}^{(2)}_k \cup \mathfrak{X}^{(3)}_k)$, поступающие в данный счетчик, должны помещаться в отрезок времени $t_k' - t_k$, где t_k' определяем следующим образом:

$$\begin{cases} t'_{k} = \begin{cases} t_{k+i}, & \text{если } t_{k} < t_{\max}; \\ t'_{\text{доп}} - \delta_{\min} - \delta - \delta_{c \max}, & \text{если } t_{k} = t_{\max}. \end{cases}$$

$$t_{\max} = t_{k_{1}}$$

$$t_{k_{1}} \leq \omega_{\max} < t_{k_{1}+1}$$

$$\omega_{\max} = \max_{\substack{\text{max} \\ \mathcal{C}_{3}} J = 1, 2, 3, ..., J'} \omega_{IJ}$$

$$\mathfrak{C}_{3} = \mathfrak{C}^{(2)}_{3} \cup \mathfrak{C}^{(3)}_{3}$$

$$\iota = \begin{cases} 1, & \text{если } (\mathfrak{X}^{(2)}_{k+1} \neq \emptyset) \lor (\mathfrak{X}^{(3)}_{k+1} \neq \emptyset); \\ \sigma_{1}, & \text{если } (\bigcup_{\substack{n=2 \\ m=2 \\ m=1}} \mathfrak{I}^{(m)}_{k+\sigma_{1}} \neq \emptyset) \lor (\mathfrak{X}^{(2)}_{k+\sigma_{1}} \neq \emptyset) \lor \\ \Psi(\mathfrak{X}^{(3)}_{k+\sigma_{1}} \neq \emptyset)). \end{cases}$$

(5)

В (5) применены следующие обозначения: $t^{(c)}_{\underline{\alpha}_{0}}$ — максимально допустимое время появления сигнала $c^{\triangle}_{\underline{\alpha}_{l}}$ на вы-

ходе схемы, реализующей конъюнкцию сигналов вида (1); k_1 — какое-то фиксированное значение k; $\delta_{c \max}$ — задержка сигнала в схеме, реализующей совпадение W_{\max} потенциальных сигналов, а W_{\max} имеет значение

$$\begin{cases} W_{\max} = \sum_{\substack{\mathfrak{S}_{3}^{(2)} \\ \mathfrak{W}_{I} = \rceil}} W_{I} + h(\mathfrak{S}_{3}^{(1)}), \\ W_{I} = \lceil \log_{2} h(\Omega_{I}) \rceil + 1, \end{cases}$$

где]...[обозначает целую часть числа, заключенного в эти скобки. Соотношение количества сигналов $X^*_{\omega_{II}} \in \mathfrak{X}^{(2)}_h$ и $X^*_{\omega_{II}} \in \mathfrak{X}^{(3)}_h$ для

каждого значения k выбираем в каждом отрезке времени $t_k' - t_k$ для каждого v-го счетчика приблизительно равным соотношению $h(\mathfrak{X}_k^{(2)}):h(\mathfrak{X}_k^{(3)})$. Обозначаем множества всех $X_{\omega_{IJ}}^* \subset \mathfrak{X}_k^{(2)}$ и $X_{\omega_{IJ}}^* \subset \mathfrak{X}_k^{(3)}$, поступающих в v-й счетчик, соответственно через $\mathfrak{X}_{kv}^{(2)}$ и $\mathfrak{X}_{kv}^{(3)}$.

Входные последовательности сигналов для каждого *v*-го счетчика образуем по первому и второму способам, которые подобны соответствующим способам, описанным в [¹], но в данном случае нужно учесть еще то обстоятельство, что для каждого сигнала $X^*_{\omega_{IJ}} \in (\mathfrak{X}^{(2)}_k \cup \mathfrak{X}^{(3)}_k)$ могут существовать сигналы $X^*_{\omega_{IJ}+\psi}$, где $\psi = \pm 1, \pm 2, \pm 3, \ldots$,

т. е. J'>1.

Дальнейший ход процедур совершенно совпадает с соответствующими процедурами, описанными в [1] до образования сигнала $c_{\Omega_1}^{\Delta}$ включительно.

Вариант 2

Принимаем множество $\mathfrak{G}_{3}^{(3)} = \emptyset$ и, применяя изложенный выше первый способ, производим все то, что сделано в варианте 1 до составления v-х счетчиков включительно. После этого принимаем множество

 $\mathfrak{E}_{3}^{(2)} = \emptyset$ и, применяя изложенный выше второй способ, опять производнм все то, что сделано в варианте 1 до составления *v*-х счетчиков включительно. Отметим при этом, что в последнем случае каждый *v*-й счетчик состоит только из одного триггера (называем его *v*-м триггером). Остальная часть схемы, реализующей конъюнкцию сигналов вида (1), состоит из следующих частей: из комбинационной схемы, фиксирующей наличие в каждом *v*-м счетчике числа $h(\mathfrak{X}_v^{(2)})$, наличие единицы в каждом *v*-м триггере и единичное значение каждого сигнала $X_{\mathfrak{Q}_I}$, для которого $I \in \mathfrak{E}_3^{(4)}$; из потенциально-импульсного вентиля, на импульсный вход которого первый тактный сигнал поступает позже того, когда все *v*-е счетчики, все *v*-е триггеры и триггеры, применяемые для сигналов $X_{\mathfrak{Q}_I}$, уже достигли своих конечных состояний, включая и время переходных процессов в указанной выше комбинационной схеме. Таким образом получим $c_{\mathfrak{Q}}^{\Lambda} = c_{\mathfrak{Q}}^{*}$.

Вариант 3

Образуем множества С(4) и С(5):

$$(\forall I) ((I \in \mathfrak{G}_3^{(2)}) (h(\Omega_I) = 1) \supset I \in \mathfrak{G}_3^{(4)})$$
$$\mathfrak{G}_3^{(5)} = \mathfrak{G}_3^{(2)} \backslash \mathfrak{G}_3^{(4)}.$$

Для каждого сигнала $X_{\Omega_I}^*$, для которого $I \in \mathfrak{E}_3^{(4)}$, и для каждого сигнала $X_{\Omega_I}^*$, для которого $I \in \mathfrak{E}_3^{(3)}$, следующим образом образуем сигнал $c_{\Omega_a}^{(1)}$:

$$c_{\Omega_a}^{(I)} = L(X_{\Omega_I}^*, \tau_{t_0}^*), \quad$$
если $I \in \mathbb{G}_3^{(4)},$ (6)

$$c_{\Omega_{q}}^{(I)} = L(\tau_{t_{0}}^{*}, X_{\Omega_{I}}^{*}),$$
если $I \in \mathfrak{E}_{3}^{(3)}.$ (7)

Для каждого сигнала $X_{\Omega_I}^*$, для которого $I \in \mathfrak{S}_3^{(5)}$, составляем односторонний нереверсивный счетчик с позиционным двоичным кодированием (называем его *I*-м счетчиком) для записи в него числа $h(\Omega_I)$. Остальная часть схемы, реализующей конъюнкцию сигналов вида (1), состоит из следующих частей: из комбинационной схемы, фиксирующей в каждом *I*-м счетчике наличие числа $h(\Omega_I)$ и единичное значение всех сигналов $c_{\Omega_a}^{(I)}$ и X_{Ω_I} ; из потенциально-импульсного вентиля, на импульсный вход которого первый тактный импульсный сигнал поступает позже того, когда все *I*-е счетчики и все триггеры (применяемые для сигналов $c_{\Omega_a}^{(I)}$ и X_{Ω_I}) уже достигли своих конечных состояний, включая и время переходных процессов в указанной выше комбинационной схеме. Таким образом получим $c_{\Omega_i}^{\Delta} = c_{\Omega_i}^*$.

После этого можно произвести экономическое сравнение всех полученных схем, реализующих конъюнкцию сигналов вида (1), и выбрать лучшую из них.

Замечание 1. Для случая, когда выполняется условие (2), тоже можно получить три варианта. В качестве варианта 1 берем схему, полученную по методу, изложенному в [¹] при выполнении условия (2),

А. Сиймон

а варианты 2 и 3 получим из него точно таким же образом, как получили варианты 2 и 3 из изложенного выше варианта 1.

Замечание 2. Если совместно выполняются условие (2) и данное условие (8):

$$\begin{cases} \mathfrak{G}_{3}^{(3)} = \varnothing, \\ h(\mathfrak{G}_{3}^{(2)}) \leqslant 2(\Delta_{\text{KOM}} + \Delta_{\text{B}}) : \Delta_{\text{pa3}}, \end{cases}$$

где $\Delta_{\text{ком}}$, $\Delta_{\text{раз}}$ и $\Delta_{\text{в}}$ являются соответственно стоимостями комбинированного триггера, триггера с раздельными входами и потенциальноимпульсного вентиля, то составляем только вариант 3, указанный в замечании 1 для случая, когда выполняется условие (2).

ЛИТЕРАТУРА

1. Сиймон А., Изв. АН ЭССР, Физ. Матем., 19, 172 (1970).

 Рабинович З. Л., Элементарные операции в вычислительных машинах, Киев, 1966.

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 1/XII 1969

(8)

A. SIIMON

MÕNED MEETODID SIGNAALIDE KONJUNKTSIOONI SKEEMILISEKS REALISEERIMISEKS POTENTSIAAL-IMPULSSES ELEMENTIDE SÜSTEEMIS

Vaadeldakse meetodeid artiklis [¹] püstitatud signaalide konjunktsiooni (1) skeemiliseks realiseerimiseks potentsiaal-impulsses elementide süsteemis juhul, kui selleks ei saa kasutada ainult kombinatsioonskeeme. Viimaseid kasutatakse koos loendajate ja trigeritega.

A. SIIMON

SOME METHODS FOR THE REALIZATION OF CONJUNCTION OF SIGNALS IN FORM OF SCHEMES IN A POTENTIAL-PULSE ELEMENT SYSTEM

Some methods for the realization of conjunction of signals (1) are observed, represented in the paper [¹], in form of schemes in the potential-pulse element system in the case when combinational schemes are useless for this purpose. Combinational schemes with counters and flip-flops are used for this purpose.