EESTI NSV TEADUSTE AKADEEMIA TOIMETISED, XVII KÕIDE FÜÜSIKA * MATEMAATIKA, 1968, NR, 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ ХУШ ФИЗИКА * МАТЕМАТИКА. 1968. № 4

https://doi.org/10.3176/phys.math.1968.4.16

А. ШПИЛЕВСКИЙ

ТЕОРЕМА ОБ ОБОБЩЕННЫХ ТОЖДЕСТВАХ В *п*-МЕРНОМ ПЛОСКОМ ПРОСТРАНСТВЕ И ИХ ИНТЕРПРЕТАЦИЯ

A. SPILEVSKI. TEOREEM OLDISTATUD SAMASTUSTEST N-MOOTMELISES TASASES RUUMIS JA NENDE INTERPRETATSIOON

A. SHPILEVSKI. THEOREM OF GENERALIZED IDENTITIES IN AN N-DIMENSIONAL PLANE SPACE AND THEIR INTERPRETATION

Известные тождества Якоби [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0в случае алгебры Ли группы О(3) переписываются через структурные константы группы в виде $\in_{iil} \in_{klm} + \in_{ikl} \in_{iim} + \in_{kil} \in_{ilm} = 0$. Это последнее и другие аналогичного типа (см. ниже) тождества легко обобщаются и доказываются для п-мерного плоского пространства, если воспользоваться давно разработанной Вебленом [1] техникой обобщенных символов Кронеккера $\delta_{j, j_2 \dots j_m}^{i, i_2 \dots i_m} \equiv \frac{\partial (x^{i_1}, x^{i_2}, \dots, x^{i_m})}{\partial (x^{j_1}, x^{j_2}, \dots, x^{j_m})}$. Все результаты, получен-

ные нами, удобно представить в форме следующей теоремы:

Теорема. В каждом п-мерном Евклидовом (и псевдоевклидовом с любым числом мнимых координат) пространстве существует n-1независимых тождеств $(T_m) = 0, 2 \le m \le n$ вида

$$(T_m) = \delta_{j_1, \dots, j_m}^{j_1, \dots, j_m} - \sum_{k=1}^m \delta_{j_1, \dots, j_{k-1}, j_{k+1}, \dots, j_m}^{j_k, j_2, j_3, \dots, j_m} = 0.$$

Доказательство легко осуществляется методом математической индукции, ибо случай $(T_2) = 0$ легко проверяется непосредственно, а, постулируя $(T_m) = 0$, доказать $(T_{m+1}) = 0$ можно либо методом от противного (воспользовавшись формулой $\delta_{j_1...,j_m im+1...,i_k}^{i_1...i_m im+1...,i_k} = \frac{(n-m)!}{(n-k)!} \delta_{j_1...,j_m}^{i_1...i_m}$; см. [1]), либо явным методом, используя формулу

$$\delta_{j_1\dots j_m j_{m+1}}^{i_1\dots i_m i_{m+1}} = \delta_{j_1\dots j_m}^{i_1\dots i_m} \delta_{j_{m+1}}^{i_{m+1}} \sum_{k=1}^m (-1)^{mk} \delta_{j_{k+1}\dots j_m j_{m+1} j_1\dots j_{k-1}}^{i_1 i_2\dots i_m} \delta_{j_k}^{i_{m+1}}.$$
(1)

Весь смысл и вся ценность случайно найденных тождеств $(T_m) = 0$ в их интерпретации. Дадим теперь интерпретацию некоторых из них.

а) Случай (T_n) = 0. Если воспользоваться символами Леви-Чевиты $\epsilon_{j_1 j_2 \dots j_n} = \delta_{j_1 j_2 \dots j_n}^{1 2 \dots n} = \delta_{j_1 j_2 \dots j_n}^{j_1 j_2 \dots j_n} = \epsilon_{j_1 j_2 \dots j_n}^{j_1 j_2 \dots j_n}$ и представлением обобщенного символа Кронеккера в форме (см. [1])

$$\delta_{j_1...j_m}^{i_1...i_m} = \frac{1}{(n-m)!} \in {}^{i_1...i_m} {}^{i_{m+1}...i_n} \in {}^{i_1...i_m} {}^{i_{m+1}...i_n},$$
(2)

то, переписав $(T_n) = 0$ в виде $\in_{j_1 \dots j_n} \in {}^{i_1 i_2 \dots i_n} - \sum_{k=1}^n \in_{j_1 \dots j_{k-1} i_1 i_{k+1} \dots i_n} \in {}^{j_k i_2 \dots i_n} = 0$ и свернув это последнее выражение с $\in_{a i_1 \dots i_n}$, найдем после небольших преобразований и замены $i_1 \equiv j_{n+1}$

$$\in_{j_1 \dots j_n} \delta^a_{j_{n+1}} + \sum_{k=1}^n (-1)^{nk} \in_{j_{k+1} \dots j_n} j_{n+1} j_1 \dots j_{k-1} \delta^a_{j_k} = 0.$$
 (3)

Мы получили *n*-мерный вариант того тождества, которое для n = 4 применяется с успехом и принципиальным значением, например, в [²], а для n = 3 используется, например, в лекциях В. Огиевецкого [³]. Тождество (3) легко и очевидно интерпретируется геометрически. Между прочим, (3) следует прямо из (1), если там положить m = n и использовать (2).

б) Случай (T₃) = 0. Для интерпретации (T₃) = 0 удобно использовать формулу в виде

$$\delta_{ijk}^{pmn} = \delta_{ij}^{pm} \delta_k^n + \delta_{ij}^{np} \delta_k^m + \delta_{ij}^{mn} \delta_k^p = \delta_{ij}^{ps} \delta_{sk}^{mn} + \xi_{ij}^{mn} \delta_k^p.$$
(4)

Теперь берем $(T_3) = 0$ в виде $\delta_{ijk}^{pmn} - \delta_{ijp}^{kmn} = \delta_{pik}^{imn} + \delta_{ipk}^{imn}$, которое после использования сначала (4) и приведения подобных членов, а затем тождества $(T_2) = 0$ и снова (4) примет вид * $\delta_{ij}^{ps} \delta_{mn}^{sk} - \delta_{mn}^{ps} \delta_{ij}^{sk} = \delta_{ijb}^{mna} \delta_{ab}^{pk}$. Если теперь ввести эрмитовые матрицы E_{kl} с элементами $(E_{kl})_{ij} = i\delta_{kl}^{ij}$, то последний вид $(T_3) = 0$ окончательно будет выглядеть в записи через матрицы E_{kl} так:

$$[E_{ij}, E_{mn}] = -i\delta_{ijb}^{mna} E_{ab} = i(\delta_{im} E_{jn} + \delta_{jn} E_{im} - \delta_{in} E_{jm} - \delta_{jm} E_{in}).$$
(5)

Такая форма записи немедленно требует интерпретировать $(T_3) = 0$ как матричную запись коммутационных соотношений для генераторов вращений E_{kl} в *n*-мерном пространстве, вид которых обычно постулируется [^{4, 5}], а у нас они появляются естественно, как следствие доказанной теоремы.

в) Случай $(T_2) = 0$. Это тождество с учетом (2) для n = 3 автоматически дает тождество Якоби в записи через структурные константы группы O(3). Отметим, кстати, что для трехмерного пространства обычно принято брать в качестве генераторов вращений не генераторы E_{kl} , указывающие плоскость вращения, а дуальные к E_{kl} генераторы $A_i = \frac{1}{2} \in_{jkl} E_{kl}$, указывающие ось вращения. Поэтому, сворачивая (5) с $\frac{1}{4} \in_{klj} \in_{lmn}$, мы легко получаем вместо не употребляемых в случае вращений в трехмерном пространстве коммутационных соотношений (5) обычные коммутационные соотношения $[A_k, A_l] = i \in_{klj} A_j$, известные как произведение Ли в алгебре Ли группы O(3).

В заключение автор сердечно благодарит проф. П. Карда, М. Кыйва и Я. Лыхмуса за полезное обсуждение работы.

485

^{*} В силу выбранной нами метрики с однозначной сигнатурой допустима и используется взаимоперестановочность всех верхних индексов со всеми нижними индексами, ибо верхние и нижние индексы эквивалентны.

ЛИТЕРАТУРА

- 1. Веблен О., Инварианты дифференциальных квадратичных форм, М., ИЛ, 1948.
- 2. Rosenberg L., Phys. Rev., 129, 2786 (1963).
- Огневецкий В. И., 11 летняя школа по проблемам элементарных частиц, Отеля, 1967, Тарту, 1968 (в печати).
- Salam A., In: Summer Institute for Theor. Physics, Boulder, Colorado, 1959. N. Y., 1960.
- 5. Kihlberg A., Arkiv füs., 30, 121 (1965).

Институт физики и астрономии Академии наук Эстонской ССР Поступила в редакцию 21/V 1968

SISUKORD

J. Rebane. Universaalsete algebrate esitamisest kahepoolse taandamisega ja taandamisega kommutatiivsetes poolrühmades. <i>Resümee</i>	378
O. Vaarmann. Mõnedest iteratsioonimeetodeist pöördoperaatori järkjärgulise aproksimeerimisega. <i>Resümee</i> .	390
A. Siimon. Signaalide eksisteerimise ajakoordinaatide määramine loogiliste skee- mide analüütilise kirjeldamise keeles. <i>Resümee</i>	400
H. Iher, N. Kristoffel. Võre moonutusest Ce ³⁺⁻ ja Eu ³⁺⁻ ga kuubiliste tsent- rite poolt CaF ₂ -s. <i>Resümee</i>	405
A. Aidla, J. Kirs. Infrapunased nähtused äärekiirgusega CdS kristallides. Resümee	418
R. Allikas. Energeetilised protsessid staatilistes ferromagnetilistes sageduse kor- distites. <i>Resümee</i>	425
A. S ü g i s, M. A 11 a. Magnetvälja fluktuatsioonid ja resonantstingimuse stabilisee- rimine TMTR-spektromeetrites. <i>Resümee</i>	432
.J. Ivanov, V. Zlobin. Üherealine ümarate jugade süsteem piiratud ristvooluses. Resümee	441
V. Selg. Küttepindade gaasidepoolne saastumine. Resümee	448
V. Hendrikson. Segunemisprotsessid ristvooluses levivas ümaras jaos. Resümee	457
V. Press, A. Ots. Tolmpõlevkivi põlemisprotsess lahtises leegis. Resümee	465
V. Press. Põlevate osakeste liikumine ja lendainete eraldumise dünaamika tolm- põlevkivi põlemisel lahtises leegis. <i>Resümee</i>	474

LUHIUURIMUSI

E.	K und la. Tuumne magnetiline kolmikresonants ühe tugeva raadiosagedusvälja puhul. <i>Resümee</i>	475
J.	Löhmus. Simplektiliste rühmade kontraktsioonid. Resümee	479
J.	Lõhmus. Kontraktsioonide üldistamise võimalustest algebraliste süsteemide jaoks. <i>Resümee</i>	481
A.	S pilevski. Teoreem üldistatud samastustest <i>n</i> -mõõtmelises tasases ruumis ja nende interpretatsioon <i>Resume</i>	484