EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVII KÖIDE FOOSIKA * MATEMAATIKA. 1968, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVII ФИЗИКА * МАТЕМАТИКА. 1968, № 4 https://doi.org/10.3176/phys.math.1968.4.03

А. СИЙМОН

ОПРЕДЕЛЕНИЕ ВРЕМЕННЫХ КООРДИНАТ СУЩЕСТВОВАНИЯ СИГНАЛОВ В ЯЗЫКЕ ДЛЯ АНАЛИТИЧЕСКОГО ОПИСАНИЯ ЛОГИЧЕСКИХ СХЕМ

Данная работа является продолжением работы [¹]. Здесь рассмотрим определение временных координат существования сигнала [¹] на выходе ЭЛО, реализующего операции задержки, конъюнкции, дизъюнкции и отрицания сигналов. При конъюнкции и дизъюнкции сигналов рассмотрим только специальные случаи этих операций над сигналами. В общих случаях операции конъюнкции и дизъюнкции над сигналами временные координаты существования сигнала на выходе ЭЛО, реализующего данную конъюнкцию или дизъюнкцию сигналов, выражаются через случаи, рассматриваемые в данной статье.

1. Задержка

Если имеем дело с задержкой сигнала вида (1), то временные координаты существования задержанного сигнала определяем по (2).

$$\begin{aligned} \tilde{x}_{\Omega_{l}}^{\Delta} &= \tilde{x}_{\Omega_{l}}^{\Delta}, \\ \Omega_{i} &= \{\omega_{i1}, \omega_{i2}, \dots, \omega_{ij}, \dots, \omega_{im}\}, \\ \Omega_{l} &= \{\omega_{l1}, \omega_{l2}, \dots, \omega_{lj}, \dots, \omega_{lm}\}, \\ m &= j', \end{aligned}$$
(1)

где l и i — какие-то порядковые номера ЭС.

$$\omega_{ij} = \omega_{ij} + \varkappa = \begin{cases} (t_{ijz} + \varkappa) \div (t_{ij\beta} + \varkappa), \text{ если} \\ (\tilde{x}_{\omega ij}^{\Delta} = \tilde{x}_{\omega_{ij}}) \overline{A(\tilde{x}_{\omega ij})}; \end{cases}$$
(2)

 $l_{ij\alpha} + \kappa$ в остальных случаях.

Например:

2

$$x_{\Omega_{14}} = x_{\Omega_7}$$
, где $\Omega_7 = \{\omega_{7,1}\} = \{t_{7,1,\alpha}\} = \{t_4\};$
 $\rightarrow \chi$
 $\chi = t_5 - t_4.$

Получим

$$\Omega_{14} = \{\omega_{14,1}\} = \{\omega_{7,1} + \varkappa\} = \{t_{7,1,\alpha} + \varkappa\} = \{t_4 + t_5 - t_4\} = \{t_5\}.$$

2. Конъюнкция

Рассмотрим определение временны́х координат существования сигнала на выходе ЭЛО, реализующего конъюнкцию сигналов следующих видов:

$$x_{\Omega_l} = \bigwedge_{i \in I} x_{\Omega_i}, \tag{3}$$

$$x_{\Omega_l} = x_{\Omega_l} \wedge x_{\Omega_r}, \tag{4}$$

где I — какое-то множество порядковых номеров i ЭС; r — какой-то порядковый номер ЭС.

Будем обозначать мощность множества через h(...), где в скобках находится символ соответствующего множества.

Рассмотрим сперва конъюнкцию сигналов вида (3). Обозначаем элементы $i \in I$ через i_q (q = 1, 2, 3, ..., n = h(I)), где q — порядковый номер элемента i во множестве I. Порядковые номера j отрезков времени существования сигнала на выходе i_q -го ЭС обозначаем соответственно через j_q , а величины Ω_i , ω_{ij} , $t_{ij\alpha}$ и $t_{ij\beta}$ — соответственно через Ω_{iq} , ω_{iqjq} , $t_{i_q j_q \alpha}$ и $t_{i_q j_q \beta}$.

Теперь находим все те отрезки времени существования сигнала, которые являются общими для всех тех сигналов, для которых $i_q \in I$. С этой целью для каждого $\omega_{i,j_1} \in \Omega_{i_1}$ находим во множестве Ω_{i_2} такие ω_{i,j_2} , для которых выполняются условия

$$t_{i_{j}j_{2}\alpha} < t_{i_{1}s},$$

$$t_{i_{j}j_{2}\beta} > t_{i_{1}j_{1}\alpha},$$
(5)

где $t_{i,s}$ определяем по (6) при q = 1.

$$t_{iqs} = \begin{cases} t_{iqjq\beta}, \text{ если } \omega_{iqjq} = t_{iqjq\alpha} \div t_{iqjq\beta}; \\ t_{k_0}, \text{ если } \omega_{iqjq} = t_{iqjq\alpha} \Rightarrow, \end{cases}$$
(6)

где t_{k_0} — конец рассматриваемого отрезка времени работы данной логической схемы.

Для каждого $\omega_{i_1 i_1} \in \Omega_{i_1}$, для которого найдутся $\omega_{i_2 i_2} \in \Omega_{i_2}$, выполняющие условия (5), образуем при q = 2 величины $\omega_{i_1 i_2 i_1 i_2}$ следующим образом:

$$\begin{cases} \omega_{i_{1}i_{2}...i_{q}j_{1}j_{2}...j_{q}} = t_{i_{1}i_{2}...i_{q}j_{1}j_{2}...j_{q}\alpha} \div t_{i_{1}i_{2}...i_{q}j_{1}j_{2}...j_{q}\beta}, \\ t_{i_{1}i_{2}...i_{q}j_{1}j_{2}...j_{q}\alpha} = \max\left(t_{i_{1}i_{2}...i_{q-1}j_{1}j_{2}...j_{q-1}\alpha}, t_{i_{q}j_{q}\alpha}\right), \\ t_{i_{1}i_{2}...i_{q}j_{1}j_{2}...j_{q}\beta} = \min\left(t_{i_{1}i_{2}...i_{q-1}j_{1}j_{2}...j_{q-1}\beta}, t_{i_{q}s}\right). \end{cases}$$
(7)

Величину t_{iqs} в (7) определяем по (6).

Для каждого $\omega_{i_1 i_2 j_1 j_2}$ находим все те $\omega_{i_3 j_3} \in \Omega_{i_8}$, для которых выполняются условия (8) при q = 3:

Определение временных координат существования сигналов в языке...

$$\begin{cases} t_{i_{q}j_{q}\alpha} < t_{i_{1}i_{2}...i_{q-1}j_{1}j_{2}...j_{q-1}\beta}, \\ t_{i_{q}j_{q}\beta} > t_{i_{1}i_{2}...i_{q-1}j_{1}j_{2}...j_{q-1}\alpha}. \end{cases}$$
(8)

395

Для каждого $\omega_{i_1 i_2 j_1 j_2}$, для которого найдутся $\omega_{i_3 j_3} \in \Omega_{i_3}$, выполняющие условия (8) при q = 3, образуем по (7) при q = 3 величины $\omega_{i_1 i_2 i_3 j_1 j_2 j_3}$. Такой процесс повторяем при значениях $q = 4, 5, 6, \ldots, n$.

Если для какого-то значения q не найдется ни одного $\omega_{i_q j_q} \in \Omega_{i_q}$, для которого выполняются условия (8) при данном значений q, то изложенный выше процесс для данного значения $\omega_{i_1 j_1}$ обрывается, так как ни в какой части отрезка времени $\omega_{i_1 j_1}$ сигнал x_{Ω_I} не принимает значения «1».

При значении q = n из (7) получим q' значений $\omega_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n *}$ $t_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n \alpha}$ и $t_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n \beta}$. Полученные значения $\omega_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n}$ являются теми общими отрезками времени для всех тех сигналов, для которых $i_q \in I$ и на которых сигнал x_{Ω_I} принимает значение «1». Снабдим эти общие отрезки времени порядковыми номерами g $(g = 1, 2, 3, \dots, g')$. Таким образом

 $\begin{cases} \omega_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n} = \omega_{lg}, \\ t_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n \alpha} = t_{lg\alpha}, \\ t_{i_1 i_2 \dots i_n j_1 j_2 \dots j_n \beta} = t_{lg\beta} \end{cases}$

И

 $\begin{cases} \Omega_l = \{ \omega_{l1}, \, \omega_{l2}, \, \dots, \, \omega_{lg}, \, \dots, \, \omega_{lm} \}, \\ m = g'. \end{cases}$

Для конъюнкции сигналов вида (4) множество Ω_l определяем следующим образом. Обозначаем порядковые номера *j* отрезков времени существования сигнала на выходе *i*-го и *r*-го ЭС соответственно через *j_i* и *j_r*. Для каждого $\omega_{rjr} \in \Omega_r$ находим такой $\omega_{ijl} \in \Omega_i$, для которого выполняется условие

$$\begin{cases} t_{iji\alpha} < t_{rjr\alpha} < t_{is}, \\ t_{is} = \begin{cases} t_{iji\beta}, \text{ если } \omega_{iji} = t_{iji\alpha} \div t_{iji\beta}; \\ t_{k_0}, \text{ если } \omega_{iji} = t_{iji\alpha} \checkmark. \end{cases}$$
(9)

Все пары γ_g , полученные из ω_{iji} и ω_{rjr} , выполняющие условие (9), снабжаем порядковыми номерами g ($g = 1, 2, 3, \ldots, g' \leq \min(j_r, j_i)$). Таким образом из каждой пары γ_g получим

$$t_{lga} = t_{rir},$$

причем

$$\omega_{lg} = t_{lga},$$

$$\left\{\begin{array}{l} \Omega_l = \{\omega_{l1}, \ \omega_{l2}, \ \dots, \ \omega_{lg}, \ \dots, \ \omega_{lm}\},\\ m = g'.\end{array}\right.$$

Для конъюнкции сигналов вида (3) рассмотрим пример следующего вида:

$$x_{\Omega_9} = x_{\Omega_1} \wedge x_{\Omega_9}$$
, где $\Omega_1 = \{t_1 \div t_5\},$
 $\Omega_3 = \{t_2 \div t_5\}$ и $I = \{1, 3\}.$

После переименования элементов множества I получим $I = \{1_1, 3_2\}$ и q = 1, 2.

Дальше

$$\begin{split} \Omega_{1_1} &= \Omega_1; \ \omega_{1_1 1_1} = t_1 \div t_5; \ t_{1_1 1_1 \alpha} = t_1; \ t_{1_1 1_1 \beta} = t_5; \\ \Omega_{3_2} &= \Omega_3; \ \omega_{3_2 1_2} = t_2 \div t_5; \ t_{3_2 1_2 \alpha} = t_2; \ t_{3_2 1_2 \beta} = t_5; \\ \omega_{1_1 3_2 1_1 1_2} &= t_{1_1 3_2 1_1 1_2 \alpha} \div t_{1_1 3_2 1_1 1_2 \beta}; \\ t_{1_1 3_2 1_1 1_2 \alpha} &= \max(t_{1_1 1_1 \alpha}, \ t_{3_2 1_2 \alpha}) = t_2 = t_{9, 1, \alpha}; \\ t_{1_1 3_2 1_1 1_2 \beta} &= \min(t_{1_1 1_1 \beta}, \ t_{3_2 1_2 \beta}) = t_5 = t_{9, 1, \alpha}; \\ \omega_{9, 1} &= t_{9, 1, \alpha} \div t_{9, 1, \beta} = t_2 \div t_5; \\ \Omega_9 &= \{\omega_{9, 1}\} = \{t_2 \div t_5\}. \end{split}$$

Для конъюнкции сигналов вида (4) рассмотрим пример следующего вида:

$$x_{\Omega_{17}} = x_{\Omega_{22}} \wedge x_{\Omega_7}$$
, где $\Omega_{22} = \{t_3 \div t_5\}$ и $\Omega_7 = \{t_4\}$.

Получим:

$$\gamma_1 = \{t_3 \div t_5, t_4\}; \ \Omega_{17} = \{\omega_{17,1}\} = \{t_{17,1,\alpha}\} = \{t_4\}.$$

3. Дизъюнкция

Рассмотрим определение временны́х координат существования сигнала на выходе ЭЛО, реализующего дизъюнкцию сигналов следующих двух видов:

$$x_{\Omega_l} = \bigvee_{i \in I} x_{\Omega_i}, \tag{10}$$

$$x_{\Omega_l}^* = \bigvee_{i \in I} x_{\Omega_i}^*. \tag{11}$$

Обозначаем через *I'*. такое подмножество множества *I*, которое образуется следующим образом:

$$\left\{ \begin{array}{l} (\forall i) \left((i \in I) \left(x_{\Omega_{i}}^{\Delta} = a_{\Omega_{i}}^{\Delta} \right) (a = 1) \supset i \in I' \right), \\ a = \begin{cases} 0 \\ 1 \end{cases} \right.$$

Приступаем к определению множества Ω₁ для дизъюнкции сигналов вида (10). Образуем множество Q:

$$Q = \bigcup_{i \in I'} \Omega_i$$

Множество Q разбиваем на непересекающиеся подмножества Q_q ($q = 1, 2, 3, \ldots, q_1$) следующим образом. Первым элементом множества Q_q является такой элемент ω_{ij} (обозначаем его через $\omega_{i_1j_2}$), для которого выполняется условие

$$\omega_{i_1 j_1} \in \begin{cases} Q, \text{ если } q = 1; \\ Q \smallsetminus (\bigcup_{\sigma=1}^{q-1} Q_{\sigma}), \text{ если } q > 1. \end{cases}$$

Множества Q_q являются множествами максимальной мощности среди всех множеств такого вида, элементы которых выполняют следующее условие:

$$(h(Q_q) = 1 \supset Q_q = \{\omega_{i_1 i_1}\}) \lor \lor (h(Q_q) > 1 \supset ((\exists \omega_{i_2 j_2}) ((i_2 \in I') \land \land (i_2 \neq i_3) (\omega_{i_3 j_3} \in Q_q) (t_{i_2 j_2 \alpha} < t_{i_3 s}) \land \land (t_{i_2 s} > t_{i_1 j_2 \alpha}) \supset \omega_{i_2 j_3} \in Q_q))),$$

$$(12)$$

где *i*₂ и *i*₃ — какие-то порядковые номера ЭС;

*j*₂ и *j*₃ — какие-то порядковые номера отрезков времени существования сигнала соответственно на выходе *i*₂-го и *i*₃-го ЭС.

В (12) значения t_{i_2s} и t_{i_3s} определяем соответственно при v = 2и v = 3 по следующему выражению:

$$t_{ivs} = \begin{cases} t_{ivjv\beta}, \text{ если } \omega_{ivjv} = t_{ivjv\alpha} \div t_{ivjv\beta}; \\ \vdots \\ t_{k_0}, \text{ если } \omega_{ivjv} = t_{ivjv\alpha} \div. \end{cases}$$

Каждое множество Q_q представляет собой такое множество из $\omega_{ij} \in Q$, где по крайней мере два различных ω_{ij} , принадлежащие к одному и тому же множеству Q_q , по крайней мере частично перекрываются, или оно является одноэлементным множеством. В последнем случае не существует ни одного другого элемента $\omega_{ij} \in Q$, который по крайней мере частично перекрывался бы данным первым элементом ω_{ij} из множества Q_q , обозначенным нами через $\omega_{i_1 j_1}$. Частично перекрывающимися и, следовательно, принадлежащими к одному и тому же множеству Q_q являются, например, $\omega_{1,2} \in Q$ и $\omega_{3,5} \in Q$ со следующими значениями:

$$\omega_{1,2} \equiv t_{1,2,\alpha} \div t_{1,2,\beta},$$

$$\omega_{3,5} = t_{3,5,\alpha} \div t_{3,5,\beta},$$

где $t_{3,5,a} < t_{1,2,\beta}$ и $t_{3,5,\beta} > t_{1,2,a}$.

Образуем для каждого множества Q_q множество R_q следующего вида:

$$(\forall q) (\forall \omega_{ij}) (((\omega_{ij} \in Q_q) ((\omega_{ij} = t_{ij\alpha} \div t_{ij\beta}))) \lor (\omega_{ij} = t_{ij\alpha})) \supset (t_{ij\alpha} \in R_q) (t_{is} \in R_q)),$$

$$t_{is} = \begin{cases} t_{ij\beta}, \text{ если } \omega_{ij} = t_{ij\alpha} \div t_{ij\beta}; \\ t_{k_0}, \text{ если } \omega_{ij} = t_{ij\alpha} \Rightarrow. \end{cases}$$

Упорядочиваем в каждом множестве R_q его элементы по возрастанию их значений (т. е. естественным образом). Производим рекурсивный процесс образования величин t_{qua} и t_{qub} для всех значений q и u $(u = 1, 2, 3, ..., u_1 = h(R_q) - 1)$ следующим образом:

$$\begin{cases} t_{q_{u}\alpha} = \inf R_{q(u-1)}, \\ t_{q_{u}\beta} = \inf R_{qu}, \\ R_{qu} = R_{q(u-1)} \setminus \{\inf R_{q(u-1)}\} \\ u = 1 \supset R_{q(u-1)}, = R_{q}. \end{cases}$$

Внутри каждого отрезка времени $t_{qua} \div t_{qu\beta}$ каждый сигнал x_{Ω_i} участвующий в образовании сигнала дизъюнкции вида (10), сохраняет свое значение неизмененным. Изменение значения одного или нескольких таких сигналов x_{Ω_i} происходит только в каждый момент времени t_{qua} и $t_{qu\beta}$. Таким образом, отрезки времени $t_{qua} \div t_{qu\beta}$ представляют собой отрезки времени существования сигнала на выходе ЭЛО, реализующего дизъюнкцию сигналов вида (10). Упорядочиваем полученные отрезки времени $t_{qua} \div t_{qu\beta}$ по возрастанию их начальных координат t_{qua} и снабжаем эти отрезки времени порядковыми номерами g, где

$$g = 1, 2, 3, ..., g' = \sum_{q=1}^{q_1} (h(R_q) - 1).$$

Имея в виду вышесказанное, получим

$$t_{q_{\mu\alpha}} \div t_{q_{\mu\beta}} = \omega_{lg}.$$

Ради общности величины t_{qua} и $t_{qu\beta}$, участвующие в образовании ω_{lg} , обозначаем соответственно через t_{lga} и $t_{lg\beta}$.

Определяем искомое множество Ω_l следующим образом:

$$\Omega_l = \{ \omega_{l1}, \omega_{l2}, \dots, \omega_{lg}, \dots, \omega_{lm} \},$$

$$m = g'.$$

Для дизъюнкции сигналов вида (11) множество Ω_l определяем следующим образом:

$$\Omega_l = \bigcup_{i \, \mathfrak{s} \, l'} \Omega_{i}.$$

Элементы множества Ω_l упорядочиваем естественным образом и обозначаем через ω_{lg} , где $g = 1, 2, 3, \ldots, g' = h(\Omega_l)$, а $\omega_{lg} = t_{lg^{\alpha}}$.

Для дизъюнкции сигналов вида (10) рассмотрим пример следующего вида:

$$x_{\Omega_{12}} = x_{\Omega_0} \vee x_{\Omega_{10}} \vee x_{\Omega_{11}}$$

где

$$\Omega_9 = \{t_2 \div t_5\}; \ \Omega_{10} = \{t_0 \div t_1\}; \quad \Omega_{11} = \{t_4 \div t_5\}.$$

Рассмотрим случай, когда I' = I. Получим:

$$Q \coloneqq \Omega_9 \cup \Omega_{10} \cup \Omega_{11} = \{t_2 \div t_5, t_0 \div t_1, t_4 \div t_5\};$$

$$Q_1 = \{t_2 \div t_5, t_4 \div t_5\}; Q_2 = \{t_0 \div t_1\};$$

$$R_{1} = \{t_{2}, t_{4}, t_{5}\}; R_{2} = \{t_{0}, t_{1}\};$$

$$R_{1,1} = R_{1} \setminus \{\inf R_{1}\} = \{t_{4}, t_{5}\};$$

$$t_{1,1,\alpha} = \inf R_{1} = t_{2}; t_{1,1,\beta} = \inf R_{1,1} = t_{4};$$

$$R_{1,2} = R_{1,1} \setminus \{\inf R_{1,1}\} = \{t_{5}\};$$

$$t_{1,2,\alpha} = \inf R_{1,1} = t_{4}; t_{1,2,\beta} = \inf R_{1,2} = t_{5};$$

$$R_{2,1} = R_{2} \setminus \{\inf R_{2}\} = \{t_{1}\};$$

$$t_{2,1,\alpha} = \inf R_{2} = t_{0}; t_{2,1,\beta} = \inf R_{2,1} = t_{1};$$

$$\omega_{12,1} = t_{0} \div t_{1}; \omega_{12,2} = t_{2} \div t_{4}; \omega_{12,3} = t_{4} \div t_{5};$$

$$\Omega_{12} = \{t_{0} \div t_{1}, t_{2} \div t_{4}, t_{4} \div t_{5}\}.$$

Для дизъюнкции сигналов вида (11) рассмотрим следующий пример:

$$x_{\Omega_{15}}^* = x_{\Omega_{5}}^* \lor x_{\Omega_{11}}^*,$$
$$\Omega_8 = \{t_0\}; \ \Omega_{14} = \{t_5\}.$$

Рассмотрим случай, когда I' = I. Получим:

гдението с

$$\Omega_{15} = \Omega_8 \ \mathsf{U} \ \Omega_{14} = \{t_0, t_5\}.$$

4. Отрицание

и обозначаем злементы множества Облерет СУЭлементы множества О

Рассмотрим определение временных координат существования сигнала на выходе ЭЛО, реализующего отрицание сигнала следующих двух видов:

$$x_{\Omega_i} = (\overline{x_{\Omega_i}}), \tag{13}$$

$$x_{0,}^{*} = (\overline{x_{0,}^{*}}).$$
 (14)

Чтобы определить множество Ω_i для отрицания сигнала вида (13), поступаем следующим образом. Для каждого $\omega_{ij} \in \Omega_i$ образуем множество ω_{ij} следующего вида:

$$\omega_{ij} = \{ t_{k_1}, t_{k_1+1}, t_{k_1+2}, \dots, t_{k_n}, t_{is} \}.$$
(15)

Определяем для (15) величины t_{k_1} , t_{k_n} и t_{is} :

$$t_{k_{1}} = \begin{cases} t_{0}, & \text{если } t_{ij\,\alpha} = t_{0}; \\ t_{k_{3}+1}, & \text{если } (t_{k_{3}} \leqslant t_{ij\,\alpha}) (t_{ij\,\alpha} \leqslant t_{k_{3}+1}) (t_{ij\,\alpha} \neq t_{0}). \end{cases}$$
$$t_{k_{n}} = \begin{cases} t_{k_{0}-1}, & \text{если } \omega_{ij} = t_{ij\alpha} \Rightarrow; \\ t_{k_{2}-1}, & \text{если } (\omega_{ij} = t_{ij\,\alpha} \div t_{ij\,\beta}) (t_{ij\,\beta} = t_{k_{2}}); \\ t_{k_{2}}, & \text{если } (\omega_{ij} = t_{ij\,\alpha} \div t_{ij\,\beta}) (t_{ij\,\beta} > t_{k_{2}}) (t_{ij\,\beta} < t_{k_{2}+1}). \end{cases}$$

$$t_{is} = \begin{cases} t_{k_o} , \text{ если } \omega_{ij} = t_{ij_o \rightarrow}; \\ t_{ij\beta} , \text{ если } \omega_{ij} = t_{ij_o} \div t_{ij\beta}. \end{cases}$$

tk2 и tk3 — какие-то значения tk.

Образуем множество Ω_i:

$$\Omega_i' = \bigcup_{j=1}^{j'} \omega_{ij}'.$$

Обозначаем множество всех значений дискретного времени t_k рассматриваемого отрезка времени функционирования логической схемы через Ω , т. е.

$$\Omega = \{t_0, t_1, t_2, \ldots, t_k, \ldots, t_{k_0}\}.$$

Так как в общем случае какое-то значение $t_{ij\alpha}$ или $t_{ij\beta}$ не всегда совпадает с каким-то значением t_k , то поступаем следующим образом. Обозначаем множество всех $t_{ij\alpha}$ из всех $\omega_{ij} \in \Omega_i$ через Ω_{α} и множество всех $t_{ij\beta}$ из всех $\omega_{ij} \in \Omega_i$ через Ω_{β} . Образуем множество Ω' следующего вида:

$$\Omega' = \Omega \cup \Omega_{\alpha} \cup \Omega_{\beta} .$$

Упорядочиваем элементы во множестве Ω' естественным образом, снабжаем их порядковыми номерами r, где $r = 1, 2, 3, \ldots, r_1 = h(\Omega')$, и обозначаем элементы множества Ω' через t_r . Элементы множества Ω_i , которые по величине равны элементам $t_r \in \Omega'$, обозначаем соответственно также через t_r . Образуем множество Ω'_i :

$$\Omega_l = \Omega' \setminus \Omega_l$$

Упорядочиваем элементы t_r во множестве Ω_i естественным образом. Находим в полученном таким образом множестве Ω'_i такие пары γ_g $(g = 1, 2, 3, \ldots, g' - 1)$ соседних элементов t_r (обозначаем эти элементы соответственно через t_{r_1} и t_{r_2} , т. е. $\gamma_g = \{t_{r_1}, t_{r_2}\}$), для которых

$$t_{r_1} \rightarrow t_{r_2}, t_{r_2} \rightarrow 1.$$

По этим полученным парам γ_g разбиваем множество Ω_l слева направо на g' подмножеств ω'_{lg} . Определяем эти подмножества ω'_{lg} по следующим условиям:

$$(\forall t_r) ((g = 1) (t_r \in \Omega'_l) (t_r \ge \inf \Omega'_l) (t_r \le t_{r_1} \in \gamma_1) \supset t_r \in \omega'_{l_1}), (\forall t_r) ((g > 1) (g < g') (t_r \in \Omega'_l) (t_r \ge t_{r_2} \in \gamma_{g-1}) \land \land (t_r \le t_{r_1} \in \gamma_g) \supset t_r \in \omega'_{l_g}), (\forall t_r) ((g = g') (t_r \in \Omega'_l) (t_r \ge t_{r_2} \in \gamma_{g-1}) \land (t_r \le \sup \Omega'_l) \supset \supset t_r \in \omega'_{lm}), m = g'.$$

Определяем нужные нам величины t_{lga} , t_{lg3} , ω_{lg} и Ω_l следующим образом:

$$t_{lga} = \begin{cases} t_0, & \text{если inf } \omega'_{lg} = t_0; \\ t_{r_{3}-1}, & \text{если (inf } \omega'_{lg} = t_{r_3}) (t_{r_3} \neq t_0). \end{cases}$$

 t_{r_s} — какое-то значение t_r ; $t_{lg\beta} = \sup \omega'_{lg}$; $\omega_{lg} = t_{lga} \div t_{lg\beta}$; $\left\{ \begin{array}{l} \Omega_l = \{\omega_{l1}, \omega_{l2}, \dots, \omega_{lg}, \dots, \omega_{lm}\}; \\ m = g'. \end{array} \right.$

Приступаем к определению множества Ω_l для отрицания сигнала вида (14). Введем следующие обозначения:

- t_{ip} значение времени начальной координаты отрезка времени существования сигнала на выходе *i*-го ЭС, где сигнал принимает единичное или нулевое значение;
- р порядковый номер момента времени t_{ip};

$$\begin{cases} p = 1, 2, 3, \dots, p'; \\ p' \ge j'; \\ \tilde{\Omega}_i = \{t_{i1}, t_{i2}, \dots, t_{ip}, \dots, t_{im}\}; \\ m = p'. \end{cases}$$

Множество Ω₁ определяем следующим образом:

$$\Omega_l = \Omega_i \setminus \Omega_i$$

Элементы $t_{ip} \in \Omega_l$ упорядочиваем во множестве Ω_l естественным образом, снабжаем их порядковыми номерами g ($g = 1, 2, 3, \ldots, g' = h(\Omega_l)$) и обозначаем через ω_{lg} . Так как мы имеем дело с импульсным сигналом, то $\omega_{lg} = t_{lg\alpha}$, где $t_{ig\alpha}$ является начальной координатой временного отрезка существования сигнала на выходе ЭЛО, реализующего отрицание вида (14). Таким образом множество Ω_l имеет вид:

$$\left\{ \begin{array}{l} \Omega_l = \{ \omega_{l1}, \, \omega_{l2}, \, \dots, \, \omega_{lg}, \, \dots, \, \omega_{lm} \}, \\ m = g'. \end{array} \right.$$

Для отрицания сигнала вида (13) рассмотрим следующий пример:

$$x_{\Omega_{21}} = (x_{\Omega_{20}}),$$
 где $\Omega_{20} = \{t_3 \div t_5\}.$

Для него получим в отрезке времени $t_0 \div t_7$ функционирования логической схемы

$$\begin{split} \omega_{20,1}' &= \{t_4, t_5\} = \Omega_{20}'; \ \Omega = \{t_0, t_1, t_2, t_3, t_4, t_5, t_6, t_7\}; \\ \Omega_{\alpha} &= \{t_3\}; \ \Omega_{\beta} = \{t_5\}; \ \Omega' = \Omega \cup \Omega_{\alpha} \cup \Omega_{\beta} = \Omega; \\ \Omega_{21}' &= \Omega' \setminus \Omega_{20}' = \{t_0, t_1, t_2, t_3, t_6, t_7\}; \ \gamma_1 = \{t_3; t_6\}; \end{split}$$

$$g' \stackrel{\bullet}{=} 2; \ \omega'_{21,1} = \{t_0, t_1, t_2, t_3\}; \ \omega'_{21,2} = \{t_6, t_7\};$$

$$t_{21,1,a} = \inf \omega'_{21,1} = t_0; \ t_{21,1,\beta} = \sup \omega'_{21,1} = t_3;$$

$$t_{r_3} = \inf \omega'_{21,2} = t_6; \ t_{21,2,a} = t_{r_3-1} = t_5; \ t_{21,2,\beta} = \sup \omega'_{21,2} =$$

$$= t_7; \ \omega_{21,1} = t_0 \div t_3; \ \omega_{21,2} = t_5 \div t_7;$$

$$\Omega_{21} = \{\omega_{21,1}, \omega_{21,2}\} = \{t_0 \div t_3; t_5 \div t_7\}.$$

Для отрицания сигнала (14) рассмотрим пример следующего вида:

$$m{x}^*_{\Omega_{22}} = (x^*_{\Omega_{22}}),$$
где $\Omega_{22} = \{t_5, t_7\};$
 $ilde{\Omega}_{22} = \{t_3, t_5, t_7\}$

Получим

$$\Omega_{23} = \Omega_{22} \setminus \Omega_{22} = \{t_3\}; \ \omega_{23,1} = t_{23,1,\alpha} = t_3.$$

Для общего примера даем аналитическую запись логической схемы, рассмотренной в [¹]:

$$y_{\Omega_{17}}^{*} = \overline{L(x_{\Omega_{5}}^{*} \bigvee x_{\Omega_{7}}^{*}) \land \overline{((x_{\Omega_{1}} \land x_{\Omega_{3}}) \lor}}) \land \overline{((x_{\Omega_{2}} \land x_{\Omega_{3}}) \lor})} \land \overline{(16)}$$

$$\overline{\bigvee (x_{\Omega_{2}} \land x_{\Omega_{4}}) \lor (x_{\Omega_{3}} \land x_{\Omega_{5}})) \land x_{\Omega_{6}}^{*}} \land x_{\Omega_{7}}^{*},$$

гле $\Omega_1 = \{t_1 \div t_5\}; \quad \Omega_2 = \{t_0 \div t_1, t_5 \div t_7\};$

$$\Omega_3 = \{t_2 \div t_5\}; \quad \Omega_4 = \{t_0 \div t_3\}; \quad \Omega_5 = \{t_3 \div t_7\}; \\ \Omega_6 = \{t_3\}; \quad \Omega_7 = \{t_4\}; \quad \Omega_8 = \{t_0\}; \; \varkappa = t_5 - t_4.$$

Если все булевские временны́е переменные принимают значение «l», т. е. x = 1 для всех $x_{\Omega_i}^{\Delta}$, где $i = 1, 2, 3, \ldots, 8$, то получим по приведенным выше правилам для (16) $\Omega_{17} = \{t_4\}$.

Автор благодарен З. Рабиновичу и Ю. Капитоновой за ценные замечания.

ЛИТЕРАТУРА

1. Сиймон А., Изв. АН ЭССР, Физ. Матем., 17, № 3, 270 (1968).

Поступила в редакцию 12/IV 1968

A. SIIMON

Инститит кибернетики

Академии наук Эстонской ССР

SIGNAALIDE EKSISTEERIMISE AJAKOORDINAATIDE MÄÄRAMINE LOOGILISTE SKEEMIDE ANALÜÜTILISE KIRJELDAMISE KEELES

Artiklis vaadeldakse töös [1] käsitletud loogiliste skeemide analüütilise kirjeldamise keele jaoks signaalide eksisteerimise ajakoordinaatide määramise meetodeid signaalide viivise, konjuktsiooni, disjunktsiooni ja inversiooni puhul. Signaalide konjunktsiooni ja disjunktsiooni puhul vaadeldakse ainult spetsiaalseid juhtumeid.

A. SIIMON

DETERMINATION OF SIGNAL EXISTING TIME CO-ORDINATES IN THE LANGUAGE FOR ANALYTICAL DESCRIBING LOGICAL SCHEMES

In this paper methods are described for determining signal existing time co-ordinates for delay, conjunction, disjunction and inversion of signals in the language for analytical describing logical schemes presented in the paper [1]. The methods described for the conjunction and disjunction of signals are restricted to special cases, only.