EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVI KÖIDE Füüsika * Matemaatika. 1967, nr. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVI ФИЗИКА * МАТЕМАТИКА. 1967, № 4

Х. АРРО, И. ЭПИК

О РОЛИ ХЛОРИДОВ В ПРОЦЕССАХ ЗАГРЯЗНЕНИЯ И КОРРОЗИИ ПОВЕРХНОСТЕЙ НАГРЕВА ПРИ СЖИГАНИИ ЭСТОНСКИХ СЛАНЦЕВ

Опыт сжигания эстонских сланцев показывает, что летучая зола их обладает весьма агрессивными свойствами и вызывает как интенсивное загрязнение, так и высо котемпературную коррозию поверхностей нагрева. В связи с этим проблемы, связанные с выяснением поведения минеральной части топлива и ее отдельных составляющих в топочных процессах, приобрели существенное значение для дальнейшего развития котельной техники, предназначенной для сжигания сланцев Прибалтийского бассейна.

Предыдущими исследованиями установлен сульфатно связанный характер золовых отложений, а также наличие, наряду с основным связывающим компонентом — CaSO₄, значительного количества K₂SO₄ во внутренних, прилегающих к трубам слоях этих отложений [¹⁻³]. Как известно, K₂SO₄ как в чистом виде, так и образуя двойные сульфаты и пиросульфаты, может играть весьма важную роль в процессах загрязнения в коррозии поверхностей нагрева [^{4, 5}]. На основе этого в проведенных до настоящего времени исследованиях коррозионное влияние сланцевой золы объясняли главным образом агрессивным действием щелочных сульфатов, в основном KAl(SO₄)₂ и K₃Fe(SO₄)₃ [^{2, 6, 7}].

Проведенные исследования, однако, не позволяли с уверенностью сказать, является ли скопление K₂SO₄ во внутренних слоях отложений результатом активного участия соєдинений калия в самых начальных стадиях образования отложений, или здесь основную роль играет постепенная диффузия щелочных соединений через наружные слои отложений к более холодному глубинному слою. Невыясненным оставался также вопрос, какие соединения калия наиболее активно участвуют в процессах загрязнения и коррозии.

В настоящей работе приводятся результаты дальнейших исследований, проведенных для изучения значения отдельных составляющих летучей золы эстонских сланцев в процессах загрязнения и коррозии высокотемпературных пароперегревателей.

Интенсивная коррозия сталей под влиянием сланцевой золы, наблюдаемая не только в котлоагрегатах, но и при лабораторных опытах в воздушной среде [⁸], подтверждает наличие в золе компонентов, обладаюших высокой коррозионной способностью. Для выявления химического состава и более подробного исследования коррозионных свойств последних предполагаемые наиболее активные компоненты — растворимые в всде соединения щелочных металлов — выделялись из золы. Выделение проводилось путем обработки проб золы небольшим количеством воды (для уменьшения растворения других, более труднорастворимых компонентов) с последующим выпариванием фильтрата и прокаливанием сухого остатка при 600° С. Пробы золы были взяты из-под электрофильтров котлоагрегатов ТП-17. Выход растворимой в воде части золы составлял при этом 2—3% от исходной пробы. Химические составы проб исходной золы и ее растворимой в воде части приведены в табл. 1.

Таблица 1

Компо- ненты	Проба № 1		Проба № 2	
	Исходная зола	Раствори- мая в воде часть	Исходная зола	Раствори- мая в воде часть
SiO ₂	36,87	0,34	31,45	0,18
Fe ₂ O ₃ Al ₂ O ₃	6,25 8,50	} 0,40	4,58 8,15	Следы
CaO	31,66	25,09	39.05	23,95
MgO	1,61	0,43	4,65	0,42
Na ₂ O	0,27	1,01	0,16	1,62
K ₂ O	5,43	39,34	4,86	35,57
SO ₃	8,90	13,52	8,75	18,95
Cl		24,33	0,56	23,05

Химические составы проб летучей золы и растворимой в воде части золы

На основе данных табл. 1, а также результатов рентгенофазового и термографического анализов можно сказать, что основным составляющим проб растворимой в воде части золы является KCl, содержание которого в пробах, судя по химическому составу, составляет около 50%. Что касается CaO, то содержание ее в пробах растворимой в воде части золы по данным термографических анализов обусловлено главным образом растворением свободной CaO и CaSO₄. Учитывая, однако, недостаточное для полного связывания калия количество хлора в пробах, некоторое количество SO₃ находится в растворимой в воде части золы, очевидно, также в виде K₂SO₄.

Коррозионные опыты в атмосфере воздуха, проведенные путем нагревания образцов из стали 12Х1МФ в насыпке проб золы, растворимой и нерастворимой в воде частях золы в течение 4 ч, показали, что растворимая в воде часть золы весьма сильно корродирует сталь (см. рисунок), в то время как нерастворимая ее часть коррозионной активности не проявляет. Особенно резко повышается коррозионное влияние растворимой в воде части золы при температурах выше 600°, что, по-видимому, обусловлено низкой температурой плавления ее (ниже 700°).

Для дальнейшего исследования коррозионного влияния активных компонентов сланцевой золы проводились опыты с искусственными смесями, где к коррозионно инактивному наполнителю (SiO₂ или смесь SiO₂ + Al₂O₃ + CaO + MgO + CaSO₄) добавляли разные количества коррозионно активных веществ (KCl, K₂SO₄ и CaCl₂). Использование предварительно обезвоженного CaCl₂ было обусловлено тем, что, по данным литературы [³], сланцевая зола содержит CaCl₂. Эти опыты показали, что даже небольшое количество хлоридов весьма сильно повышает коррозионное влияние смесей. Так, наблюдалось, что коррозионное влияние смесей, CaCl₂, при температурах 600 и более градусов превышает коррозионное влияние золы. Коррозионное действие K₂SO₄ оказалось в этих опытах значительно ниже, чем у хлоридов и летучей золы.

Снижение коррозионного влияния сланцевой золы при уменьшении содержания хлоридов в ней, несмотря даже на заметное повышение со-

Коррозия стали 12Х1МФ на воздухе в присутствии летучей золы (проба № 2, табл. 1) и полученных из нее растворнмой и нерастворимой в воде частей.

Продолжительность опытов 4 ч. 1 — в летучей золе; 2 — в растворимой в воде части; 3 — в нерастворимой в воде части (прокаленной при 800° С); 4 — без золы.

держания сульфатов в золе, наблюдалось также при коррозионных опытах, проведенных с предварительно сульфатизированными пробами летучей золы. Содержание SO₃ в пробах до сульфатизации составляло соответственно 7,85 и 8,24% и Cl — 0,64 и 0,46%. После сульфатизации первая проба содержала SO₃ — 27,08 и Cl — 0,37%, а вторая проба SO₃ — 30,47 и Cl — 0,28%. Коррозионные опыты в воздушной среде при ~ 600° и продолжительности 4 ч дали результат, судя по которому несульфатизированная зола корродировала сталь 12Х1МФ в 1,2-1,7 раза сильнее, чем сульфатизированная. Все это подтверждает, что хлориды являются одной из важнейших причин высокой коррозионной активности сланцевой золы. Можно, однако, предполагать, что коррозионная активность сланцевой золы зависит не только от количества коррозионно активных компонентов в ней, но и от взаимодействия между компонентами золы, в результате которого, в зависимости от условий протекания процесса, коррозионное влияние летучей золы может оказаться несколько выше или ниже, чем у искусственной смеси, содержащей такое же количество коррозионно активного вещества.

По данным химических анализов проб отложений, взятых с пароперегревателей котлоагрегатов ТП-17, работающих на эстонских сланцах, содержание хлора во внутренних слоях отложений обычно составляет 0,3—0,7 и редко превышает 1%. По данным литературы, однако, известно [¹⁰], что под влиянием дымовых газов хлориды могут постепенно перейти в сульфаты. Поэтому для получения представления о действительном значении хлоридов, а также и других компонентов золы в процессах загрязнения и коррозии в первую очередь необходимо исследовать начальные стадии образования отложений, служащие основой для дальнейших процессов загрязнения и коррозии поверхностей нагрева.

Соответствующие опыты для получения первичных слоев отложений проводились на котлоагрегатах ТП-17 с помощью специальных, охлаждаемых воздухом труб-зондов, которые вставлялись в газоходы между ширмами пароперегревателей. Продолжительность опытов составляла 2; 4; 6 и 24 ч, нагрузка котлоагрегатов — 130—180 т/ч и температура дымовых газов в зоне установления зондов — 700—1000°. Опыты проводились при двух режимах, где температуры стенки зонда на измерительном участке колебались соответственно в пределах 450—550 и 550—650°.

Содержание основных, наиболее активно участвующих в процессах образования отложений компонентов, в полученных на зондах тонких слоях (0,1—0,5 мм) плотных отложений представлено в табл. 2. Для сравнения в таблице приведено и содержание этих же компонентов в пробах летучей золы, отобранных во время нескольких опытов путем отсасывания золы из того же газохода, где был вставлен зонд. При этом в табл. 2 отдельно приведены данные, характеризующие более крупную фракцию золы, которая при отсасывании проб осталась в приемнике пробоотборного циклона, и тонкую фракцию, которая накапливалась на фильтре. Доля тонкой фракции составляла при этих опытах 5,6—17,0% от общего количества пробы.

Таблица 2

Vapaurapuaruus apof	Содержание, %				
ларактеристика проо	CaO	K ₂ O	SO3	Cl	
Отложения, образовавшиеся при tcr = 450 — 550° С Отложения, образовавшиеся при	16,6—25,6	18,3—40,3	9,1—22,5	8,3-13,6	
$t_{c\tau} = 550 - 650^{\circ}$ С Тонкие фракции проб золы Крупные фракции проб золы	$\begin{array}{c} 19,7-29,0\\ 26,7-34,8\\ 38,1-52,8\end{array}$	$\begin{array}{c} 8,7-10,3\\ 6,6-10,2\\ 2,1-5,2\end{array}$	$\begin{array}{r} 25,4 \\ 8,5 \\ 2,7 \\ 8,7 \\ 8,7 \\ 8,7 \\ \end{array}$	$\begin{array}{c} 1,7-2,9\\ 0,7-1,5\\ 0,1-0,4 \end{array}$	

Содержание основных наиболее активных компонентов в пробах плотных тонких слоев отложений и летучей золы (продолжительность опытов 2-6 4)

Рассмотрение представленных в табл. 2 данных показывает, что весьма сильное влияние на химический состав первых слоев плотных отложений оказывает температура стенки трубы. Установить влияние других факторов, например температуры дымовых газов, коэффициента избытка воздуха, продолжительности опыта при кратковременных (2—6часовых) опытах и т. д., в настоящих исследованиях не удалось. По-видимому, их роль в данных условиях значительно меньше роли температуры стенки трубы, в результате чего колебание последней во время опытов перекрывает влияние остальных факторов.

Как видно из приведенных в табл. 2 данных, первые слои плотных отложений содержат кроме CaO и SO₃ значительное количество K_2O и Cl. Особенно высокое содержание K_2O и Cl наблюдается в отложениях, образование которых происходило при температурах стенки зонда до 550°. Среднее содержание K_2O в таких отложениях более чем в три раза и Cl более чем в 11 раз превышает среднее содержание их в тонких фракциях летучей золы. При этом среднее содержание K_2O также превышает среднее содержание CaO в отложениях. С повышением температуры стенки зонда выше 550° количество K_2O и Cl в отложениях заметно уменьшается, однако содержание их и здесь больше, чем в летучей золе. O роли K_2O в данном случае можно судить по отношению K_2O : CaO, которое в высокотемпературных отложениях в среднем в 1,5 раза выше, чем в тонких фракциях золы.

Результаты рентгенофазовых анализов проб отложений показывают, что хлор в отложениях в основном находится в виде KCl, наиболее характерные линии которого на рентгенограммах хорошо наблюдаются.

Образование отложений в результате конденсации легкоплавких ще-

лочных соединений на поверхностях нагрева описывается в работах ряда заграничных исследователей, однако, по данным английских авторов [¹¹], роль хлоридов в процессе загрязнения с повышением зольности топлива значительно уменьшается. Несмотря на предельно высокую зольность эстонских сланцев ($A^p = 40 - 60\%$), процесс осаждения на поверхностях нагрева образовавшегося в топочных газах КСІ протекает и в данном случае весьма интенсивно и, очевидно, является одной из основных причин быстрого образования первых слоев плотных отложений. Учитывая, что содержание хлора в отложениях недостаточно для полного связывания калия, а также, что отношение Cl: K₂O с повышением температуры стенки уменьшается, можно предполагать, что в данных условиях происходит одновременное осаждение КСІ и K₂SO₄, причем конденсация КСІ с повышением температуры стенки выше 550° уменьшается более резко, чем конденсация K₂SO₄.

На основе вышеизложенного можно сделать следующие выводы:

1. Одной из основных причин высокой коррозионной активности летучей золы эстонских сланцев является наличие в золе растворимых в воде хлоридов (KCl, CaCl₂), которые даже в небольших количествах обладают значительной коррозионной способностью.

2. Несмотря на высокую зольность эстонских сланцев, в процессах быстрого образования первых слоев плотных золовых отложений на пароперегревателях, особенно при температурах стенки ниже 550°, весьма важную роль играет конденсация на поверхностях нагрева легкоплавких щелочных соединений, главным образом КСІ и K_2SO_4 . С повышением температуры стенки выше 550° содержание хлоридов в отложениях значительно снижается, однако, учитывая резкое повышение коррозионных свойств хлоридов при температурах 600 и выше градусов, можно предполагать, что даже при малом содержании их коррозионное влияние первых слоев отложений не уменьшается, а повышается. Некоторое уменьшение коррозионной активности отложений может произойти со временем в результате вытеснения хлоридов из отложений находящимся в дымовых газах сернистым ангидридом.

3. Сжигание эстонских сланцев в высокофорсированных топках с жидким шлакоудалением может с точки зрения загрязнения и коррозии поверхностей нагрева не привести к существенному улучшению работы котлоагрегата. Увеличение влияния хлоридов в процессах загрязнения и коррозии при уменьшении количества золы [11], а также и более интенсивное улетучивание соединений калия при повышении температур в топке [12] может привести к тому, что несмотря на значительное уменьшение количества уносимой из топки дымовыми газами золы и понижение содержания свободной CaO в золе, загрязнение поверхностей нагрева за счет отложения на них щелочных соединений останется значительным, а коррозия при более интенсивном осаждении KCl и K₂SO₄ мсжет даже несколько повыситься. Учитывая, однако, что промышленные или полупромышленные экспериментальные данные об улетучивании и поведении щелочных соединений при сжигании эстонских сланцев на режиме жидкого шлакоудаления до сих пор почти отсутствуют, окснчательное решение этого вопроса требует проведения специальных исследований.

ЛИТЕРАТУРА

- 1. Эпик И. П., Микк И. Р., Изв. вузов. Энергетика, № 3, 58-64 (1958).
- Эпик И. П., Влияние минеральной части сланцев на условия работы котлоагрегата, Таллин, 1961.
- Арро Х. Х., Махлапуу А. Я., Рейер А. Х., Тр. Таллинск. политехн. ин-та, Сер. А, № 209, 51—62 (1963).
- 4. Cain C. Jr., Nelson W., Trans. ASME, A 83, No. 4, 468-474 (1961).
- 5. Wickert K., BWK, 16, № 2, 67—76 (1964).
- 6. Торпан Б. К., Хыдреярв Х. Х., Изв. вузов. Энергетика, № 7, 105—110 (1959).
- 7. Торпан Б. К., Сийрде А. К., Пийроя Э. К., Вильбок Х. О., Тр. Таллинск. политехн. ин-та, Сер. А, № 215, 149—157 (1964).
- 8. Эпик И. П., Арро Х. Х., Томанн Э. Л., Энергомашиностроение, № 10, 30—32 (1964).
- Дилакторский Н. Л., Теоретические основы использования минеральной составляющей горючих сланцев в производстве строительных материалов, Сб. Исследования по строительству, вып. 3, АН ЭССР, Таллин, 1962.
- 10. Wickert K., Energie (BRD), 12, № 6, 240-246 (1960).
- 11. Jackson P. J., Mitt. VGB, № 85, 220-231 (1963).
- 12. Тааль Х. П., Изв. вузов. Энергетика, № 10, 58-63 (1964).

Таллинский политехнический институт Поступила в редакцию 3/V 1967

H. ARRO, I. ÖPIK

KLORIIDIDE OSATÄHTSUSEST KÜTTEPINDADE SAASTUMIS- JA KORROSIOONIPROTSESSIDES EESTI PÕLEVKIVI PÕLETAMISEL

On uuritud üksikute lendtuhakomponentide osatähtsust põlevkiviküttel töötavate katelseadmete küttepindade saastumis- ja korrosiooniprotsessides. Laboratoorsete katsete põhjal on leitud, et Eesti põlevkivi lendtuha suure korrosioonivõime peamiseks põhjustajaks on lendtuhas leiduvad KCl ja CaCl₂. Nagu näitasid spetsiaalsed sondikatsed katelseadmetel, on lendtuhasadestiste esimeste kihtide tekkimisel auruülekuumenditele, hoolimata põlevkivi kõrgest tuhasisaldusest, väga oluline koldeprotsesside vähesel määral tekkivate KCl ja K₂SO₄ sadenemine küttepindadele. Eriti suur on KCl ja K₂SO₄ osatähtsus sadestiste esimeste kihtide tekkimisel küttepindadele seinatemperatuuridel alla 550°C.

H. ARRO, I. ÖPIK

ÜBER DEN EINFLUSS VON CHLORIDEN AUF DIE ANSATZBILDUNG UND KORROSION DER HEIZFLÄCHEN BEI DER VERBRENNUNG ESTNISCHER BRENNSCHIEFER

Es werden die Untersuchungsergebnisse über den Einfluß einzelner Flugaschebestandteile auf die Ausatzbildung und Korrosion der Heizflächen in estnischen brennschiefergefeuerten Kesselanlagen dargelegt. Auf Grund der Laborversuche hat man festgestellt, daß die hohe Korrosionsfähigkeit der Brennschieferflugasche hauptsächlich durch die Anwesenheit von KCl und CaCl₂ in der Flugasche bedingt ist. Auf Kesselanlagen durchgeführte Versuche mit speziellen Proberöhren haben bewiesen, daß, ungeachtet des sehr hohen Aschegehaltes des estnischen Brennschiefers, die Ablagerung von KCl und K₂SO₄ bei der Ansatzgrundschichtbildung an den Überhitzerröhren eine wesentliche Rolle spielt. Besonders großen Einfluß auf die Ansatzgrundschichtbildung hat die Ablagerung von KCl und K₂SO₄ bei Rohrwandtemperaturen unter 550° C.