EESTI NSV TEADUSTE AKADEEMIA TOIMETISED. XVI KÖIDE FOOSIKA * MATEMAATIKA. 1967, NR. 4

ИЗВЕСТИЯ АКАДЕМИИ НАУК ЭСТОНСКОЙ ССР. ТОМ XVI ФИЗИКА * МАТЕМАТИКА. 1967, № 4

https://doi.org/10.3176/phys.math.1967.4.01

С. УЛЬМ

ОБ ИТЕРАЦИОННЫХ МЕТОДАХ С ПОСЛЕДОВАТЕЛЬНОЙ АППРОКСИМАЦИЕЙ ОБРАТНОГО ОПЕРАТОРА

При решении нелинейных операторных уравнений с помощью методов линеаризации (напр., метод Ньютона [¹], хорд [²], Стеффенсена [³]) на каждом итерационном шаге приходится решать линейное операторное уравнение. Так как решение последнего может оказаться довольно трудным, то представляет интерес построение быстро сходящихся итерационных методов, не требующих решения линейных проблем. В данной статье делается попытка построения одного метода такого типа, основанного на последовательной аппроксимации обратного оператора. Как нам кажется, в некоторых случаях такой подход к решению уравнений может оказаться полезным.

1. Как известно [4-6], для нахождения обратного оператора A-1 для линейного оператора A можно применить метод Ньютона

$$A_{n+1} = A_n (2E - AA_n) \qquad (n = 0, 1, ...), \tag{1}$$

где E — единичный оператор, а A_0 — некоторое начальное приближение к обратному оператору A^{-1} . В вышеупомянутых и ряде других работ исследована и сходимость метода (1).

Используя итерационный процесс (1), построим для решения уравнения

$$P(x) = 0 \tag{2}$$

в банаховом пространстве следующий итерационный метод:

$$x_{n+1} = x_n - A_n P(x_n) \tag{3}$$

$$A_{n+1} = A_n (2E - P'(x_{n+1})A_n), \tag{4}$$

где x_0 и A_0 — соответственно начальные приближения к точному решению x^* уравнения (2) и к обратному оператору $A^* = [P'(x^*)]^{-1}$; n = 0, 1, ...

Суть этого метода состоит в том, что, имея некоторое приближение A_n к оператору $[P'(x_{n+1})]^{-1}$, мы для уточнения этого приближения применим один шаг метода (1) и найденное новое приближение A_{n+1} используем в ньютоновском процессе вместо $[P'(x_{n+1})]^{-1}$.

Отметим, что идея последовательной аппроксимации обратного оператора использована и в построенных в [^{7, 8}] итерационных процессах для минимизации функций нескольких переменных и решения нелинейных систем трансцендентных уравнений, но пока не известны их обобщения для случая операторных уравнений. 2. Докажем простую теорему о сходимости метода (3) - (4).

Теорема 1. Пусть

1° уравнение (2) имеет решение x^* и существует $A^* = [P'(x^*)]^{-1}$;

2° в сфере $||x - x^*|| \leq r_0$ справедлива оценка

$$\|P''(\mathbf{x})\| \leqslant L;$$

3°
$$||P'(x^*)|| \leq C; ||[P'(x^*)]^{-1}|| \leq B;$$

4° $h_0 = \max \{K_0; C + B^2 L K_0 + 2B L K_0 r_0 + L K_0 r_0^2\} < \frac{1}{r_0}$

где

$$r_{0} = \max \{ \|x^{*} - x_{0}\|; \|A^{*} - A_{0}\| \},\$$

$$K_{0} = C + \frac{3}{2}BL + \frac{3}{2}Lr_{0}.$$

Тогда последовательности $\{x_n\}$ и $\{A_n\}$ сходятся соответственно к x^* и A^* , причем справедливы оценки

 $r_{n} = \max \{ \|x^{*} - x_{n}\|, \|A^{*} - A_{n}\| \} \leq (h_{0}r_{0})^{2n-1}r_{0},$ (5) ede n = 1, 2, ...

Доказательство. На основании (3) и формулы Тэйлора получим

$$x^* - x_{n+1} = x^* - x_n + A_n(P(x_n) - P(x^*)) =$$

$$= x^{*} - x_{n} - A_{n} [P'(x_{n})(x^{*} - x_{n}) + \int_{0}^{1} P''(x_{n} + t(x^{*} - x_{n}))(x^{*} - x_{n})^{2}(1 - t) dt] =$$

$$= [E - A_n P'(x_n)](x^* - x_n) - A_n \int_0^t P''(x_n + t(x^* - x_n))(x^* - x_n)^2 (1 - t) dt.$$

Поскольку

$$E - A_n P'(x_n) = A^* P'(x^*) - A_n P'(x_n) =$$

= $(A^* - A_n) P'(x^*) + A_n (P'(x^*) - P'(x_n))$

И

$$||A_n|| \leq ||A^*|| + ||A^* - A_n|| \leq B + ||A^* - A_n||,$$

то, используя условия 2° и 3°, получим

$$\|x^{*} - x_{n+1}\| \leq [C\|A^{*} - A_{n}\| + (B + \|A^{*} - A_{n}\|)L\|x^{*} - x_{n}\|] \times \\ \times \|x^{*} - x_{n}\| + \frac{1}{2}(B + \|A^{*} - A_{n}\|)L\|x^{*} - x_{n}\|^{2} =$$

 $= C \|x^* - x_n\| \|A^* - A_n\| + \frac{3}{2} BL \|x^* - x_n\|^2 + \frac{3}{2} L \|x^* - x_n\|^2 \|A^* - A_n\|.$ (6)

С другой стороны, на основании (4)

$$A^* - A_{n+1} = A^* - A_n (2E - P'(x_{n+1})A_n) =$$

= $A^* - A_n (E + P'(x^*)A^* - P'(x_{n+1})A_n) =$
= $A^* - A_n (E + P'(x^*) (A^* - A_n) + (P'(x^*) - P'(x_{n+1}))A_n) =$
= $[E - A_n P'(x^*)](A^* - A_n) - A_n (P'(x^*) - P'(x_{n+1}))A_n =$
= $(A^* - A_n)P'(x^*) (A^* - A_n) - A_n (P'(x^*) - P'(x_{n+1}))A_n.$

Следовательно,

$$\|A^{*} - A_{n+1}\| \leq C \|A^{*} - A_{n}\|^{2} + \|P'(x^{*}) - P'(x_{n+1})\| \|A_{n}\|^{2} \leq C \|A^{*} - A_{n}\|^{2} + B^{2}L \|x^{*} - x_{n+1}\| + 2BL \|x^{*} - x_{n+1}\| \|A^{*} - A_{n}\| + L \|x^{*} - x_{n+1}\| \|A^{*} - A_{n}\|^{2}.$$
(7)

Используя оценки (6) и (7) и условие 4°, теперь по индукции легко получить оценки (5). Теорема доказана.

Следствие 1. Пусть выбрано $A_0 = [P'(x_0)]^{-1}$, причем $\|[P'(x_0)]^{-1}\| \leqslant B_0$. Тогда

$$A^* - A_0 = [P'(x^*)]^{-1} - [P'(x_0)]^{-1} =$$

= [P'(x_0)]^{-1} [P'(x_0) - P'(x^*)] [P'(x^*)]^{-1}

Н

 $||A^* - A_0|| \le B_0 LB ||x^* - x_0||.$

Итак, в теореме 1 можно принять

 $r_0 = m \|x^* - x_0\|,$

где

$$m = \max\{1; B_0 BL\}.$$

Следствие 2. Пусть оператор P(x) действует в гильбертовом пространстве H и

$$m(h, h) \leq (P'(x^*)h, h) \leq M(h, h)$$

для каждого $h \in H$; $0 < m \leq M$.

Тогда существует $A^* = [P'(x^*)]^{-1}$ и

$$\frac{1}{M}(h,h) \leqslant (A^*h,h) \leqslant \frac{1}{m}(h,h).$$

Пусть выбрано $A_0 = \alpha E$ (ср. [⁵⁻⁶]), где $\alpha > 0$. Тогда

$$E - A_0 P'(x^*) = E - \alpha P'(x^*)$$

И

$$(1 - aM)(h, h) \leq ((E - A_0P'(x^*))h, h) \leq (1 - am)(h, h),$$

т. е.

TO

$$||E - A_0 P'(x^*)|| \le \max\{|1 - \alpha M|, ||1 - \alpha m|\}.$$

Поскольку

$$A^* - A_0 = (A^* - A_0) P'(x^*) [P'(x^*)]^{-1} =$$

= $(E - A_0 P'(x^*)) [P'(x^*)]^{-1},$
 $||A^* - A_0|| \le \frac{1}{n} \{|1 - \alpha M|, |1 - \alpha m||\}.$

Итак, в теореме 1 можно принять

$$C = M; \quad B = \frac{1}{m}; \quad r_0 = \max\{\|x^* - x_0\|; \frac{1}{m}\max\{|1 - \alpha M|, |1 - \alpha m|\}\}$$

Следовательно, процесс (3)—(4) может быстро сходиться и исходя из совсем простого начального приближения A_0 .

3. Модификации, аналогичные (3)—(4), можно построить и для других методов линеаризации.

Пусть требуется решить уравнение

$$P(x) \equiv x - \Phi(x) = 0. \tag{8}$$

Пусть для оператора P(x) построены разделенные разности P(x'x''), $P_1(x'x''x''')$, $P_2(x'x''x''')$, удовлетворяющие условиям

$$P(x'x'') (x' - x'') = P(x') - P(x'')$$

$$P(xx) = P'(x)$$

$$P_1(x'x''x''') (x'' - x''') = P(x'x'') - P(x'x''')$$

$$P_2(x'x''x''') (x' - x'') = P(x'x''') - P(x''x''').$$

Отметим, что при фиксированных аргументах P(x'x'') — линейный оператор, а $P_1(x'x''x''')$ и $P_2(x'x''x''')$ — билинейные операторы.

Рассмотрим следующую модификацию метода Стеффенсена для решения уравнения (8):

$$\int x_{n+1} = x_n - A_n P(x_n) \tag{9}$$

$$A_{n+1} = A_n (2E - P(x_{n+1}\Phi(x_{n+1}))A_n),$$
(10)

где *n* = 0, 1,

Для процесса (9) — (10) справедлива

Теорема 2. Пусть

1° уравнение (8) имеет решение x^* и существует $A^* = [P'(x^*)]^{-1}$;

2° в сфере $||x - x^*|| \leq \beta r_0$ ($\beta = \max\{1, M\}$) справедливы оценки*:

$$||P_i(x'x''x''')|| \leq L$$
 $(i=1, 2);$ $||\Phi(x'x'')|| \leq M;$

* Достаточно требовать справедливость оценки $\|\Phi(x'x'')\| \leq M$ в сфере $\|x - x^*\| \leq r_0$.

406

3°
$$||P'(x^*)|| \leq C; ||[P'(x^*)]^{-1}|| \leq B;$$

4°
$$h_0 = \max\{K_0, N_0\} < \frac{1}{r_0}$$
,

где

$$r_{0} = \max \{ \|x^{*} - x_{0}\|, \|A^{*} - A_{0}\| \};$$

$$K_{0} = C + BL(1 + 2M) + L(1 + 2M)r_{0};$$

$$N_{0} = C + B^{2}L(1 + M)K_{0} + 2BL(1 + M)K_{0}r_{0} + L(1 + M)K_{0}r_{0}^{2}.$$

Тогда последовательности $\{x_n\}$ и $\{A_n\}$ сходятся соответственно к x^* и $A^* = [P'(x^*)]^{-1}$, причем справедливы оценки

 $r_n = \max \{ \|x^* - x_n\|, \|A^* - A_n\| \} \leq (h_0 r_0)^{2^n - 1} r_0.$

Доказательство по идее аналогично доказательству теоремы 1, только вместо формулы Тэйлора следует использовать интерполяционную формулу Ньютона.

Из теоремы 2 нетрудно получить и следствия, аналогичные следствиям 1 и 2.

4. Перейдем к исследованию применений метода (3)—(4). Для решения нелинейных систем алгебраических и трансцендентных уравнений

$$f_i(x_1, \ldots, x_n) = 0$$
 $(i = 1, \ldots, n)$

получается следующий итерационный процесс:

$$\begin{cases} x^{(k+1)} = x^{(k)} - A_k f(x^{(k)}) \\ A_{k+1} = A_k (2E - J(x^{(k+1)}) A_k) \quad (k = 0, 1, \ldots). \end{cases}$$
(11)

Здесь

$$x^{(k)} = (x_1^{(k)}, \ldots, x_n^{(k)}); \quad f(x^{(k)}) = (f_1(x_1^{(k)}, \ldots, x_n^{(k)}), \ldots, f_n(x_1^{(k)}, \ldots, x_n^{(k)}));$$

Е — единичная матрица;

 $J(x) = (\partial f_i / \partial x_j)_{i, j=1,...,n}$; $A_k - (n \times n)$ -мерные матрицы.

Пример 1. Для системы

$$x_2^2 + x_1x_2 - x_1^2 + 7x_1 - 12 = 0$$
$$x_1^2x_2 - 3x_2^2 - 5x_1 - 1 = 0$$

было проведено сравнение метода (11)—(12) и модифицированного метода Ньютона [¹]. В обонх случаях были выбраны $x^{(0)} = (6,0; 1,0)$, а при методе (11)—(12) $A_0 = [I(x^{(0)})]^{-1}$. Результаты вычисления следующие:

метод (11)—(12)	модифицированный метод Ньютон
$x^{(1)} = (6,079545; 0,9147818)$	$x^{(1)} = (6,079545; 0,9147818)$
$x^{(2)} = (6,082767; 0,9172464)$	$x^{(2)} = (6,082973; 0,9172170)$
$x^{(3)} = (6,082762; 0,9172374)$	$x^{(3)} = (6,082763; 0,9172442)$
	$x^{(4)} = (6,082761; 0,9172372)$
Отметим, что $x^* = (\sqrt{37}, 7 - \sqrt{37}).$	$x^{(5)} = (6,082762; 0,9172374)$

407

5. Пусть дано дифференциальное уравнение

$$x(t) - \varphi(x(t), t) = 0
 x(0) = 0.$$
(13)

В данном случае

$$P(x) = \dot{x}(t) - \varphi(x(t), t)$$
$$P'(x)h = \dot{h}(t) - \varphi'_x(x(t), t)h(t).$$

Пусть $U_x(t, \tau)$ — разрешающая функция [9] для уравнения $\dot{h}(t) = \varphi'_x(x(t), t)h(t)$.

Тогда

$$[P'(\mathbf{x})]^{-1}k = \int_0^t U_x(t,\tau)k(\tau)d\tau.$$

Выбираем, например,

$$A_0 k = [P'(x_0)]^{-1} k = \int_0^1 U_0(t, \tau) k(\tau) d\tau,$$

где $U_0(t, \tau)$ — разрешающая функция для уравнения $h(t) = \varphi_x(x_0(t), t)h(t)$.

Оператор $A_{n+1}k$ ищем в виде

$$A_{n+1}k = \int_0^t V_{n+1}(t,\tau)k(\tau)d\tau.$$

На основании (4)

$$A_{n+1}k = 2A_nk - A_nP'(x_{n+1})A_nk$$

или

$$\int_{0}^{t} V_{n+1}(t,\tau)k(\tau)d\tau = 2\int_{0}^{t} V_{n}(t,\tau)k(\tau)d\tau -$$
$$-\int_{0}^{t} V_{n}(t,\tau)[V_{n}(\tau,\tau)k(\tau) + \int_{0}^{\tau} (\partial V_{n}(\tau,s)/\partial\tau)k(s)ds -$$
$$-\phi'_{x}(x_{n+1}(\tau),\tau)\int_{0}^{\tau} V_{n}(\tau,s)k(s)ds]d\tau.$$

После замен порядка интегрирования отсюда получаются рекуррентные соотношения

$$V_{n+1}(t,\tau) = 2V_n(t,\tau) - V_n(t,\tau) V_n(\tau,\tau) - \int_{-1}^{t} V_n(t,s) [V_n(s,\tau) \phi'_x(x_{n+1}(s),s) - (\partial V_n(s,\tau)/\partial s)] ds.$$
(14)

Итак, для решения уравнения (13) процесс (3)-(4) выражается в виде

$$x_{n+1}(t) = x_n(t) - \int_0^t V_n(t,\tau) [\dot{x}_n(\tau) - \varphi(x_n(\tau),\tau)] d\tau,$$

где $V_n(t, \tau)$ вычисляется рекуррентно по формуле (14). В качестве V_0 можно выбирать U_0 .

6. Рассмотрим применение метода (3)—(4) для решения нелинейного интегрального уравнения

$$P(x(s)) = x(s) - \int_{0}^{1} K(s, t, x(t)) dt = 0.$$
(15)

В данном случае

$$P'(x)h(s) = h(s) - \int_{0}^{1} K'_{x}(s, t, x(t))h(t)dt$$

Н

$$[P'(x_0)]^{-1}k(s) = k(s) + \int_0^s G_0(s, t)k(t)dt,$$

где резольвента $G_0(s, t)$ удовлетворяет следующему интегральному уравнению:

$$G_0(s,t) = K'_x(s,t,x_0(t)) + \int_0^{t} G_0(s,\tau) K'_x(\tau,t,x_0(t)) d\tau.$$
(16)

Если искать А_{n+1}k в виде

$$A_{n+1}k(s) = k(s) + \int_{0}^{1} H_{n+1}(s, t) k(t) dt,$$

получим для определения $H_{n+1}(s, t)$ после простых преобразований следующие рекуррентные соотношения:

$$H_{n+1}(s,t) = K'_{x}(s,t,x_{n+1}(t)) + \int_{0}^{1} K'_{x}(s,\tau,x_{n+1}(\tau)) H_{n}(\tau,t) d\tau + \\ + \int_{0}^{1} H_{n}(s,\tau) K'_{x}(\tau,t,x_{n+1}(t)) d\tau + \\ + \int_{0}^{1} H_{n}(s,\tau) H_{n}(\tau,t) d\tau + \int_{0}^{1} H_{n}(s,\tau) \int_{0}^{1} K'_{x}(\tau,u,x_{n+1}(u)) H_{n}(u,t) du d\tau.$$
(17)

Следовательно, для решения уравнения (15) процесс (3)—(4) выражается в виде

$$x_{n+1}(s) = \int_{0}^{1} K(s, t, x_n(t)) dt -$$
$$-\int_{0}^{1} H_n(s, t) [x_n(t) - \int_{0}^{1} K(t, \tau, x_n(\tau)) d\tau] dt,$$

где $H_n(s, t)$ вычисляется рекуррентно по формуле (17). В качестве H_0 можно выбирать, например, приближенное решение уравнения (16).

Пример 2. Для уравнения

$$x(s) = \int_{0}^{1} \left[1 - 0,4854s + s^{2} + st \arctan x(t)\right] dt$$

были получены методом (3)-(4) следующие результаты:

$$x_{0}(s) = \frac{3}{2}; \quad H_{0}(s,t) = G_{0}(s,t) = \frac{12}{35} st;$$

$$x_{1}(s) \approx 1 + 0.0067s + s^{2}; \quad H_{1}(s,t) \approx st \left(\frac{1.1143}{1 + x_{1}^{2}(t)} - 0.0010\right)$$

$$x_{2}(s) \approx 1 + s^{2} + 0.0004s.$$

Исходя из начального приближения $x_0(s) = \frac{3}{2}$, получим с помощью модифицированного метода Ньютона $x_2(s) \approx 1 + s^2 + 0,0018s$. Точное решение уравнения $x^*(s) = 1 + s^2$.

Так как для интегральных уравнений данный метод довольно громоздок, интересно было бы найти более простые методы для проведения итераций в пространстве операторов.

7. Рассмотрим, наконец, задачу оптимального управления

$$\min_{u} I = F[x(T), T] + \int_{0}^{t} L[x(t), u(t), t] dt,$$

причем

$$x = f(x, u, t); \quad x(0) = x^0.$$

Для нахождения поправок $\delta u^{(n)}$, $\delta x^{(n)}$, $\delta p^{(n)}$ методом второй вариации (Ньютона) [¹⁰], на каждом шаге имеются следующие соотношения:

$$H_{uu}^{(n)} \delta u^{(n)} = -H_{u}^{(n)} - H_{ux}^{(n)} \delta x^{(n)} - f_{u}^{*(n)} \delta p^{(n)}$$
(18)

$$\delta x^{(n)} = f_x^{(n)} \delta x^{(n)} + f_u^{(n)} \delta u^{(n)}; \quad \delta x^{(n)}(0) = 0$$
⁽¹⁹⁾

$$\delta p^{(n)} = -H_{xx}^{(n)} \delta x^{(n)} - H_{xu}^{(n)} \delta u^{(n)} - f_x^{*(n)} \delta p^{(n)};$$

(20)

$$\delta p^{(n)}(T) = F_{xx}^{(n)}(T) \, \delta x^{(n)}(T),$$

410

где

$$H = L(x, u, t) + (p, f).$$

Для нахождения $\delta x^{(n)}$, $\delta p^{(n)}$ приходится решать линейную краевую задачу (19)—(20), причем для исключения $\delta u^{(n)}$ требуется при каждом *t* найти $H_{uu}^{-1(n)}$ Если *u* многомерна, процедура может оказаться довольно трудоемкой.

Используя идеи метода (3) — (4), можно (18) заменить следующими соотношениями:

$$\begin{cases} \delta u^{(n)} = -A_n (H_u^{(n)} + H_{ux}^{(n)} \delta x^{(n)} + f_u^{*(n)} \delta p^{(n)}) \\ A_{n+1} = A_n (2E - H_{uu}^{(n+1)} A_n), \end{cases}$$
(18')

где E — единичная матрица порядка r (r — мерность управления u); A_0 — некоторое приближение к обратной матрице $H_{uu}^{-1(0)}$.

Автор благодарит студентку ТГУ М. Эрмус за вычисление примеров на ЭВМ.

ЛИТЕРАТУРА

- 1. Канторович Л. В., Тр. Матем. ин-та им. В. А. Стеклова АН СССР, 28, 104 (1949).
- 2. Schmidt J. W., Z. angew. Math. und Mech., 41, Sonderheit, 61 (1961).
- 3. Ульм С. Ю., Ж. вычисл. мат. и мат. физ., 4, № 6, 1093 (1964).
- 4. Schulz G., Z. angew. Math. und Mech., 13, 57 (1933).
- 5. Altman M., Pacif. J. Math., 10, 1107 (1960).
- 6. Petryshyn W. V., Proc. Amer. Math. Soc., 16, No. 5, 893 (1965).
- 7. Fletcher R., Powell M. J. D., Computer J., 6, No. 2, 163 (1963).
- 8. Broyden C. G., Math. of Comp., 19, No. 92, 577 (1965)
- 9. Справочная матем. библиотека, Функц. анализ, М., 1964.
- 10. Mitter S. K., Automatica, 3, 135 (1966).

Институт кибернетики Академии наук Эстонской ССР Поступила в редакцию 30/III 1967

S. ULM

ITERATSIOONIMEETODEIST PÖÖRDOPERAATORI JÄRKJÄRGULISE APROKSIMEERIMISEGA

Artiklis käsitletakse meetodite (3)-(4) ja (9)-(10) koonduvust ning vaadeldakse meetodi (3)-(4) rakendamist mittelineaarsete võrrandisüsteemide, harilike diferentsiaalvõrrandite, integraalvõrrandite ja optimaalse juhtimise ülesannete lahendamiseks.

S. ULM

ON ITERATIVE METHODS WITH SUCCESSIVE APPROXIMATION OF THE INVERSE OPERATOR

In this paper some convergence theorems concerning the iterative methods (3)-(4) and (9)-(10) are proved. The method (3)-(4) is used for solving differential and integral equations, systems of nonlinear equations and optimal control problems.