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Abstract. A brief history of Hooke’s law and its generalizations are presented. The deep essence

and perfection of fundamental laws of nature are pointed out within the framework of modified
mathematical models.
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1. PREFACE

The life of the most fundamental laws of physics is more interesting and more

exciting than any other story of mankind.

Take, for instance, the celebrated Fourier’s law of heat conduction. It has

been used for centuries as one of the most efficient laws of physics. Even the

contradiction it contains was first mentioned by Maxwell in 1867, and hundreds

and hundreds of attempts have been made to modify it. To describe its indelible

imprint on physics, nothing is better than the name of all attempts: modified

Fourier’s law. Or a prophecy: upon resurrection he will be able to recognize his

law.

As another example, let us consider Hooke’s law for an elastic body. It is

even older than the previous example, more basic, and much more attempts have

been made to modify it. Even this law does not contain any contradictions. But it

has required a lot of completion in both physical and mathematical sense.

Concerning the latter one, we can use an analogy taken from music. Hooke was

the composer and his followers, first of all mathematical physicists, made the

score and the masterpiece was ready.* On the basis of the mathematical

*

By the way, the same applies to the field of electrodynamics. Faraday, Ampere, and Volta

created the laws and Maxwell gave them the mathematical formulation.
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apparatus, which has been built into the original Hooke’s law, I suspect he would

never be able to recognize his law again.
The study of Hooke’s law is a profound experience. The deeper one delves in

it, the more he or she appreciates the great master whose unparalleled work has

left a prominent landmark.

Let us describe shortly the history, which inevitably contains also some theory,
of the law that is huge from a bird’s eye view and, as all great thoughts it, too, has

satellites, which are collected in the successive chapters as different stories.

2. HISTORY AND THEORY

In the history of the theory of elasticity started by Galileo Galilei (1564—
1642), the greatest landmark is undoubtedly the discovery of Hooke’s law in

1660.

The notion of elasticity was firstannounced by Robert Hooke (1635-1703) in

1676 in the form of an anagram ['],

cellinosssttuv. (1)

He explained it only two years later, in 1678, as

ut tensio sic vis. (2a)

The approximate English translation of this Latin sentence is:

The power of any springy body isin the same proportion with the extension. (2b)

This and nothing else was the start of the celebrated Hooke’s law.

Let us pause here for a moment to mention that an identical law was

enunciated independently by Edmé Mariotte (1620-84) two years later, i.e. in

1680. So, as it often happens in science, the discovery was once again
duplicated, but the history refers only to Hooke. By the way, the history of

science 1s lucky, because in case of the reverse order nobody would know who

Hooke 1s while Mariotte is well known from another field of physics.
The mathematical theory, developed and extended to other materials since

that time, is associated with the names of practically all great mathematical

physicists of the last three centuries and forms one of the most important parts of

classical physics. The line of inquiry has never been broken, and in recent times

we witness the most vigorous developments.
Without mentioning all items of the history of Hooke’s law, let us give here

the principal milestones.

The most primitive and widely used version of this law says that stress is

proportional to strain: '
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and the factor of proportionality is the modulus of elasticity or Young’s
modulus, announced by Thomas Young (1773-1829) in 1807. It means that

almost one and half a century was needed to complete the law well known today.
The second greatest landmark is the isotropic—isothermal Hooke’s law [*]:

Õi =Äekkõ,.j +2UEy, i, j=1,2,3.

(We use the notation of indices and the summation convention introduced by
Einstein.) This law, with ¢ =A = u because of an inadequate molecular model,

was proposed to the Paris Academy by Louis M. H. Navier (1785-1836) in 1821.

In 1823 the two constant versions (c; =A; ¢, =2u) were presented to the

Academy by Augustin L. Cauchy (1789-1857), who formulated the continuum

theory of linearized elasticity in virtually the same form as it stands today. This

law, of course, largely generalizes the observations of Hooke and Young [].
Siméon-Denis Poisson (1781-1840) developed a molecular theory of elasticity
and arrived at the same equation as Navier. Both Navier and Poisson based their

analysis on the Newtonian conception of the constitution of bodies and assumed

certain laws of intermolecular forces. Cauchy’s general reasoning, however,
made no use of the hypothesis of material particles.

For an anisotropic body in the isothermal case the following form is valid:

Oii =Cijrs€rs> i, j, r,5=1,2,3

Here the elastic coefficient matrix c;,, contains 81 constants, but they are not all

independent. If we take into account the symmetry of the stress and strain

tensors, there remain only 36 independent constants. Let us enumerate the

elements and instead of Eq. (5) write Eq. (6):

O, =Cu&;; k,L=1,..6,

where c,, are the 36 independent elastic coefficients. If the concept of strain

energy introduced by George Green (1793-1841) is valid, then ¢, is

symmetrical and the number of independent elements is reduced to 21.

The case of orthotropic symmetry according to Love [*] was discussed by
Barré de Saint-Venant (1797-1886). In this case the number of the independent
elements of c,, decreases to 9. If the body is isotropic, then the number of

independent constants decreases to 2 in Eq. (4) with the so-called Lamé

constants A and u, introducedby Gabriel Lamé (1795-1870).
If the phenomenon is not isothermal, then we have to use the linear

thermoelastic constitutive equation

4)

(5)

(6)
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which is attributed to J. M. C. Duhamel (1797-1872) and Franz Neumann

(1798-1895) by Sokolnikoff [°] and called as Duhamel-Neumann equation.
If the material we are dealing with is thermohygroelastic, then the proper

equation instead of Eq. (7) (see, e.g., [®7]) is the following:

O',-j =Ä'£kkõij +2,u£,—j —(,BAT+BmAm) ölj

The strong impact of Hooke’s law (through the elasticity and solid

mechanics) on civilization is felt through its application in engineering. Beside

the scientists already mentioned above, let us name some of the most famous

users of this law: Jacques Bernoulli (1654-1705) — beam theory (1705);
Leonhard Euler (1707-1783) — elastic stability (1778); Charles A. Coulomb

(1736-1806) — failure criterion (1784); Joseph L. Lagrange (1736-1813) —

bending and vibration of plates (1773); and many others only in the first period
(1638-1820) of the law’s life.

We are not able even to mention all the scientists connected with Hooke’s

law in the further periods of its life. Just some examples should be given to

emphasize its importance nowadays. Almost one quarter of the celebrated book

on continuum mechanics by Malvern [*] deals with the constitutive laws, from

our point of view with Hooke’s law. A large portion of investigations in the field

of solid mechanics is devoted to the constitutive laws. To get a deeper insight,

open any journal on mechanics and related fields and look at the table of

contents.

As all unparalleled ideas, Hooke’s law also has satellites. Now let us finish

this brief historic overview and little piece of theory and discuss some of the

thoughts or, as we call them, stories aroused by the law. The family tree of

generalized Hooke’s law is shown in Fig. 1.

3. (SHORT STORY) CHARM

Look first at Eq. (1) and then at expression (8) of Hooke’s law. Compare
them and decide whether it is a wonder or not. Notice the little difference in their

essence in spite of substantial alteration in the form. By the way, versions

(4)—(6), but not (7), are all called generalized Hooke’s law and I do not know

why (7) is an exception.
From another viewpoint, is it not fascinating that somebody creates one of the

biggest law of mechanics of the age or, as it turned out, of the whole following
period including also the present day, and meanwhile he has spirits, power, and

patience to play. Well, is it not charming?
Undoubtedly the greatest landmark in mechanics, or in the whole physics, Sir

Isaac Newton’s (1642—1727) Principia is a real scientific work without any art

in the sense mentioned above. Nothing tells us more about the eternal

relationship between art and science than the somewhat mean remark of a

(8)
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scientist: analysing the history of some modern equipment, he points out that

although the equipment traces back about one century, Leonardo da Vinci

(1452-1519) should be mentioned, as his drawings and sketches certainly make

some reference to that equipment as well. Mean as this comment may be,

knowing Leonardo, it is not altogether unjustified.
I am a little bit worried when I compare Hooke’s destiny with that of a

contemporary scientist. The real scientist is not a proletarian, but a nobleman of

science, or, by the contemporary notion, a real bourgeois. He does not have to

struggle for everyday science. He has time to enjoy also the beauty of science, to

create art at the same time. But many publications per year in oral and written form

take up all his efforts: there is no time and energy to follow Hooke’s way. There

may be some exceptions, e.g., Lanczos 8 Engelbrecht [’], or Simonyi ['°], and

others.

4. (LONG STORY) MATHEMATICS

As one can figure out from the above, one point of view in the history of

Hooke’s law is nothing else but a story of mathematics. Since mathematics is

also, in a general sense, one of the most profound parts of our civilization, let us

deal with it in relation to Hooke’s law.

A few years ago the highly regarded and world-famous scientist, Janos Selye
made a rather curious statement. He argued that a physician does not need

mathematics, as the logic of mathematics is harmful to medical thinking. This I

have ever since regarded as nonsense and have some ill feelings towards Janos

Selye. Is it possible that he has retained his aversion towards mathematics from

childhood all the way until becoming a world-renown scientist? Who knows?

Mathematics is a tricky issue. There is no other science which would divide

so markedly into two groups those getting in touch with it. Those who need

mathematics, having got to do with it, cannot imagine their work without it.

Other people, however, consider it completely superfluous, and object to it. This

division is for sure not coincidental, the explanation for it lies in the very nature

of mathematics. It is an extremely abstract, complex science, which for some

people is better to avoid. On the other hand, it is hardly possible to avoid, as it

defines the most basic laws of the universe, thus one bumps into it in all areas.

And this has been so for thousands of years! As Richard P. Feynman put it very

nicely, nature talks to us in the language of mathematics.

Boja says that the whole of modern science, starting with Leonardo da

Vinci and Copernicus was born under the auspices of Pythagoras, Plato, and

especially Archimedes. Pythagorism advocated that everything can be derived

from the number and the proportion: this was the first panmathematism. The

Pythagorean Philolaus said that the nature of the number, similarly to harmony,
does not bear anything false, as that is not its own. Truth is inherent to the
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number... Archimedes otherwise considered himself a platonist and a

Pythagorean. Galilei talks about Archimedes with fascination: the superhuman
Archimedes whose name can never be utteredwithout deep emotions.

I feel that mathematics and languages are to some extent related. Those who

have lived their whole life without ever speaking any other language than their

mother tongue, will never have this sense of having missed something. Those,

however, who start learning foreign languages will sense a growing urge to learn

more and more languages.
Let us now ponder a little bit about the relationship between mathematics and

the technical and natural sciences. The more basic relations can easily be described

with words, the more complicated ones, however, call formathematical apparatus.
The constitutive law of linearly elastic, homogeneous, isotropic bodies, for

example, was first defined by Hooke in a very simple form (see expressions
(1)—(3)). According to him, stress and strain are in proportion, the factor of

proportionality is characteristic of the material. If we think of the simple tension

test, this is correct. Introducing the notions of stress and strain, Hooke’s law can

be written in the form of Eq. (3).
The first problem presents itself if we take a closer look at the experiment, as

strain occurs not only longitudinally but transversely as well. Thus the

transversal size is reduced. It may be stated that the alteration of the transversal

size 1s in proportion with the longitudinal one, and the factor of proportionality is

characteristic of the material in this case as well. Based on the above, we have

E, =-VE,

where v 1s Poisson’s factor that can be established from the measurement.

Let us now move on. Let us this time imagine a twisted bar instead of a

stretched one. In this case torque appears instead of tension and, naturally, the

phenomenon is twisting instead of stretching. Introducing the specific quantities
similarly to the previous case, we get the relation

T =GY,

where G is another material characteristic which can also be defined through
experiments.

Let us make yet another step forward. Instead of a rod let us now picture a

three-dimensional body, and let us assume that we load this body with forces and

moments working along all three axes. In this case the relationship between the

stresses and strains cannot be described with words, only with a system of

equations with six unknowns. Up to this point the mathematical skills acquired at

high school will be sufficient. Knowing matrix calculation, however, these

equations can well be condensed:

(9)

(10)
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This system comprises everything but requires advanced mathematical skills. If

you compare Egs. (4) and (11), then you recognize soon total analogy. While in

Eq. (4) we used Lamé’s coefficients, then in Eqs. (11) those of Young and

Poisson are introduced.

In case of anisotropy, Eq. (5) is valid and the problem is hardly
understandable without higher mathematics. The series of examples could be

continued or extended. Describing certain phenomena in the language of

mathematics may show that the phenomena are related. This leads us to

analogies which provide special experimental and computing technical

opportunities, e.g., the analogy of mechanical and electric vibration systems, or

the analogy of Fourier’s and Fick’s laws. Or, through the examination of the

mathematical apparatus (model) describing the phenomenon, we may actually
reach the criticism of the original physical model (e.g., modified law of heat

conduction).

5. (COMPLICATED STORY) POLITICS AND ECONOMICS

As I have already mentioned, the real scientist is not a proletarian who has to

struggle for everyday science. To become and to exist as a real scholar, certain

financial circumstances and, based on this, great intellectual independence, too,

are required. It means that in feudalism most of the scientists were noblemen, in

early capitalism bourgeois from the upper middle classes, and nowadays most of

them are researchers. It is not by chance that in the first period of the history of

Hooke’s law one can not find any female scientist. Before the emancipation it

was hardly possible for a woman to become a scientist. Of course, there are

always several exceptions, e.g. Aesop, the great narrator, was a slave, but his

field was the arts and during slavery the situation was fundamentally different.

I think that one of the reasons, if not the first and foremost one, for the failure

of communism was the destruction of the middle class and the lack of respect for

the intelligentsia, first of all the researchers. The communists did not only have a

political reason for this, but also economical: keeping thousands and thousands

of researchers without any results. But you never know who improves later to

become “a Hooke” and, the probability being very small, there is no other choice

but to keep countless researchers and “trust in God”. In case of an industrial

enterprise the best investment is said to be the R&D (research and development).
You can reach the highest recovery in this field. I do not know exact figures, but

I guess the same applies to “social enterprises”.
No doubt, playing in childhood is part of the process of becoming an adult

with the ability to work and to create. Later, for a grown-up, somehow art takes

(11)
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up this role. But for this, time is needed. If one goes, not having time to play, to

deal with art as, for example, Hooke and several others did, I doubt that anyone
would have a chance to reach a real scientific result. That is the reason for my
bad feeling concerning a scientist with 10-20 publications per year, as I

mentioned before. By the way, very good positive examples are the best writers

of science-fiction, who have been also first-class researchers in their own field.

6. (ENDLESS STORY) COMPUTERS

I do not give a story here but only a hint to start this endless way, namely: try
to fit the story of computers and computational methods to the history of

Hooke’s law.
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IMEPÄRANE HOOKE’I SEADUS:

AJALUGU, TEOORIA JA LUGU

Andras SZEKERES

Fundamentaalsete loodusseaduste avastamise ajalugu voib olla huvitavamgi
kui mdne teise inimtegevuse valdkonna oma. Essees on esitatud elastsusteooria

alguse — Hooke’i seaduse lugu ja mdtteid, mida see lugu on uurijas esile

kutsunud.
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