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Abstract. A mathematical model of running and aerobic and anaerobic energy production is

presented. Equations for the optimal control of cross-country and track-and-field competitive
running are developed. The constrained optimal control problem is formulated in terms of state and

co-state variables and Pontryagin’s minimum principle. The solution calls, in general, for a

numerical procedure.
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1. INTRODUCTION

Physiological significance of running records was first pointed out by
A. V. Hill (see, e.g., [']). The determination of physiological data from world

running records, however, had to await the formulation of a tractable

mathematical model of competitive running. Keller [>’] was the first to provide
such a model based on simple dynamic laws and the calculus of variations. Since

the world running records evidently represent the optimal running performance
relatively well, the mathematical model must account for the optimal strategy in

order to be capable of giving a good fit to the records. Keller’s theory of optimal
competitive running predicts that the runner should run at maximum propulsive
force for all races at distances less than a critical distance (short sprints or

dashes). For longer distances, the theory predicts maximum propulsive force at

the beginning of the run, then constant speed for most of the run and, finally, a

slight slowing down at the last stage of the run.
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The predictions of Keller’s model agree with world records from 50 yd to

10 000 m within a remarkable accuracy of +3% with a 1.57% mean absolute

relative error. Later Woodside [*] added the fatigue constant to the model. The

fatigue constant is a proportionality constant relating the additional rate of

energy loss due to fatigue at a given time to the energy already spent up to that

time. Woodside extended the range of distances up to 275 km and obtained a

prediction accuracy with a 2.35% mean absolute relative error for men and

1.61% for women. Recently, von Hertzen et al. [’] accounted for the curvature of

the track. They predicted the world record times from 100 m to 10 000 m with a

0.66% mean absolute relative error.

An essential feature of the previous models is, however, that they are valid

only under ideal conditions. In particular, the effect of wind and the aerodynamic
drag caused by other runners are not taken into account, the track must be

horizontal, etc. During a race, however, even a constant wind is part of the time

ahead and part of the time behind the runner. Also, in a cross-country race, for

example, the slope of the path varies continuously. These factors complicate the

optimization process considerably, and piecewise analytical optimal solutions

are no longer available. The aim of this paper is to provide the mathematical

formulation of this more general optimal control problem, capable of dealing
with complications of the aforementioned type.

2. MATHEMATICAL MODEL

2.1. Energy production

The muscle draws its energy in an exergonic reaction during which adenosine

triphosphate (ATP) splits into adenosine diphosphate and inorganic phosphate.
A considerable amount of energy is liberated in this process. The ATP of a

muscle cell can originate from several sources. The cell itself contains a small

immediate ATP-supply and, in addition, small supplies of creatine phosphate
(CP) and glycogen. During a maximal or almost maximal effort, the cell first

exhausts its immediate ATP-supply during a few seconds. This is followed by a

reaction where CP is anaerobically decomposed into creatine and phosphoric
acid, leading to resynthesization of new ATP. During maximal effort the

CP-supply lasts for about 20-30s. When approximately half of the CP is

expended, an essential role in energy supply for muscle work begins. This is

played by glycolysis, i.e., anaerobic decomposition of glycogen. This process

generates ATP and also lactid acid, which is known to decrease the efficiency of

the muscle. During maximal effort the glycogen supply lasts for about 90 s. In

addition to the anaerobic energy processes described above, ATP may be

generated aerobically via oxidation of the pyruvic acid produced by glycolysis,
leading finally to the generation of ATP, carbon dioxide, and water (Krebs
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cycle). It should be noted that the oxidative processes (breathing, blood

circulation, etc.) are properly activated just about one minute from the onset of

the exercise. However, the oxidative process may start even earlier with the help
of the myoglobin resources of the muscle. The athlete can also do a short warm-

up on a level less than 50% of the maximal aerobic power, which results in a

preactivation of the oxidative process without any marked changes in the

ATP- or CP-stores.

2.2. Model of energy production

On the basis of the previous considerations, one can state a simple model of

the energy production. Let the anaerobic energy store and the aerobic power at

time ¢ be denoted by E_ (f) and XZ(#), respectively. Since the exercise in a

competition is supramaximal, the oxidative process is fully activated.

Consequently, the aerobic power works all the time at its maximum. Therefore,
one can write

XŽ(t)=Xmx» 120

where X
. represents the maximal (constant) aerobic capacity of the runner.

Equation (1) can be considered to be valid already during the first minute of the

run because of the athlete’s warm-up and myoglobin store of the muscle tissues.

During the run, when striving forwards with a propulsive force F and velocity
v, the power expended by the runner is F-v. According to the first law of

thermodynamics, one can write the power equation

—fl—š'in——l—zmax :F.v.
dt

Integration of Eq. (2) yields

t

Ean ) = Ean (0) + Tt —[ F va

0

In a supramaximal exercise, the energy consumption is greater than that provided

solely by the oxidative process. Therefore, the function E, (f) must be

monotonically decreasing. If, on the other hand, the anaerobic energy resources

are fully depleted, the condition E,, =0 is fulfilled. This leads to the constraint

conditions

E,, O)2E, 20

to be met during the run.

(1)

2)

(3)

4)
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2.3. Governing equations

Let us consider a runner with mass m and horizontal propulsive force F(z).

Let us define the quantities

f@®O=F@)/m,

et)=E,, (t)/m,

0 =Žm /M.

referring to the body mass. Denoting the resisting force by f,., = f,. (s, V,l), we

can write the horizontal equation of motion of the runner as

dv

E—f fres

with the initial condition

v(0)=0

and the power equation in the form

de
=0—0—
dt

v

with

e(o)=e,.

In addition, we have the constraint conditions for the force

0<fO)= fa

and for the anaerobic energy

o<e(t)<e,.

The specific form of the function f, is not needed in the general formulation of

the theory. A representative model, however, is specified by

Fres =kv" +kD(V—W)|v—w|+gsin6(s),

where the coefficient k£ and the exponent & are model parameters related to the

internal resistance of the runner [°], k
p

18 the air drag coefficient, w is the wind

velocity, g is the acceleration due to gravity, 6(s) is the slope of the running
track measured from the horizontal, and s is the distance along the track.

(10)

(11)

(12)

(13)

(14)

(5)

(6)

(7

(8)

9)
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3. FORMULATION OF THE OPTIMAL CONTROL PROBLEM

3.1. Hamiltonian function

Equations (8)—(13) constitute the mathematical description of the problem. In

order to run a distance D in an optimal way, the runner must minimize the

running time 7', which is determined by the equation

T

D= jv(t)dt.
0

This leads to the calculus of variations with inequality constraints. The problem
belongs to the field of optimal control theory. The propulsive force of the runner

f(t) acts as the control function which has to be chosen so that the running time

T 1s minimized.

In the following we present the mathematical formulation of this optimization
problem with the aid of Pontryagin’s minimum principle. The functional to be

minimized is the running time, which can be simply presented as

T

J=ldt=T.
0

The state variables of the problem are s,v, and e. Also, due to the constraint

inequalities (13), a new auxiliary state variable x with the end conditions

x(0)=x(T)=0 is introduced [’]. The Hamiltonian for the present optimum

problemreads

H(t)=l+psv+pv(f—fms)+pe(a—.fv)

+P, [ezS(—e) + (ey —e)ZS(—eO +e)].

Here S(—z) is the Heaviside unit step function

SCo)=
0,z20

2-

IL, z<o°

The terms in the square brackets in the Hamiltonian appear due to the constraint

inequalities (13).

3.2. Necessary conditions for optimality

The equations for the state and co-state variables x and p, respectively,
under the optimal control f *(¢) are [']

(15)

(16)

(17)

(18)



X*(t)=š—H[x*(t),f*(l),P*(l“)],
P

(19)
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. oH

p*(r)=—s;[x*(r),f*(t),p*m]-
Consequently, for the Hamiltonian (17), the state and co-state equations with the

proper end conditions are

%kan Ly
dt

dv*
——:f *_
dt fe (B*,V*,), v*(0)=0

*&sie
dt

%;T* =e** S(-e*)+(e, -e*)*S(-e, +e*), x*(0)=0,

*PÕL 0 pr)=-d,
dt

dpv*z_ *+afres * % *

a bt(s*,v* Dp,*+f *p*, p*()=0,

%k- — —2px* [e * S(—e*) — (eO — e*)S(—eO + e*)]7 pe* (T) =o’
t

dp,*
—-=O,

p
*(T)=-d,.

d
p, *(T)

Since the running distance D is specified, the constraint condition on the final

state may be written as

m[s*(T)]=s*T)-D=o.

Also, the end condition

m_[x*(M)]=x*T)=o

must be valid due to the conditions (13). In the end conditions (30) and (36) the

quantities d, and d, appear due to the conditions (37) and (38). It is evident

from Eqgs. (29) and (30) that p (t)=-d, and from Eqgs. (35) and (36) that

p,(t)=—d, is constant as well.

(21), (22)

(23), (24)

(25), (26)

(27), (28)

(29), (30)

(31), (32)

(33)’ (34)

(35), (36)

(20)

37

(38)
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According to Pontryagin’s minimum principle, an optimal control must

minimize the Hamiltonianfor all admissible controls (i.e., controls satisfying the

conditions (12)). Consequently, the condition

H(x* (1), f *(),p* @) <H(x*(1), £(l),p *()

must hold for all admissible controls f(7).

Equations (21)—(38) constitute a nonlinear two-point boundary-value
problem, augmented by Pontryagin’s minimum principle (39), with free final

time and constrained by the inequalities (12). It is well known that, in general,
problems of this type allow no analytical solutions. There are several numerical

methods, however, which can be utilized in the solution. These include, for

example, the method of steepest descent, the technique of variation of extremals,
and the method of quasilinearization [*]. In the present paper the numerical

solution is not pursued further.

4. CONCLUSIONS

We have formulated the optimal control problem for cross-country and track-

and-field competitive running. With slight modifications the method could be

applied to cross-country skiing as well. We point out that Keller [2’3] presented
the optimal strategy (maximum acceleration, steady pacing, and aerobic phases)
of a runner on a horizontal track in still air. However, under the more general
conditions of the present paper, the optimization of the performance is not so

straightforward, and detailed numerical calculations must be done to find out the

optimal strategy.
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OPTIMAALSE VÕISTLUSJOOKSMISE MATEMAATILINE

FORMULEERING PONTRJAGINI MIINIMUMI PRINTSIIBI

ALUSEL

Matti A. RANTA jaRaimo von HERTZEN

On esitatud voistlusjooksmise aegset aeroobset ja anaeroobset energia-
vahetust kirjeldav mudel ning tuletatud vorrandid optimaalse jooksmisstrateegia
leidmiseks. Optimaalse juhtimise probleem on formuleeritud oleku- ja kaas-

olekufunktsioonide abil rakendades Pontrjagini miinimumi printsiipi. Saadud

vorrandidnduavad edaspidist numbrilist analiiiisi.
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