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Abstract. Mathematical modelling can be successfully used in cardiac research. We give an

overview of our studies in this field in the general framework of knowledge in order to reflect

our ideas more precisely. The studies of the cardiac phenomena performed by us are focused

on three aspects: (a) regulation of the heart by means of electrical activation of the cardiac

conducting system; (b) energy transformation from different chemical forms to mechanical

form by means of oxidative phosphorylation, intracellular energy transport, and mechanical

contraction of the myofibrils; and (c) mechanical contraction of the heart wall leading to the

efflux of blood into the coronary system.

Key words: heart, nonlinear dynamics, electrical activation, cellular bioenergetics, mechano-

energetics. |

1. INTRODUCTION

In recent years it has become clear that interdisciplinary studies combining
physiology and mathematics can facilitate the understanding of extremely
complicated phenomena. For example, a series of simulations of heart dynamics
based on mathematical modelling largely influenced by the theoretical background
of current cardiology has been carried out in the 1990 s [l:2]. The methods of

contemporary nonlinear dynamics such as bifurcation analysis have proved suitable

for the study of on-steady biological processes [3]. The application of the state-of-

the-art numerical algorithms makes it possible to handle spatio-temporal systems
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such as the intracellularenergy fluxes or mechanical contraction of the muscle on a

qualitatively higher level than that achieved by numerical methods commonly used

in biology [>°].
The heart can be studied from different aspects. For example, one can treat

the heart as a “black box” which consumes energy taken from the surrounding
environment and releases mechanical energy — blood flow — together with heat

(Fig. 1). Great advantages of the “black box” method are its simplicity and its ideaof

treating the heart as a unity. However, the phenomenological knowledge collected

by this method is far from being sufficient for developing new drugs or methods of

medical treatment.

Anotherextreme would be to handle the heart as abunch ofbillions and billions

of cells with all the tissue-specific geometric, electrophysiological, biochemical,
and mechanical subtleties involved. Such a “complete” model of the heart could be

defined as an ultimate goal of the heart research that will still remain a mere fiction

for a long time.

Commonly, the heart is considered as a set of separate functional blocks.

Figure 1 shows one possible way of dividing the heart processes into such blocks

which are briefly commented on below. The electrical, as well as mechanical

activity of the heart, is affected by the central nervous system through its

sympathetic or vagal activity together with the release of hormones. These factors

influence the processes in the cardiac conducting system resulting in changes in

the heart rate. In addition, they regulate the Ca?* release in the activation process,

leading to changes in contractility. The electrical activation ofthe myocardial tissue

triggers the chemomechanical contraction processes on the cellular level. This

results in the contraction of the heart muscle and produces the blood flow together
with blood pressure. Blood pressure affects through the baroreceptors directly the

central nervous system closing the loop. It is known that the contracted heart

muscle closes temporarily the blood supply to itself by compressing the coronary

arteries. Through this mechanism, the contraction affects the supply of oxygen
to the cardiac cells, more specifically, to the mitochondria that are responsible for

producing most of the energy available for the contraction process in the form

of adenosine triphosphate (ATP). The ATP produced by mitochondria through
oxidative phosphorylation is then transported to myofibrils, where its energy is

consumed in the activation-controlled contraction process closing another loop.
Figure 1 shows how the processes on the three different levels — the organ level, the

tissue level, and the cellular level — can be linked to each other. Such partitioning
allows different laboratories around the world to focus on a particular phenomenon

illl };e’]art physiology and to achieve considerable expertise in the particular field
i

To illustrate the successful use of mathematical modelling in cardiac research,
we give an overview of the recent studies performed at the Institute of Cybernetics,
Tallinn, under the supervision of Prof. J. Engelbrecht. Our studies of the cardiac

phenomena are focused on three aspects: (a) regulation of the heart by means of
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electrical activation of the cardiac conducting system; (b) energy transformation

from different chemical forms to mechanical form by means of oxidative

phosphorylation, intracellular energy transport, and mechanical contraction of the

myofibrils; and (c) mechanical contraction of the heart wall leading to the efflux of

blood into the coronary system (Fig. 1).

2. CONDUCTING -SYSTEM

The sick heart can be bistable, exhibiting coexisting modes such as normal

behaviour and reentry tachycardia. In terms of nonlinear dynamics, these two

modes can be viewed as coexisting attractors, because without any change in

external factors, for example vagal or sympathetic activity, or drug level, the

heart can function in either mode. The switch between the modes can occur by
temporary disturbances like ectopic beat or the impulse from an artificial pacemaker
or defibrillator. The reentry mechanism, either anatomical or functional, is possible
only in the tissue with certain size and geometry together with a proper velocity of

the activation front and a repolarization time [8:91.
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Recently, several publications have appeared both on the experimental [l%ll]
and theoretical [l2~l°] works demonstrating the bistability in very small portions
of cardiac tissue or even on a single cell (non-reentrant bistability). In these cases

the bistability emerged purely due to the nonlinearity in the dependence of ion

channels on intermembranevoltage and involved neither geometric nor intercellular

conductivity aspects. In guinea pig ventricular cells, the bistability was reported
for low driving frequencies of 1-2 s [l%!!]. Purkinje fibres revealed the so-called

electrotonic inhibition, a special form of bistability with 1:1 or 1:0 response modes

[l6]. In experimental studies, the bistability was detected by demonstrating the

hysteresis in the activation patterns with respect to control parameters.
In the model studies, Landau et al. ['3] and Vinet and Roberge ['4] used the

ionic models of a single undriven ventricular cell to demonstrate the bistability
mechanism for the self-oscillatory cell with raised resting potential. They detected

only the simplest possible mechanism for the bistability — the folding of the

membrane potential amplitude curve with respect to the control parameters. In

their cases, the hysteresis loops were formed by attractors annihilated in saddle-

node bifurcations. These authors used contemporary continuation and bifurcation

software to trace the attractors with respect to control parameters.
Our study introduced three new aspects in addition to the above theoretical

considerations. First, the Purkinje tissue was modelled [1"~2!]. Second, the

periodically driven model was treated [2272%], and the bistability in the frequency
range typical of tachycardias was demonstrated [l?:2°]. Third, the more complicated
bifurcation scenarios, including the global bifurcations leading to the bistability
were found [2°—27].

The bistability on the cellular level can, in principle, induce the bistability
on the tissue level, which causes the bistability of the cardiac conducting system
during tachyarrhythmias. Therefore, the bistability phenomenon can complicate the

interpretation of ECG recordings and it should be taken into account in modelling
on tissue level. However, first, the bistability phenomenon should be tested on

a more sophisticated model of Purkinje cells (e.g., the DiFrancesco-Noble model

[281), with majority of the known ion currents involved.

3. INTRACELLULAR ENERGY FLUXES

The energy metabolism is the basis of the cell life. By now, basic mechanisms

of cellular metabolism are well described and even illustrated by metabolic charts.

All this information has been accumulated by using isolated and purified enzymes.

After isolation, these enzymes are usually studied in diluted solutions. This is why
the kinetics of the homogeneous enzyme systems has been used for the description
of the biological systems. For example, the Michaelis—Menten type dependence
on the adenosine diphosphate (ADP) concentration in cytoplasm has been used in

an attempt to describe the regulation of cellular respiration. Experimental studies,
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however, didnot confirm this assumption [2°]. The reason for this is that, in contrast

to the diluted solutions, in living cells all enzymes function in the cellular structures

such as biological membranes and multi-enzyme complexes. In these structures all

components influence the behaviour of one another. This results in new phenomena
like substrate and enzyme compartmentation and metabolic channelling, which

determine the mechanisms of cellular regulation of metabolic and energy fluxes.

The quantitative methods of the description of such compartmentalized processes

in vivo are absent, in spite of their importance.
The first dynamic model of oxidative phosphorylation was proposed by

Holtzhiitter et al. [2°]. The model was able to simulate two kinds of experiments
with the suspension of mitochondria: the “oxygen pulse” experiment after full

anaerobiosis, and an experiment with fullyrespiring mitochondria in the presence of

externally added ADP. Another dynamic model was proposed by Korzeniewski and

Froncisz [3!]. During the last decade this model has been continuously improved to

describe various experiments with suspension ofmitochondriaand mitochondria of

hepatocytes and skeletal muscle cells in in vivo conditions [32]. The model is able to

predict the oxygen consumption rate VO3 as a function of the energy consumption.
Several models have been proposed that take into account some aspects of the

metabolic and physical structure of the energy production, transport, and utilization

system, including the non-equilibrium state of creatine kinase (CK) [3373%].
Aliev and Saks [3¢] proposed a model of mitochondrial regulation in the heart

muscle. The model has been used to demonstrate the metabolic fluxes in various

compartments and to simulate the “knock-out” experiments with bioengineered
mice with selectively inhibited CK isoenzyme expression. An interesting result

of this study is that, in addition to mitochondrial CK (Mi-CK), also myofibrillar
CK functions in a non-equilibrium manner during systole. None of the models of

energy fluxes mentioned in this section compute the oxygen consumption rate VOq
as a function of the ATP consumption rate by using the kinetic equations for the

respiratory chain.

Recently, our group developed the first model forcardiac cell [>37] that is able

to compute the oxygen consumption rate VOq as a function of ATP hydrolysis rate.

The model makes use of the kinetic description of respiratory chain complexes.
From this research we have drawn the following two conclusions [s]. First,

during the increasing workload close to its maximum possible value, both normal

and Mi-CK inhibited heart cells should undergo a considerable increase in

intracellular ADP which puts mitochondria to work with maximum possible VOs.

Second, therestricted diffusion in the intracellularenvironment with experimentally
estimated diffusion coefficients (tenfold lower than characteristic of water) can lead

to considerable ADP oscillations and ADP gradients in myofibrils. This suggests
that ADP, together with inorganic phosphate, may participate in the regulation
of oxidative phosphorylation by feedback mechanism. These conclusions are, of

course, just theoretical predictions until they are experimentally verified.
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4. MECHANICAL CONTRACTION

At present, the analysis of the mechanical contraction of the heart wall often

takes into account the fibre orientation and electrical activation pattern of the heart,

but usually it is assumed that contractile element concentration is homogeneous
across the heart wall when the normal functioning heart wall is simulated. On the

basis of these assumptions several mathematical models have been constructed to

study deformation and stress development in the heart ventricle [3B]. However,

taking into account the inhomogeneity of the oxygen supply into the heart wall, the

assumption about the homogeneous concentration of the active contractile element

in the heart wall is doubtful.

The mechanical contraction of the heart muscle is constantly supported by the

influx of oxygen from the surrounding blood vessel system. The blood vessels form

a fractal-like structure in the myocardiumwall which allows spatially heterogeneous
blood perfusion of the muscle [3%4°]. This heterogeneity of the blood flow results

in an inhomogeneous regional oxygen supply to the heart wall even in the normal

functioning conditions and seems to be correlated with the concentration of the

active contractile elements. Indeed, recent experiments have shown that the local

metabolism—perfusion mismatch during partial coronary stenosis is not correlated

with the variations in the local blood flow; instead, there is a clear correlation with

the relative reduction of the local blood flow [*!]. The influence of the oxygen

supply on the mechanical contractionregulation in normal functioning conditions as

well as in pathological conditions remains open to discussion. Several experimental
studies on this subject have been published [*?3] and several are in progress;

however, the lack of the mathematical models of the mechanical contraction

together with a shortage of the substrate supply on the tissue level makes it difficult

to take full advantage of the experimental data. Indeed, it is hard to analyse
simultaneous measurements of the heart wall surface (epicardium) deformation,
regional blood flow, and oxygen consumption without an appropriate mathematical

model. Our project is focused on the development of the mathematical model of

the mechanical contraction of and oxygen supply to the heart wall region and on

quantitative analysis of the referred experiments.
The simulation of the heart wall contraction and energy consumption has to

be based on a good mathematical description of the properties of the heart muscle

tissue, active stress development, and energy consumption by the heart muscle, in

particular [“4]. Commonly, the cross-bridge model is used to compute the stressand

energy consumption since (a) it is in good correlation with the current understanding
of the actin and myosin filament interaction and (b) the energy consumption is

clearly defined by this type of a model. However, the Huxley-type cross-bridge
models usually fail to replicate the basic property of the heart muscle: linear

dependence of the energy consumption on the stress-strain area (SSA). The SSA

is a specific area in the stress-strain (SS) diagram, surrounded by the end-systolic
SS relation line, the end-diastolic SS relation line, and the systolic segment of the

SS trajectory for a contraction. Thecomputed dependence is highly nonlinear and
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different for isometric and isotonic contractions [4%:46], contradicting the results of

experimental studies [*7].
The goal of our study was to replicate the linear relation between energy

consumption and the SSA in a wide range of cardiac muscle loading conditions. It

is shown in [®] that the measured linear dependence of ATP consumption on the

SSA in the isometric and isotonic cases can be simulated by the self-consistent

model [#B49] if an advanced model of myosin—actin interaction activation is used

and appropriate cross-bridge rate constants are selected. The computed active stress

development is in good correlation with the experimentally measured stress [°°]
in isometric contraction and isotonic contraction. Our model reproduces two key
properties of the heart muscle: (a) energyconsumption depends linearly on the SSA,

(b) this dependence is almost the same for the isometric and isotonic contractions

[6]. To the best of our knowledge, this is the first Huxley-type model that predicts
linear ATP consumption dependence on the SSA.
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TEOREETILISED SÜDAMEALASED UURINGUD

Olav KONGAS jaMarko VENDELIN

On antud liihitilevaade Tallinnas Kiiberneetika Instituudis professor J. Engel-
brechti juhendamisel tehtavatest teoreetilistest siidamealastest uuringutest, mis on

keskendunud kolmele siidame fiisioloogia aspektile: a) siidame riitmi reguleeri-
mine erutustekke- ja juhtesiisteemi aktiveerimise kaudu; b) energia muundamine

erinevatest keemilistest vormidest mehaanikalisse vormi oksiidatiivse fosforiilee-

rimise, rakusisese energiatranspordi jamiiofibrillide kontraktsiooni kaudu; c) vere

pumpamiseks vajalik siidamelihase mehaaniline kontraktsioon.
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