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Abstract. Nerve pulse transmission through an excited fibre is investigated by means of an

exact solution to a hyperbolic governing model which can also take into account cumulative

nonlinear effects different from those due to the ion current mechanisms. It is shown that if

the initial pulse is localized, the resulting signal propagates at finite velocity along the fibre

perturbing the initial nonequilibrium state. The behaviour of signal velocity and the role played
in the wave process by the characteristic speeds, provided by the hyperbolic governing model,
are highlighted.
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1. INTRODUCTION

Within the theoretical framework of wave propagation the hyperbolic governing
models play a prominent role because they provide finite speeds (characteristic
speeds) to propagating wave disturbances such as acceleration (weak discontinuity)
waves or simple waves. Furthermore, assumption of hyperbolicity is relevant in

the study of shock waves and in the investigation of quasilinear and conservative

models reducible to symmetric and conservative form (see ['?] and references

quoted there). Based upon assumption of hyperbolicity is also the approach
proposed in [3] for constructing classes of exact solutions to quasilinear systems of

p4artial differential equations (PDEs) endowed by differential constraint equations
[7].

In this paper we aim at getting an insight into the hyperbolic model proposed
in [°] for describing nerve pulse transmission. Actually, within the present context,
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it is relevant to poirnt out how an initial pulse modifies along the fibre in the course

of time. Such an investigation has been carried out for some celebrated parabolic
models as those of Hodgkin and Huxley [6l, Fitz-Hugh ["], and Nagumo et al. [%]
mainly by means of numerical solutions and under the assumption that the pulse
was propagating into an equilibrium (constant) state. In particular, those models

were proved to be consistent with action potential-like behaviour which is supported
by well-known experimental evidence [*!°] and is mainly related to activation

and inactivation of different ion currents through the axon membrane of the nerve

fibre. For a large body of literature on nerve fibre physiology and on the related

experimental results, we refer to iy
In order to describe nerve pulse transmission within a well-posed wave theory,

a number of hyperbolic models have been proposed [12:13].
In [°] the following hyperbolic system of first-orderPDEs was considered:
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where z denotes the distance along the axon, ¢ the time, u the potential difference

across the membrane, 7 the axon current, w a recovery variable modelling the

sodium inactivation and the potassium activation [°], a the axon radius, C the self-

capacitance, L the specific self-inductance, R the specific resistance. Moreover,

¢(u,w) and 9(u, w) are material response functions while I(u,w) represents the

ion current density.
In passing we notice that the parabolic Fitz-Hugh—Nagumo model is recovered

from Egs. (1.1)—«(1.3) when L = ¢(u,w) = 0, % = g + Ylu + Yow (o, Yl,
and 1) being constants) and I(u,w) = @(u) + w, where p(u) = kiu + k3ud (ki
and k 3 are constants), takes the sodium activation into account [2].

The need for modelling nerve pulse transmission by means of the set of

equations (1.1)—(1.3) in view of the structural complexity of a nerve fibre was

motivated in [>'4]. Here we remark only that through (1.3) the governing system
under concern can model memory effects as well as cumulative nonlinear effects

different from those due to the ion current mechanisms.

The system of equations (1.1)—(1.3) is hyperbolic with characteristic wave

speeds given by
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This striking feature was used in [l4] to construct classes ofexact solutions to initial

and/or boundary value problems described by (1.1)—(1.3) by means of the general
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approach outlined in [3]. Within such a framework here we are interested to point
out whether, for the model at hand, it is possible to characterize solutions, different

from travelling wave or self-similar solutions, which exhibit the distinguishing
features of a wave propagating at finite speed. In particular, we are able to highlight
the role played by the characteristic speeds in transmitting a signal along the fibre.

In fact, given a solution of a hyperbolic model, in general the corresponding signal
is transmitted at a velocity which is different from the characteristic speeds.

2. ACTION POTENTIAL

Provided the material response functions I(u,w), ¢(u,w), and ¥(u,w) adopt
a special form, some of the exact solutions to (1.1)—(1.3) determined in [*4] are

capable of describing certain material behaviour, such as the well-known “action

potential”’, which is usually expected to occur in nerve fibre. Here, our analysis
is devoted to considering pulse-like exact solutions to the system (1.1)—(1.3)
which represent a nerve signal transmitting along the fibre into a nonconstant

state. In particular, we aim at describing the action potential propagation into a

nonequilibrium state. To accomplish such a plan, we focus our attention on the

following “model constitutive laws”:

Bluw) = 2ER Ry u) = = (WP -Fu),

wherek is an arbitrary constant, vy = —£, and F(u, w) = — 2.1(u, w). Moreover,
here and in the following, subscripts denote partial derivative with respect to the

indicated arguments.
It is easy to ascertain that the quasilinear system of equations (1.1)—(1.3),

supplemented by (2.1) in terms of the field variables u, i, F', writes under the linear

form
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Before proceeding further, we make a remark about the linear governing system
(2.2)~(2.4). We notice that in the original system (1.1)—(1.3) the mechanism of

different ion currents through the axon membrane is taken into account through
the recovery variable w whose role is similar to that played by internal variables in

continuum models, whereupon the quantity w cannot be directly measured. In the
linear system (2.2)—(2.4) the switching on and the switching off of the potassium
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and sodium ion currents are characterized by means of the field variable F', namely

by means of the total ion current which can be determined experimentally [%l°].
The system (2.2)—(2.4), after eliminating ¢ and F', produces the second-order

hyperbolic equation for the potential u

u u ÖU 9
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which by means of the variable transformation w = e~ *u reduces to the classical

wave equation

T »U
pYaa =0

whereupon the general solution of (2.5) is given by

u= e (f(0) + 9(¢)),

where 0 = z — M, £ = z + A, while f(o) and g(&) are arbitrary functions of

integration.
The availability of the free functions f and g makes the solution (2.7) flexible

to fit with prescribed initial and/or boundary conditions for the problem of interest.

Here we assume that at ¢ = 0 the fibre is excited and we try to model how a

pulse generated by the boundary condition at z = 0 is transmitted along the fibre

perturbing the initial nonequilibrium state.

In view of characterizing the evolution of an action potential-like pulse, we set

(o) = žwlo)tanh(co), -9(6) = w(e) seeh(eg) (e7<+3žsinh(eB)),

where c = —š, while the function w is to be determined and it represents the initial

state of the fibre. Next, we assume that the fibre is excited in a region close to the

origin (z = 0) while far from the origin the fibre is initially at rest. Hence, the initial

pulse (i.e. u(z,0)) must be localized and we choose

w(z) = u(z,o) = sech?(z (z — z1)),

where 2y and 2; are constants. Therefore the solution (2.7) specializes to

u = šekt {serchz(zo(€ — z1)) tanh (c£) + sech* (zo(0 — z1)) tanh (co)}
+e”sech?(29 (¢ — z1)) sech(cg)

and it describes the full wave process along the fibre for the problem at hand.
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From (2.10), if £< 0, it results that u— 0 as ¢t -+ +OO or z — —o0; jf

k>o, u—o as z— +oo; as t = +oo, u— 0 provided that 2|z >k;
u — +OO provided that 2 |zo| A < k, and u tends to 4 cosh [2zp (x — 21)] provided
that 2 |Zo| A=k.

The pulse evolution is illustrated by means of plots of u versus ¢ at different x

kept fixed, as shown in Figs. 1 and 2 where we set k = 0.9, A = 0.7, zp = 1.5,

2ZLI = 1.

First, we notice that, owing to (2.10), the stimulus at the origin of the fibre

u(0,%) (see Fig. 1) is gualitatively in accordance with the usual boundary condition

considered in several experiments. Moreover, Fig. 1 points out that, by fixing z

in the interval where the initial pulse is sensitively nonzero (e.g. 0 < z < 3), the

resulting plot of u versus ¢ represents a damping of the potential, whereas the plot of

u versus ¢ obtained for x outside the initial nonequilibrium region (see Fig. 2) (e.g.
z > 3) makes evident the typical action potential behaviour which is expected to

propagate along the fibre. In fact, at = far from the origin the potential is at rest until

a certain time in which the localized impulse originated at £ = 0 in x = 0 arrives,

assuming a characteristic action potential-like behaviour; in other words, the signal
originated at the boundary is transmitted along the fibre at finite velocity perturbing
the initial nonequilibrium state.

On the latter concern we remark that, owing to the hyperbolicity, the original
governing model (1.1)—(1.3) provides the characteristic speeds (1.4), namely the

speeds at which wave disturbances such as acceleration waves propagate. Hence, it

Fig. 1. Plot of u versus t at z 0 = 0,

T 1 = 03, Ty = 08, T 3 = 1.2.

Fig. 2. Plot of u versustat z = 6
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is of interest to point out how the inherent features of the hyperbolic model (1.1)—

(1.3) reflect into the wave process describedby the solution (2.10). Such an analysis
will be accomplished in the next section.

3. NERVE SIGNAL VELOCITY

As well known, given a wave solution u = u(z,t) of a governing model, the

velocity v at which a signal u = wy is transported along the curves (trajectories)
defined by u(z,t) = ug is determined by

e=-(3)
In the present case it is straightforward to see that the solution (2.7) is the

superposition of two solutions representing two pulses travelling in opposite
directions. As far as the initial value problem (2.9) is concerned, we notice that the

two pulses in point interact in a region near the origin of the fibre (e.g. 0 < x < 3),
but they are separate outside the initial nonequilibrium region (e.g. z < Oorz > 3),
so that each of them behaves as a far field [1617]. Therefore, in order to define the

effective speed of the signal under interest in theregion z > o,¢ > 0, we can, in fact,

neglect the contribution of the function g(¢) to the solution (2.7). Consequently, the

relation (2.7) reduces to

— ektf(a)

with f(o) given by (2.8); and, in turn, v specializes to

raY= kf/(a)'
Here and in the following prime stands for ordinary differentiation.

In order to clarify therole played by the characteristic speeds (1.4) in the present
wave process, we notice that the behaviour of the signal speed v is strictly connected

to that of the level curves (trajectories in the (z, t) plane) associated to the solution

(3.2). In the following we limit our analysis to the region of the (z, ¢) plane, where

eT
By direct inspection it is easily seen that the value v = 0 is transported by

the characteristic straight line z — A\t = 0, while the trajectories (which are not

characteristic curves) transporting the values u(z,t) > 0 and u(z,t) < 0 are

located in the regions of the (z,¢) plane, where z > A\t and z < At, respectively.
A parametric description of a trajectory, where u # 0, is achieved by means of

the family of characteristic straight lines z — A\t = o.

(3.1)

(3:2)

(3.3)



274

Actually, it is simple to ascertain that any level curve, where

u = ug # 0, is defined by the relations

= log (77%5).
z =o+4s3t,

where the parameter o €]o, +oo[ if ug > 0 or, alternatively, o €] — 00, 0[ if ug < 0.

Figure 3 shows the general picture of the trajectories under investigation.
Next let us focus our attention on the effective speed of the signal. For the sake

of simplicity we limit our analysis to the case ug > 0.

Owing to the parametric representation (3.4), (3.5), the signal speed v given by
(3.3) does not depend on the value ug, so that the corresponding trajectories are

parallel. Moreover, according to the behaviour of the trajectories for o — +OO

and o — 071, we have

k
lim v=A+ —, lim v=A

07— +OO 2zo o—o+

The limit values (3.6) can be easily related to the pulse profile. Actually, to a given
value ug there correspond two points on the pulse, as shown in Fig. 2 in the case

of a plot of u versus ¢ at z kept fixed. Of course, the position on the profile of

these points changes with z and in the (z,t) plane the corresponding trajectories
lie on the level curve associated with the given value ug. It is easily seen that (3.6)

represent the asymptotic values of the velocities of the points under interest along
the corresponding trajectories. Such a situation is summarized in Fig. 4 which

shows the plot of v versus z.

Similar results hold in the case ug < 0, where the limit values of the signal
velocity are given by

lim 'u=)\—i, lim v=2.
oo——oo 220 00~

Thus the velocity vis bounded as zor ¢ grow large. >
Moreover, the limit values (3.6) and (3.7) depend upon the parameter 2y which,

on account of (2.9), characterizes the thickness of the initial nonequilibrium region
of the fibre. It is straightforward to see that the limit values (3.6) and (3.7) of the

velocity v get closer to one another as zy grows large. Hence, if the thickness of

the initial region becomes smaller (zq large), then the resulting pulse asymptotically
behaves like a travelling wave propagating with the characteristic velocity A.

(3.4)

(3.5)

(3.6)

(3.7)
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4. CONCLUSIONS

Mathematical modelling of nerve pulse transmission has been carried out

mainly by means of numerical solutions and by assuming the signal to propagate
into an equilibrium (constant) state [6—B].

Here, the propagation of an action potential-like pulse into a noneguilibrium
state was studied by means of an exact solution which was obtained for the

governing model (1.1)-(1.3) via the general approach developed in [3] for

quasilinear hyperbolic systems of first-order PDEs.

The initial pulse was assumed to be localized in order to describe a fibre which

is excited in a region close to the origin and initially at rest far from the origin. The

subsequent analysis showed that the signal originated at the boundary propagates
along the fibre at a finite velocity, which is different from the characteristic speeds
provided by the hyperbolic model (1.1)—(1.3). At any station z fixed outside the

initial nonequilibrium region the expected action potential behaviour was obtained.

Moreover, the role the characteristic speeds played in the nerve signal transmission

was highlighted by investigating the behaviour of the level curves associated with

the exact solution (3.2), and the results were also related to the pulse profile.

Fig. 4. Plot ofv versus with vg = A

andv; = A+ %
Fig. 3. Level curves defined by (3.4), (3.5)
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The investigations of ["°®] were mainly aimed to search for travelling wave

solutions to governing models of nerve fibre. However, in those cases, because

the approach used therein does not permit determination of the wave speed as a

consequence of the structure of the governing model, it was needed to give a priori
some specific values to the wave speed.

Here, the use of the exact solution (2.10) allowed us to calculate the effective

speed of the nerve signal propagation which is consistent with the model (1.1)-
(1.3). A direct inspection of the relations (3.6) and (3.7) shows that the limit

values of the signal velocity are affected by the hyperbolicity of the system (1.1)—
(1.3) through the characteristic velocity A, by the model constitutive laws (2.1)
through the parameter k£, and by the initial condition (2.9) through the parameter 2

which characterizes also the thickness of the initial localized pulse. In particular,
as the thickness of the initial perturbed region gets smaller, the wave process
under consideration tends to an asymptotic regime described by a travelling wave

propagating with the characteristic velocity A.
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