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Abstract. A theorem concerning optimal temporal decay estimates for solutions of the Cauchy
problem for a system of parabolic conservation laws has been proved.
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1. INTRODUCTION

This note presents an advance announcement of a result obtained with

H. Zhao concerning optimal temporal decay estimates for solutions of the

Cauchy problem for the system of parabolic conservation laws

u,+2fj(u)xj=DAu, xe RY, t>o,
jI

subject to the conditions

ult,),0 =u(X), xERY, N>l, n>l

The detailed derivation of this result, and of others that are related, will be

published elsewhere.

The Cauchy problem (1),(2) has been studied by many authors, and

background details of this work and key references are to be found in ["?]. The

results of ['*] allow us to deduce that in order to obtain optimal decay estimates,
the sufficient conditions that must be imposed on the nonlinear flux functions

fi@(j=l2...,N) are f;w)=0(’) (j=1,2,...,N) as |u| =O, which are

(1)

(2)
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stronger than the corresponding sufficient conditions that guarantee the global
existence results. This fact was noted in [*], where it was also noted that if the

system (1),(2) admits a strongly convex quadratic entropy function r(u) which

is strongly consistent with the viscous matrix D, then the optimal temporal

decay estimate

Ak2u(t 'l -(N+2[ o eT
. . | v 2

can still be obtained, but only under the conditions f;(u)= o(|u| )

(j=1,2,...,N)as lu|—>o. However, in []] it was noticed that for n>2 the

corresponding entropy equation is overdetermined, so the existence of a

nontrivial entropy is only because of a fortunate coincidence. Consequently, for

general systems like (1),(2), it is necessary to discover if the sufficient conditions

imposed on the nonlinear flux functions fj (u)(j=1,2,..., N) that guarantee the

global existence results are also sufficient to deduce the optimal temporal decay
estimate (3). The Theorem in Section 2 answers this guestion in the affirmative.

2. SUFFICIENCY RESULT

The result reported here, the proof of which is to be published elsewhere,
concerns Theorem 1 of [*] that for convenience is repeated below.

Theorem 1 of [*] (Global existence result). Suppose the flux function f(u)

satisfies

S

e
e L" (B,(@),R")

for some fixed point ue R" and each fixed positive constant r, then, if

uy(x)—uelL” AINR,R®), with ”uo —LT”LI(R,R") suitably small and

||uo (x)—i["S 5 the Cauchy problem (1),(2) admits a unique globally

smooth solution u(t,x) which satisfies

""‘0 (x) - ü“L“(R,R") s

Theorem. Suppose for each fixed r>o the smooth nonlinear flux functions

fiw) (j=12,...,N) satisfy |

(3)
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%(?e EBORY for j=1,2,..., N,
u

then, for up(x)eg(RN,R"), with ||uo (x)||L°°(RN LT and

||uo(x)"LN R sufficiently small, the unique globally smooth solution u(t, x)

satisfying Theorem 1 of[] satisfies the optimal temporal decay estimate (3).
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KUSTUMISE HINNANGUD PARABOOLSETELE
JÄÄVUSSEADUSTELE

Alan JEFFREY

On antud funktsioonide f;(u) jaoks tingimused selleks, et probleemi (1) ja

(2) lahendi eksisteerimise piisavad tingimused oleksid piisavad ka ajas
optimaalse kustumise hinnangule (3).
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