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Abstract. Nonlinear interaction of longitudinal waves in elastic material with nonlinear

physical properties is investigated theoretically. The analytical solution to describe the

propagation of two longitudinal waves excited simultaneously on the parallel opposite surfaces

of the material is derived. The one-dimensional nonlinear propagation and interaction of sine

waves are studied in detail. The peculiarities of the evolution and interaction of nonlinear effects

that accompany sine-wave propagation and reflection are clarified on the basis of numerical

simulation data.
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1. INTRODUCTION

Most ultrasonic nondestructive testing (NDT) methods of materials [ 3] are

based on the analyses of one-directional wave propagation. The data available

from these studies are insufficient for determining the properties of inhomogeneous
materials, thus it is necessary to enhance the efficiency of NDT. With this aim

the utilization ofnonlinear effects of one-directional wave propagation in NDT of

materials has been proposed [4s]. Consideration of the wave interaction process in

NDT of materials with complicated properties will also augment information in this

field.

Nonlinear propagation, reflection, and interaction of longitudinal waves have

been intensively investigated for a long time. Different asymptotic approaches have

been used to describe velocity variation and profile distortion of nonlinear waves

during these processes (see, e.g., [®7] and references therein).
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In this paper the simultaneous nonlinear propagation of two longitudinal waves

is studied, following the requirements of NDT. Waves are excited on the opposite
surfaces of the material (structural element) in terms of particle velocity and

recorded on the same surfaces in terms of stress. This process is described by the

analytical asymptotic solution of the nonlinear wave equation which permits us to

investigate the propagation of waves with an arbitrary smooth initial profile.
The nonlinear propagation, reflection, and interaction of sine waves are studied

in detail. Analytical expressions to describe simultaneous propagation of two sine

waves are derived and on the basis of these cumbersome expressions illustrative

plots are computed. These plots enable us to analyse the possibility of using data

on sine wave profile evolution and velocity variation in NDT of nonlinear elastic

materials. The results presented in this paper may be regarded as reference data for

the development of procedures for NDT of materials with complicated properties.

2. ELASTIC MATERIAL DYNAMICS

The dynamics of isotropic and homogeneous nonlinear elastic material is

described by the nonlinear theory of elasticity. The equation of motion of the

material is expressed in Lagrangian rectangular coordinates Xg in the form [®]

{Tkr(Xs,t)[okt + Ur,r.(Xl,9)]},x —pUk (X 5,t) =O,

where Uy(X, t) is the displacement vector, Tk 1,(Xs, t) is the Kirchhoffpseudo-
stress tensor, dx1, is the Kronecker delta, and p is the material density. The indices

after the comma, K, k, and ¢, indicate differentiation with respect to Lagrangian
rectangular coordinates Xg, Eulerian rectangular coordinates x, or the time ?,
respectively. Here, the usual summation convention is used and all indices run over

1,2, 3. Equation (1) takes the physical and geometrical nonlinearity into account.

In this paper attention is confined to the one-dimensional problem of nonlinear

longitudinal wave propagation along the X; = X axis. Dynamics of the material

is governed by the equation of motion derived from (1)

[l + kU x (X, Uxx(X,t) — ¢ 2Uu(X,t) = 0.

The coefficients of (2),

ki =3[l+ 2ko(rn +va+ )], = (kp)™t ko=O+2u)"t

are functions of the material density p, the Lamé coefficients A and u, and the

third-order elastic coefficients vy, s, and v3. U denotes the displacement vector

component Uj in (2).

(1)

(2)

G)
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It is easy to see that the Lamé coefficients A and p and the third-order elastic

coefficients v, 19, and v 3 are grouped in coefficients (3) as follows:

a= A+2u,

B =2(vl + v + v3).

This means that NDT of material properties on the basis of data on one-dimensional

wave propagation cannot determine the Lamé coefficients A and p and the third-

order elastic coefficients v;, 10, and /3 separately. The linear and nonlinear material

properties are characterized by the constants « and 8, respectively.

3. LONGITUDINAL WAVES

Two longitudinal waves with arbitrary smooth initial profiles are excited

simultaneously on the opposite parallel surfaces of the material. The problem is

considered as one-dimensional. The initial stage of the wave profile distortion is

investigated. It is supposed that at this initial stage the distortion of the initially
smooth wave profiles is weak and the shock waves are not generated.

The propagation, reflection, and interaction of waves are described analytically
on the basis of (2), making use of the perturbation theory. The solution to (2) is

sought in the form of the series

U(X,t) = £l
n=]l

where ¢ is the positive constant that satisfies the condition € < 1.

In one-dimensional formulation waves in the material are excited

simultaneously at two points of the X-axis: at the points X = 0 and X = L. The

wave excited at the point X = 0 propagates in the positive direction and the wave

excited at the point X = L in the negative direction of the X-axis in correspondence
with the initial and boundary conditions to Eq. (2)

U(Xa O) — U,t(X7 0) =O,

Ui(o,t) = eagep(t) H(),

UHLt) = earv(t) H(t)

Here H(t) denotes the Heaviside function, @y and aj are constants. The

functions ¢(¢) and 1)(t) determine the arbitrary and smooth initial wave profiles.
They satisfy the conditions max | ¢(t) | =l, max | %(¢) |=l and ensure that

lim¢_,o U+(o,t) = lim¢_,o U+(L,t) = 0 in consonance with the initial conditions.

Following the perturbation procedure, we introduce the series (5) into (2) and,

equating to zero the terms of equal power in ¢, arrive at

(4)

(5)

(6)
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Of(e) :

Uy (X,l) — UP (X,6) =O,

O(e2):

DX, eo2 B@ e ety UL 0D U (X ),

O(eŠ):

UL(X,t) - UD (X,4) =

ki [UD(X, ) VÕAK ) +ODX0 VÕ(X, ).
The first term in the series (5) is the solution of (7) underthe initial and boundary

conditions S 5

UO(x,0) = U(X,o)=o,
v(o,t) = ap(t)H(),

ULt = aryp@®)H().

This solution

€ 77

(1) =a T)dT 4+ a - A(T)drU(X,t) =ao H(6) /0 p(r)dr + ar, H(1) /0 P(r)d

8 ¢

—ao H(9) /0i /0 P(r)dr,

£ = t-X/[c, n=t-L/c+X/c,
C = t-L/c-X/c, o=t-2L/c+X/[c,

describes simultaneous propagation of two waves in homogeneous isotropic elastic

material in the time interval 0 < ¢t < 2L/c. The first term in (11) determines the

wave excited at the point X = 0 that propagates in the positive direction of the

X-axis in the domain 0 < X < L. Reflection of this wave from the point X = L

is described by the sum of the first and the third term. The third term determines

also the further propagation of this wave during the considered time interval. In a

similar way, the second term determines the wave excited at the point X = L that

propagates in the negative direction of the X-axis. The fourth term, together with

the second one, describes the reflection process of this wave from the point X = 0

and propagation of this wave after reflection.

The second and the third term in the series (5) can be determined from (8) and

(9) under the initial and boundary conditions

(10)

(11)

(7

(8)

(9)
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It is easy to notice that (8) and (9) may be presented in the unique form

U("),XX(X7t -U
4

) -—A UD (x,4) =376> GV FPO)

g (n)
s

—

j
:t—g.ni, g(00

with the known right-hand side where it is possible to separate the independent
variables X and 9",

The Laplace integral transform with respect to time is applied to (13):

U(X,p) — c2 P UL(X, p)

7
()

=eP X@M(x) FM (),
j=l

where p is the transform parameter and the upper index £ denotes the Laplace

integral transform of the corresponding functions.

The second-order inhomogeneous ordinary differential equation (14) has the

solution

U™ (X,p)

—il C
n) £ n

— c n n_Z;{%Fj( )£ (p) [Pj( X,p) — ePUAVI(X,p) +W )(X,p))]}-
J:

Here, the functions Vj(n) (X, p) and Wj(") (X, p) are given by the expressions

V(Xp) =
XD [— P2P (o,p) + P(L,p)]

Wj(") (X,p) = eP X+L)/c [— ePL/"'PJ-(")(O,p) + P„-(n)(L,p)]
The functions F}(n) £(p) are determined by the initial wave profiles. The functions

Pj(n) (X,p) are dependent on the properties of the material, i.e., on the functions

G\ (X) and g (X):

P (X,p) = eX/e [ew/c [taDax

- /P-) G(x) dx] |

(13)

(14)

(15)

(16)

(17)

(18)



257

Applying the Laplace inverse transform to the expression (15), we get the solution

of (13)

(n) 1 a+iY
; (n) £n 2 p 77(nU (X = lim

5 /a_i e Ul - (Xup)dp.

The solution (19) determines all terms except the first in the series (5) and it is valid

in the time interval

o<t <2I2L/c

The solutions (11) and (19) to the one-dimensional problem (2), (6) describe the

propagation, reflection, and interaction of longitudinal waves with arbitrary smooth

initial profiles o(¢) and1(t) in elastic material.

4. SINE WAVE PROPAGATION |

The propagation, reflection, and interaction of longitudinal waves in the

nonlinear elastic material are studied on the basis of the solution (5) in one-

dimensional formulation. The initial profiles of the waves are defined by the sine

function

p(t) = sinwt, YP(t) = sinwt,

where w denotes the frequency.
The wave process in the elastic material is excited in terms of particle velocity.

Consequently, it is convenient to analyse the wave propagation on the basis of the

solution (5) also in terms of particle velocity:

o 0

B)=,| "DK 1),
m=

The first term in the solution (22) determined by (11) has the form

3 U,(tl) (X,t) = Agl) sin wé + Ag) sinwn — Agl) sin wf — Ag) sinwl, —

where Agl) = e ag and A(Ll) =cay.

The term (23) describes the linear wave process in homogeneous, physically
linearelastic material. The reflection and interaction of waves are characterizedhere

by the linear superposition of waves.

From the point of view of NDT, it is interesting to follow the wave process in

terms of the function U’()1() (X, t) that characterizes stress distribution in this material

[®] and is plotted in Fig. 1.

(19)

(20)

(21)

(22)

(23)
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All plots in this paper were computed making use of the following data.

The density of the material po = 2800 kg/ m>, the constants of elasticity
A =5O GPa, u=27.6 GPa, v; = —136 GPa, 15, = —197 GPa, v 3 = —3B GPa,
and the dimension L = 0.1 m. The propagation of sine waves is characterized

by the frequency w, the amplitudes a 9 = —ay = —c m/s, and by the value of the

parameter e = 1 x 107%. On some plots the notation U„%(s, t) = £Ü U,(ZX) (s,t)/

AD /], i=1,2,3, s =O, L, is used.

In Fig. 1 the wave frequency w = 1.15539 x 10° rad/s. In this case the

amplitude of the function U()l{) (X, t) in the wave interaction domain is essentially
greater than the initial wave ’amplitudes. One possibility of using this effect in NDT

is to record the function U()1() (X, t) at the points X/L = 0 and X/L = 1. The plots
to illustrate this are presefited in Fig. 2. The amplitude amplification in the wave

interaction domain is frequency dependent. The maximum amplification occurs if

the number of wave periods n in the time interval 0 < ¢t ¢ / L < 1 is equal to the

integer. On the first plot in Fig. 2 n = 3, which corresponds to w = 1.15539 x 10°
rad/s and the discussed amplification is three times. In the case of n equal to the

integer and a half there is no amplification at all (the second plot in Fig. 2: n =

3.5, w = 1.34796 x 10° rad/s). In other cases the amplification magnitude is

between these two values (the third plot in Fig. 2: n = 3.75, w = 1.44424 x 108

rad/s).
The second term in the solution (22), derived on the basis of (13)—(19) under

the conditions (12), corrects the solution by introducing nonlinear effects. This term

may be presented in the form of the sum

Fig. 1. Interaction of longitudinal stress waves in homogeneous elastic material
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The first constituent of this sum

U;(z) (X,t) = A(()z) + Agz) sin 2w¢ + Ag) sin 2wn

+AP sin(2wo + x3) + AP sin(2w¢ + x4)

contains a nonperiodic term Ag2) and four terms to describe the evolution,

propagation, and reflection of the second harmonic in physically nonlinear elastic

material. Thephase shifts of the last two terms are functions of the spatial coordinate

and they are caused by the interaction between the incident and the reflected wave.

The second function U,Qt(z) (X, t) in (24) is expressed as follows:

U(X,t) = AP sinfw (¢ +¢) + xs] + AP sinw (0 + 1) + Xe]
+AP sinfw (3¢ —£) + xr] +A" sinfw (36 —1)+ xs]

+ As()2) cos[2w (20 —n) ] + A%) cos[2w (26 — €)].

This function describes the part of the second harmonic that originates from

the interaction of waves in nonlinear elastic material. The cosine functions may be

Fig. 2. Dependence of wave interaction on frequency variation

(25)

(26)
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consideredhere as sine functions with constant phase shifts equal to 77/ 2. The other

phase shifts x;, j = 5, ..., 8, are functions of the coordinate X.

The evolution of nonlinear effects described by the second term in the solution

(22) is illustrated in Fig. 3. In comparison withFig. 1 (term U}(X, 1)), the effects

with double frequency dominate in Fig. 3. The second harmonic evolution and

interaction domains are clearly distinguishable. The amplification of nonlinear

effects takes place during the wave interaction process. Essential is that the value

of the function U(ž) (X,t) differs from zero on boundaries. This case is plotted in

Fig. 4. Itis interešting that the second-order nonlinear effects on the boundaries are

not sensitive to the frequency variation in the way presented in Fig. 2 for the linear

case.

The third term in the solution (22) is derived from (9), following the procedure
described by (12)—(19) and it may be expressed by the sum

LUy =V ¥ 0 N 150(.

The first term in this sum

Uš(g) (X, 1) = Aé3) + Age') sin(wé + xf')) + Ag') sin(wn + xg}))
+A§3) sin(wf + x;(„3)) + ASE) sin(wl + XL(13))
+Ag3) sin(3wé + xé3)) + Aff') sin(3wn + xžf') )

+A£,3) sin(3wBo + xs3)) + Ag3) sin(3w( + Xz(g3) )

Fig. 3. Evolution of second-order nonlinear effects of longitudinal wave propagation.

(27)

(28)
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corrects the description of the first harmonic propagation by introducing nonlinear

effects. Additionally, it describes the evolution of the third harmonic.

The second term

UR(X,I) = 49 +AO sinlo(26 +0) + xlo] +4O sinlw(26 +9) + xl7]
+4 sinlw(2e +1) + x7] + 4D sinlw(26€ - n7) +x7]
+47 sin(w(26 —0) + x7] + 40 sinlw(2n +8) + x3
+A sinlw(2n +9) + xB] + 47 sinlw(2n +64) +x7]
+A3 sinlw(2n — €) + x3] + 49 sin[w(26 —0) +x3]
+AS) sinfw(2n — ¢ ) + X591 + A 5 sinfw(26 + €) + xs}
+Agž) sinjw(2o +1) + Xgš)] + A;ž) sin[w(26 + ¢) + xšž)]
+452 sin[w(2o — €) +xs2 ] + 459 sinlw(2o — €) + xs3]
+458 sinlw(26 + €) +xsB] + 457 sinlw(26 +9) + xs7]
+A) sinfw(2¢ —1) + xs9] +A coslw(26 +9)]

describes the same phenomena as the first one. The difference is that all these

phenomena are caused by the interaction of various waves in different domains of

the X—t plane. Theconstituents of the function U,(t‘o’) (X, t), with coefficients higher
than two in arguments, are collected into the third term of the sum (27)

Fig. 4. Second-order nonlinear effects on boundaries

(29)
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vi (X,t)

-AD1419 si

30 — Asi —

30
+

A3l sinjw( 7 +6) + x3l] +A3 sin[w(3( —€ +B9) + x32]

+4O sinlw(s€ —2) + x33]+ 45 sin[w (50 — 2n) + x34]

+4O sinlw(4C — €) + x3s].

The evolution and interaction of nonlinear effects described by the third term

(27) in the solution (22) are qualitatively very similar to these plotted in Fig. 3. The

main difference is that the governing frequency of all effects is the frequency of the

third harmonic and the intensity of effects is smaller. Interesting is that the third-

order nonlinear interaction effects are subjected to modulation on the boundaries

(Fig. 5).

5. CONCLUDING REMARKS

This paper was stimulated by the necessity to elaborate a relatively simple
method of NDT of materials with complicated properties. The main idea was to

enhance the efficiency of NDT by considering instead of one propagating wave two

waves excited simultaneously on the parallel surfaces of the material. Simultaneous

analysis of propagation, reflection, and nonlinear interaction data of two waves

increases essentially the information useful for nondestructive determination of the

materials with complicated properties.
Simultaneous nonlinear propagation of two longitudinal waves in isotropic

homogeneous nonlinear elastic material was considered. The algorithm for deriving

Fig. 5. Third-order nonlinear effects on boundaries

(30)
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the analytical solution to describe simultaneous propagation of waves with arbitrary
smooth initial profiles was presented.

The propagation, reflection, and nonlinear interaction of two sine waves were

studied in detail and the analytical solution to this process was derived. The basic

peculiarities of the latterproblem were clarified on the basis of numerical simulation

data. It was established that simultaneous recording of wave propagation data on

two opposite surfaces increasesrelevant information and makes it possible to easily
determine the spatial symmetry of material properties. In the considered case the

interaction of waves amplifies the nonlinear effects, which facilitates utilization

of these effects in NDT. The numerical simulation data presented characterize the

specific features that accompany the harmonic evolution, reflection, and interaction

in isotropic homogeneous nonlinear elastic material. These data may be regarded
as reference data for solving more complicated NDT problems.
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PIKILAINETE MITTELINEAARNE INTERAKTSIOON ELASTSES

MATERJALIS

Andres BRAUNBRÜCKArvi RAVASOO ja

Teoreetiliselt on uuritud pikilainete mittelineaarset interaktsiooni fiitisikaliselt

mittelineaarsete omadustega elastses materjalis. On tuletatud analiiiitiline lahend

materjali paralleelsetel vastaspindadel samaaegselt tekitatud kahe pikilaine levi

kirjeldamiseks. Pohjalikult on vaadeldud siinuslainete levi ja interaktsiooni ühe-

mootmelises seades. Numbriliste arvutuste tulemuste alusel on vilja selgitatud
siinuslainete levi japeegeldusega kaasnevate mittelineaarsete néhtuste evolutsiooni

ja interaktsiooni isedrasused.
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