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Abstract. We give a general treatment of the propagation of nonlinear acceleration waves in

approximately constrained elastic materials exhibiting constitutive equations with a second-

order pole. The theory is applied to transversely isotropic bodies around an approximately
inextensible fibre, such as fibre-reinforced materials.
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1. INTRODUCTION

A formal perturbation method for solving a class of traction boundary-value
problems of finite elasticity was introduced by Signorini in 1930 [']. A detailed

account of this method, its applications, and related questions can be found in [?]
and references quoted therein.

In 1985 Marzanoand Podio-Guidugli [3] resumed a Signorini-type perturbative
scheme in orderto construct a theory of approximatelyconstrained elastic materials.

In our opinion, this theory appears the most natural one to describe, for instance,
the behaviour of elastic bodies which at the first order of approximation are

incompressible, or rigid, or inextensible in some direction. In [3] Marzano and

Podio-Guidugli confine their attention to a static problem, that is the traction

problem in finite elasticity for an approximately constrained material. However,
as previously noted by Capriz and Podio-Guidugli in [?], Signorini’s perturbation
method can be employed with considerable advantages also in problems of

elastodynamics.
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In particular, in [*] we apply the theory of approximately constrained elastic

materials proposed by Marzano and Podio-Guidugli in [3] to the study of

the propagation of acceleration waves in approximately constrained materials

exhibiting constitutive equations with a first-order pole. By means of a suitable

Laurent expansion for the square of the speed of propagation and a series expansion
for the amplitude, we obtain in [*] successive approximations of the propagation
condition from the corresponding approximations of the balance equations. In [4]
we also show that at each step the propagation condition provides one, and only
one, term in the Laurent expansion for the square of the speed of propagation
and the corresponding term for the amplitude. In [*] the general method is also

applied to St. Venant—Kirchhoff materials, namely isotropic materials which can

be used to approximate rigid or incompressible bodies. Qualitative, interesting
results are obtained and compared with those of other authors; in particular, the

results concerning wave propagation in approximately rigid bodies are compared
with those of Grioli [°], while theresults concerning approximately incompressible
bodies are compared with those of Rogerson and Scott [] and Scott [7].

Afterwards, in [2] we apply the same technique to the study of the propagation
of acceleration waves in approximately constrained elastic materials characterized

by constitutive equations with a second-order pole, as approximately inextensible

bodies, with the same advantages. The main results concerning wave propagation
in such materials are exposed in a very concise form; moreover, the analysis of [®]
is confined to the first-order approximation of the propagation condition.

The aim of this paper is to present a more complete study of the propagation
of acceleration waves in approximately constrained elastic materials with a second-

order pole.

Following [*], we obtain from the first approximation of the balance equations
the corresponding approximation of the propagation condition; by means of an

ordinary eigenvalue problem, we obtain the first term for the square of the speed
of propagation and for the amplitude. Moreover, we complete the analysis of [®]
by discussing the second-order approximation of the propagation condition: this

approximation allows us to find the second term for the square of the speed of

propagation and for the amplitude.

Finally, we study the propagation of acceleration waves in approximately
inextensible bodies, as an example of approximately constrained elastic materials

with a second-order pole. There are many real materials which exhibit such a

behaviour, characterized by a strong anisotropy and mechanical properties which

are highly dependent on a preferred direction in the material. For a complete survey
on these materials, as well as their applications in engineering, we refer to [°].

For approximately inextensible bodies, we completely solve the first-order and

second-order approximations of the propagation condition, obtaining results which

are qualitatively in agreement with those of other authors; in particular, our results

are compared with those of Green [l°].
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2. A PERTURBATIVE SCHEME FOR ELASTIC MATERIALS WITH

A SECOND-ORDER POLE

In this section we sketch the basic features of Signorini’s perturbation technique
for an elastic material described by a constitutive equation exhibiting a second-order

pole. We identify a continuous body with a fixed regular region B, called also

reference configuration, of a three-dimensional Euclidean space; we denote by B
the interiorpart ofB and by 0B the boundary of B, with outward unit normal m.

We let u denote the displacement field, so that H = Vu is the displacement gradient
and J = Z + H is the deformation gradient, where Z is the unit tensor. Moreover,
we denote by b the external body force density, s the traction vector, p the mass

density, and S the first Piola—Kirchhoff stress tensor.

Then the field equations and boundary conditions are

DivS+pb=pii in B x(O,T)
Sm=s in 8Bx(0,T)

where Div is the divergence operator and the superposed dots denote time

differentiation.

The central idea of Signorini’s method is to replace (2.1) with a special one-

parameter class of similar problems. Then, according to [*], we formally expand
the displacement field u and the fields 7, b, and s in terms of a real parameter z,

which can be usefully identified with the inverse of some constitutive modulus:

u = ug+zu;+zug+.--,
H = Ho+z2Hi+22Hs+ - (Hi=Vu;,i=o,l,...),
b = bo+zbl+z2b2+---,
s = so+2Bl+2%s2+---.

Similar expansions have been successfully used in many problems. We refer, for

instance, to [2], where Signorini’s method is applied to the initial-value problem
of dead traction in finite elastodynamics, to ['!], where it is employed in the case

when the starting equilibrium placement is under stress, and finally to ['?], where

the method of[l!] is generalized to the case when the loads depend on the solution.

The constitutive equation which specifies S is

S =F(T,2).

The theory of approximately constrained elastic materials proposed by Marzano and

Podio-Guidugli in [] is based on constitutive equations (2.3) exhibiting a pole of

some order, in such a way that theright-hand side of (2.3) can be written in terms of

a suitable Laurent expansion. Examples of materials characterized by constitutive

equations with a first-order pole are the so-called St. Venant—Kirchhoff materials;

(2.1)

(2.2)
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they are hyperelastic, isotropic continua, whose constitutive equation has a first-

order pole, according to two different choices of the constitutive parameter z (see
2], Sec. 5).

In the following sections we give a general treatment of the propagation
of acceleration waves in approximately constrained materials characterized by
constitutive equations with a second-orderpole. Then, we write forF the following
Laurent expansion in a suitable neighbourhood N of the origin Z:

F(1,2) = 5Fa(O) + -Fa )+ Fo (D +aR () +,

where each one of the operators F_o, F_l, Fo, Fl, . . . is analytic within N.

We seek a solution u of type (2.2); of the problem (2.1) with finite stress S for

z = 0, corresponding to a load system (b, s) given by (2.2)34; then we must require

F2(I)=0, Fa(I)=0,

S_oH =O,

where S_o=VF_s(J)|s=z. Condition (2.6) means that the first

approximation of the displacement gradient 7 belongs to the kernel of the

operator s’_2.
In virtue of the previous hypotheses, the stress tensor S admits the following

series expansion in terms of the parameter z:

S(z) =So+zBl+z2B2+--

where the first and second approximations of S are given by

So = ImF(J(2),2) =Fo(T) + S_oHa +S 1M

1

+5 (V2F_2 (T) lg=z [Ma]) [H4],

Sl — šl—I)I(IJF(j(Z);Z) —SO

= S_oHs+S_lHa+ SoHI +Fi (T) + š (V*Fl (T) |7=-z [Hl]) [Hl]

3 .

+32SOF(I) |721 [Har]) [Maa]) ) [ ).
r=2

°

P 3

In (2.8) and (2.9) we have set S_; = VF_; (J) | 7=z and Sy = VF (J) |“7-_—l’,
respectively, while P,? denotes the set of all permutations (a1,02,...,r) of the

(24)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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numbers (1,2,3) taken r at a time with repetitions and such that Y,_; as = 3. The

last term in (2.9) is then a function of 1 and Hs only.
In the following we require the reference configuration to be at ease, that is we

set Fo (Z) = O on theright-hand side of (2.8). The higher-order approximations for

the stress in (2.7) can be obtainedby means of the same procedure (see [3], Sec. 2).

By substituting series expansions for S, u, b, and s into (2.1), together with the

use of (2.8) and (2.9), we obtain the first-order and second-order approximations of

(2.1), respectively:

Div(š..zH2)

x 1
£

— —Div {B_l H+3 (V2F_2 (T) lg=z [Hl]) [7-[l]} — p bo + p o,

(S—2 Ha) m = — {3—l Hi+ š (V2F_2 (T) |7=z [H4]) ['Hl]} m + So,

Div (S_s H3)

= — Div {3_l Hy + So Hi+ Fi (T) + š (V2FI (T) |7=7 [Hl]) [Hl]

+ž l,>((BV"F-2(T) |7=l [Hai]) [Has])---) Ha]) }
rip 3

-pbi +p Ül,

('š—z 'Hg)m

= —{3_l Ho + So Hi + Fi (Z) + š (V2f'—l (T) | 7=7 [’Hl]) [Hl]

5 R D) ) [ua,])} gl
i

p?

If a completely analogous procedure is applied to the higher-order
approximations of the stress S, we can replace the nonlinear differential problem
(2.1) by an infinite sequence of linear differential problems for the successive

approximations of the solution. Equations (2.10) and (2.11) show the central role

of the linear operator S_, for the analytic properties of this succession of problems;
we refer to [ll] for a detailed account of this subject.

(2.10)

(2.11)
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3. INTERNAL CONSTRAINTS: MATHEMATICAL IDEALIZATION

AND BEHAVIOUR OF REAL MATERIALS. FIBRE-REINFORCED

MATERIALS

A consistent part of the mathematical theory of elasticity is devoted to the study
of elastic materials subject to internal constraints. Such constraints arise when the

deformation gradient 7 must satisfy some form of local constraint, which reduces

the number of independent deformation components.
For example, the material may be inextensible in some direction, or

incompressible. These constraints, of course, are an idealization as far as real

materials are concerned; however, in manycases they provide a good approximation
to actual material responses.

A more realistic approach can be attained by using constitutive equations which

take into account the effects of small changes in the material response. As shown

in [3], a constitutive equation for the stress S exhibiting a pole of some order is the

starting-point to describe an approximately constrained material. For instance, we

can require the body to be not incompressible, but incompressible at the first order

of approximation; rubber-like materials are characterized by such behaviour. To

describe this situation, a constitutive equation for the stress with a first-order pole,
as for a St. Venant—Kirchhoffmaterial, can be used; for more details we refer to [3],
Sec. 5.

Another interesting case arises when an elastic materialis approximately
inextensible at the first order of approximation. In the following we consider

an example of such materials, that is a transversely isotropic body around an

approximately inextensible fibre, such as a fibre-reinforced material.

In the following example, we will show that an approximately inextensible

materialis described by a constitutive equation with a second-order pole. To

this aim, according to Marzano and Podio-Guidugli [3], we give the following
definition: an elastic material with a second-order pole, for which (2.3)—(2.7) hold,
is an approximately constrained material at the first order if

ker S_g = M,

where M is a subspace of the space of all second-order tensors and dim M < 8.

Example. We consider a linear elastic material which is reinforced with a single

family of fibres. Such a material has strong directional properties and it can be

regarded as an anisotropic material. In particular, its constitutive equation is the

constitutive equation of a linear elastic solid, transversely isotropic in the direction

of a unit vector e, that is

S={2uSym+A[lQ®l+i(Z®(e®e)+(e®e)®l)

+ee) (eDe)])H,

(3.1)
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where A, u, ¢ are elastic moduli and Sym denotes the identical transformation of the

vector space of the symmetric tensors into itself. The modulus J is responsible for

the anisotropy: in fact § goes to zero in the limit as the material becomes isotropic.
The preferred direction, that is the fibre direction, is characterized by e.

We refer to [°], Sec. 2, for the method of deriving the constitutive equation
(3.2), as well as formany examples of real materials exhibiting such behaviour. For

brevity, we only cite a carbon fibre-epoxy resin composite.
Equation (3.2) is a constitutive equation of type (2.4), where

z=š, Š»=X(ede) (eDe),
S I=MZ®(e®e)+(e®e)®l), So=2uSym+llQT.

Condition (2.6) yields:
(e®e) : Hl=o,

that is the elastic fibres in the direction of transverse isotropy are inextensible at the

first order of approximation, so that we have a material approximately constrained.

4. ACCELERATION WAVES IN ELASTIC MATERIALS WITH A

SECOND-ORDER POLE

This section deals with some general features of the propagation of acceleration

waves in approximately constrained materials with a second-order pole, according
to the results briefly presented in [B]. We use the well-known method of

discontinuity surfaces, extensively exposed, for instance, by Wang and Truesdell

[l3] and Jeffrey [l4].
An acceleration wave is a surface of discontinuity which propagates through

the material in a manner such that the displacement u and its first derivatives are

continuous, whilst the second derivatives suffer finite discontinuities at the wave

surface. The compatibility conditions for acceleration waves are

la] = AV?
iy

[|u?ij l] = An'n/ (7'7.7 — 1a273);

in the jump conditions (4.1) the brackets indicate the discontinuities across the

singular surface, the comma denotes partial differentiation, n' are the components
of the unit normal n to the singular surface, A is the amplitude vector, and V is the

speed of propagation.
We show in the following that the perturbative technique introduced in Sec. 2

leads in a natural way to successive approximations of the propagation condition,
obtained by the corresponding approximations of the balance equations.

(3.3)

(3.4)

(4.1)
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First, according to (2.2); and (2.4), we choose appropriate expansions also for

A and V?2; in particular we write a Laurent expansion for V 2 and a series expansion
for A: : :

2
1

V —_‘/2 _1 V V V
22 2

z

:
1

2+ + 0 + z 12+... ,

A=Ag+zA +22A,+....

Since we require the product AV? to tend to a finite limit when z —0, while

V 2 - 00, the first two terms in (4.2) are forced to vanish:

Ao=o, A1=0;

then

AV? = AoV2,+2z (A2V2) + AsV2)) +2° (A2W + AsV2i +A4V2)) +... -

We substitute (2.2); and (4.5) into (4.1);. Equating the coefficients of the same

powers of 2z, we obtain

[|uo” — A 2 V—22 )

[[il]] = A2V2 + A3V2,,

[|u2|] = A2VO2 + A3V_2l + A4V_22

In the same way, with the use of (2.2);, (4.2), (4.4), the jump conditions (4.1);
become

[luossl] =O,

[luil] =O,

[lugijl] = Agn'n?,

[lusij]] = Asnnd ... .
Now we consider the first-orderand second-order approximations (2.10) and (2.11)
of the balance equation (2.1);, assuming that the body force b is continuous.

Taking the jumps of (2.10) and substituting (4.6)1, (4.7)2,3, we obtain the first-

order approximation of the propagation condition

[5—2 (n 8 n) pV2,IJA2 2= 0

where %5_5 is defined in terms of 3_2 by the following relation:

(a®@b): B y(c®d)=(a®c)- S_3(b®d), Va,b,c,d.

The second approximation (2.11) of the balance equation (2.1); yields the second-

order approximation of the propagation condition. In fact, taking the jumpsof (2.11)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.8)
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and using conditions (4.6)2, (4.7)2,3.4, we obtain the following form for the second-

order approximation of the propagation condition:

IS29 (n® n) — pV.2»TJAg
= pV.

2
4A2

- VA2

In (4.9) the double tensor ¥ is given by:

U= (TV2F_S (J) |lg=z [Hi] + "s_l) (n ®n),

where the transpose operator is defined as in (4.8) 1. From condition (4.8) we see

that A, is a proper vector of the acoustic tensor S_, (n®mn) and the corresponding

proper number is pV2,. Then, by means of ausual eigenvalue problem, we can find

the first term for the square of the speed of propagation and for the amplitude. We

turn now to Eq. (4.9). We set

Q="S=9 (n X n) — pV_ZQI

and

®=pVil-U.

By using (4.11) and (4.12), Eq. (4.9) takes the form

QA;3=9OA,.

In Eq. (4.13) the amplitude Ay is known from the first approximation of the

propagation condition (4.8), while (4.12) yields ® as a function of V2, but V2
at this order of approximation is undetermined.

In order to overcome this difficulty, we can apply the same procedure followed

in [#], where a similar situation occurs; we refer to [] for more details. Then, also

in the present case we can deduce that

det® = 0.

Condition (4.14), together with (4.12), means that p Vfl must be an eigenvalue of

the double tensor . Then we can obtain from (4.14) three values for V_2l and, if

they are real and positive, we find another term in the Laurent expansion (4.3) for

V 2 alternately, if ¥ is such that all the eigenvalues are not real or not positive, V2,
can be arbitrarily chosen (perhaps V2, = 0). Finally, we return to Eq. (4.13), in

which the only unknown is A3. Since V_22 are the eigenvalues determined by (4.8),
we have

1 Inour previous paper [4] the explicit expression of ¥, given by formula (26), is incorrect,
as well as the same expression in [®]. In fact, the right sides of those formulas represent
WA; or VA,, respectively, namely a vector in both cases. The correct expression of the

tensor W in [®] is given by (4.10), while the other one can be easily deduced in the same

way.

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Then we can obtain from (4.13) the amplitude vector As, with one or two degrees
of indeterminacy, depending on the rank of O. Of course, a similar procedure
can be applied to the higher-order approximations of the propagation condition in

order to derive higher-order approximations for the square of the speed and for the

amplitude.

5. ACCELERATION WAVES IN APPROXIMATELY INEXTENSIBLE

BODIES

In this section we apply the general results of Sec. 4 in order to solve

the first-order and second-order approximations of the propagation condition for

approximately inextensible bodies; their constitutive equation is given in Sec. 3.

The first-order approximation of the propagation condition (4.8) with the use of

(3.3)2 becomes

[A(e-n)’e®e—pV3l]Ay=o.
Solving the eigenvalue problem, we obtain a double spurious root and a nonzero

root:

T =0 Vs L

A

>

cos? 0

where 0 is the angle between e and n. Condition (5.1) is unchanged by the

replacements n -+ —nand e — —e, so that no generality is lost by confining 6

to the interval [O, /2].
With regard to the eigenvalue (5.2);, it is well known that a spurious root

corresponds to a possible nonpropagating singular surface. By substituting (5.2);
in condition (5.1), we see that Ay € ker (e ® e); since, in general, n - e # 0, we

obtain Ay - e = O. In particular, if n = e, we have a transverse wave.

With regard to the wave speed (5.2)5, if we suppose 8 # 7/2, Eq. (5.1) yields
Aj as a vector parallel to e. In particular, if § = 0, we have a longitudinal wave.

Many authors have studied the propagation of acceleration waves in

inextensible bodies, treated as examples of constrained materials, both in the linear

and in the nonlinear theory of elasticity. It is well known that the properties
concerning wave propagation in such materials depend largely on the directional

properties of the carrying medium. For a general survey on this subject we refer to

[9], Ch. VIII, and references quoted therein.

Other authors relax the constraint of inextensibility and construct different

mathematical models, for instance “nearly inextensible” bodies and “almost

inextensible” bodies. A general account of the wave propagation in “nearly
inextensible” bodies is given by Rogerson and Scott [], while wave propagation
in “almost inextensible” materials is analysed by Green ['°], Sec. 4.

(5.1)

(5.2)
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A qualitative comparison of our results with those of otherpapers confirms that

our speeds and amplitudes are in agreement with well-known results obtained by
different approaches. Here we focus attention on the comparison of our results

with those of ['°], Sec. 2, in which Green studies plane acceleration waves in a

transversely isotropic linear elastic body, inextensible in the direction of transverse

isotropy. In ['°], Sec. 2, the material is considered as an exactly constrained

material, so that speeds and amplitudes are different from ours, nevertheless

the qualitative behaviour agrees with our results. In fact, in the general case

(cos@ # 0) Green obtains two nonzero speeds of propagation, associated with

discontinuities orthogonal to the axis of transverse isotropy. In the exceptional case

(cos@ = 0) two of the wave speeds and associated discontinuities correspond to

the solution of the general case, while the third wave speed is associated with a

discontinuity along the axis of transverse isotropy.
We turn now to the second-order approximation of the propagation condition

(4.9). By using (3.2) and (3.3)3, we can see that the double tensor ¥ given by (4.10)
reduces to

U=X(en) (n®e + e®n).

By substituting (5.3) and (3.3)9 into (4.9), we obtain

[A(e-n)’e®e—pV2l]|As=[pV2Z-A(e'n) (n®e + e®n)] A,.

Equation (5.4) can be written in the form (4.13) by setting

Q=)\(e-n)’e®e—pV3ll,

and

®=pV3ZT—-A(e-n) (n®e + e®n).

Now we apply to (5.4) the discussion of condition (4.13) exposed in Sec. 4; the

squares of the speeds of propagation V2, in (5.4) are given by (5.2), while the

corresponding amplitudes A are orthogonal or parallel to e, respectively.
At this order of approximation V2, is unknown, but we have shown in Sec. 4

that pV_2l must be an eigenvalue of the double tensor (5.3). Since ¥ in (5.3) is

symmetric, we obtain three real eigenvalues, but only one is positive:

pV2 = XcosO(cos6 + 1).

Then (5.7) yields the second term in theLaurent expansion (4.3) for V=.

Moreover, if we return to Eq. (5.4), we can now obtain A3, with one or two

degrees of indeterminacy, depending on the rank of O.

By substituting in the expression (5.5) for Q the values (5.2) for V_22, we obtain

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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while

rank O (V32 = %(:os2 0) =2,

so that A 3 can be found with two degrees and one degree of indeterminacy,
respectively.
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MITTELINEAARSED KIIRENDUSLAINED LIGIKAUDSETE

PINGEKITSENDUSTEGA ELASTSETES KEHADES

Franco PASTRONEjaMaria Luisa TONON

On esitatud tildistatud késitlus mittelineaarsete kiirenduslainete levi kohta

teist jarku poolust sisaldava olekuvorrandiga kirjeldatavates pingekitsendustega
elastsetes materjalides. Teooriat on rakendatud ristuvates suundades isotroopsete
kehade, nagu iihes suunas peaaegu mittedeformeeruvate kiududega armeeritud

materjalide puhul kiudude suunas.
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