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Abstract. Spectral evolution of wave systems described by a combination of generalized and

classical functions in the framework of the kinetic theory is considered. Earlier results obtained for

systems of Rossby waves are generalized to the case of arbitrary wave systems allowing three-wave

interactions. Coexistence of singular and classical spectra typically causes suppressing of the

spectral singularities. However, the presence of wave systems described by a singular spectrum
accelerates the evolution of the smooth part towards thermodynamicalequilibrium.
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1. INTRODUCTION

A most interesting feature of the temporal evolution of synoptic-scale
motions in the Earth’s atmosphere and oceans (geostrophic turbulence) is the

tendency to be restructured to an anisotropic system of motions with the

prevailing zonal component, while the only thermodynamically equilibrated state

is spectrally isotropic (e.g. [']). Detailed study of this peculiarity has revealed the

existence of generalized anisotropic, thermodynamically equilibrated spectra of

weak geostrophic turbulence which is equivalent to a complex system of weakly
nonlinear Rossby waves [’]. It was proved in [2] that owing to the “balance”

between the influence of the nonlinearity (trying to smooth the wave spectrum)
and the B-effect (supporting flows with the prevailing zonal component),
Rossby-wave systems evolve towards a special thermodynamically equilibrated
state consisting of a superposition of a zonal flow and a spectrally isotropic wave

system. Spectra of such motions can be described as a sum of a classical function

and a delta-like additive. Although this was known already in the 1980s, to the

knowledge of the author, no detailed studies are available to explain the

consequences of this interesting phenomenon.

https://doi.org/10.3176/phys.math.1999.3/4.06

https://doi.org/10.3176/phys.math.1999.3/4.06


231

In the current study, the evolution of wave systems, spectrally represented by
a combination of smooth and generalized functions in the case of arbitrary wave

classes allowing three-wave resonance, is discussed. This is the basic mechanism

of interaction for most of the cases in hydrodynamics.The kinetic framework

serves here as an infrequent theoretical medium for handling joint evolution of

singular and smooth objects, the evolution of both being governed by unique
laws in an irreversible environment. The results of the study are valid in the case

when motion can be split into any finite number of normal modes (e.g., Rossby
waves in a vertically stratified medium; see B

2. KINETIC EQUATION

Spectral evolution of weakly nonlinear wave systems is described, to the first

approximation, by the kinetic equation. For barotropic Rossby waves it looks

like [*]
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where F =F(kK,7) is the spectral density (spectrum) of the total energy,

K =(k,l) is the wave vector, =gt is slow time, C¢z, 1s the interaction

coefficient, — N=(k*+a*)(kf+a*)(k2+a*), Porof =1 (KB, Bp)t

f(x,K,,K)+ f(K,,K,K,) is the operator of cyclic summation, @y, =

o(K)+o(K,)+w(K,), w=w(K) is the dispersion relation, Ky, =

K+K,+K,, dk,=dK,dK,, and the integration is performed over the four-

dimensional space R*(i,)xß?(i,). Kinetic equations for other wave systems

allowing three-wave resonance differ from Eq. (1) in minor details, such as the

form of interaction coefficients and the dispersion relation, the number of normal

modes involved, etc.

The infinite integration area inconveniences treatment of stationary and

equilibrated solutions to Eq. (1), since they all either have infinite energy or

vanish identically. Also, the entropy of the wave system is typically infinite.

Traditionally, the problem is avoided by considering a large but finite integration
domain Q(x,)X€Q(K,). Physically, this is equivalent to neglecting all the

interactions involving at least one wave vector lying outside €.

The transfer to the symmetrical representation of the integrand of the kinetic

equation is based on the Jacobi identities j
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which are satisfied at the resonance curves w,;, =O, K,;, =O. Many derivations

of the kinetic equation (e.g. [>°]) ascertain that these identities proceed from the

conservation laws. For Rossby-wave systems they could be proved in a

straightforward way.
We can assume F >O, since in case F =O, Eq. (1) yields dF/dt >O.

Spectra which vanish in a certain area of the wave vector space will be

considered below. With the use of Egs. (2), Eq. (1) reduces to
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where W=VZ.N'FFE)IFE)" and 6% B@y,)O(Ky,). This

representation makes it convenient to treat the spectral evolution in terms of the

wave action N = F/e and allows us to use the symmetry of the arguments of the

delta-functions.

Let us multiply Eq. (3) by an arbitrary function S(X), integrate it over K,

and apply the operator P,,, to both sides of it, first once, then twice. Combining
the resulting three equations, we get

d
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where dK(;, =dK dK|, and both sides of Eq. (4) are totally symmetric with

respect to the cyclic permutations of the wave vectors K, K, K,.

3. ENTROPY, EQUILIBRIUM SOLUTIONS AND THEIR STABILITY

The conservation laws of energy and both components of wave impulse
simply follow from Eq. (4): the choices S =const, S=k/w,and S=l[/w make

P,,,(®S) equal to an argument of the delta-functions &°. Another rich in

content case is S = F ! that reduces Eq. (4) to

oF/ot .
9 :- ON 232J—F“—dK—a—leanKz?jW[POlZF) ö dKOIZ 20

The latter inequality confirms the irreversibility of the spectral evolution and is

equivalent to Boltzmann’s H-theorem. The quantity H = JlnFdK can be

interpreted as the system entropy. It has a maximum value if the system reaches

(thermodynamical) equilibrium and, provided V;še„zz # 0, corresponds to the case

3)
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P,,(w/F)=o at the resonance surfaces gy, =O, K, =O. The obvious

solutions to this problem OF =const, PF ~awk™, and ®F ~wl™" were found

and discussed already in the pioneering work [7] for the particular case of four-

wave interactions of surface waves. Much later [] it was proved that OF and

@F are the only solutions to these equations among differentiable functions in

the case ofRossby waves.

Physically, it is obvious that equilibrium states are stable with respect to

small disturbances. Since the above definition of entropy differs from the

classical one, this property need not be automatically true. The proof for

barotropic Rossby waves ['] can be generalized to the case of arbitrary wave

classes allowing three-wave resonance.

It is convenient to present Eq. (4) as follows:
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where F; =F(K;), F, =F(K,). Let us consider spectra F=F, +G, where

G <<F,, and F,, is an equilibrated solution to the kinetic equation. Substituting

F into Eq. (6), making use of the fact that Py,(wF,,F,,)=o, choosing

5= G/Fezq ,
and dropping the terms O(G?>), we have:
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where @, =w(X,), ®, =w(K,). The latter inequality means that the amplitude
of any small disturbance of the equilibrium solutions does not increase in time

and that the equilibrated solutions are stable with respect to small perturbations.

:

4. GENERALIZED SOLUTIONS

Rossby waves serve as an example of wave systems which yield reasonable

and realizable spectra with a limited carrier. For example, the zonal flow is

spectrally represented by F,,, = f(K,t)õ(k). Here we consider f(K,17)20 as

an arbitrary continuous function.

(6)
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Evolution of the combination spectra F= fä +F, where F(K,7)>O is an

arbitrary classical function, 5§ =6(®) is an arbitrary generalized solution to the

kinetic equation, and @ is a subset of the wave vector plane, can be describedby

splitting the kinetic equation into two equations with respect to the singular and

classical parts of the spectrum [*]:
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where f, = f(K,), 8, =6(%,),i=l,2.

The structure ofEq. (8) “prohibits” the development of wave subsystems with

a delta-like spectrum during the evolution of an initially smooth spectrum: if

F(K") =O, then also af(;z*)/ar =0 and f(K*)=o. Contrariwise, if F(X )=O,

then from Eq. (9) it follows that JF (X")/dt >O, whereas energy flows into the

wave with & from both the classical and the generalized part of the spectrum.
This property indicates that the interaction of the smooth and singular parts of

the spectrum generally suppresses singularities.
Derivation of Eq. (6) and of the conservation laws obviously remains valid

for the combination spectra. However, owing to the presence of delta-functions,
the above definition of the system entropy is not appropriate and the choice

S=F7' does not give a satisfactory result. Straightforward neglecting of the

singular component is not particularly helpful, since the choice S=F 7 jn

Eg. (6) does not lead to an analogue ofEg. (7).
However, it is possible to introduce entropy for the classical part of the

spectrum. Application of the symmetrization procedure to Eg. (9), combined

with the choice S=F ! yields:
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Thus, the evolution of wave fields with the classical spectrum in the presence
of arbitrary wave systems corresponding to generalized solutions of the kinetic

(8)
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equation is irreversible. The definition of entropy for such cases coincides with

that given for the classical spectra.
The structure of Eq. (10) reveals an interesting feature of the evolution of

wave systems with combined spectra. Namely, interactions with wave systems

corresponding to a delta-like solution to the kinetic equation always accelerate

the rest of the waves towards the thermodynamical equilibrium. This property
was first mentioned in [*°], but was related there only to the particular case of

spectral symmetrization of Rossby-wave fields owing to interactions with zonal

flow.

5. GENERALIZED EQUILIBRIUM SPECTRA

The first integral on the right-hand side of Eq. (10) vanishes if and only if

F =F,.,. For this choice, Eg. (8) reduces to

V2oL P
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Inequality (11) once again confirms that the waves corresponding to the

generalized solutions of the kinetic equation typically lose their energy to the

rest of the wave field even if it is thermodynamically equilibrated. Thus, the

evolution of such wave subsystems generally should end up with their merging
with the rest of the wave field. Equilibrium of both spectral components will be

achieved only in exceptional cases. The fact that only the classical part of the

spectrum tends towards nontrivial equilibrium means that behaviour of a

“limited” amount of waves is negligible in the statistical sense.

Equation (10) in the case F = F,, reduces to

d
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The right-hand side of Eq. (12) in the case of nonzero functions f vanishes if

and only if Vi ¢
@=o at the manifold jointly defined by the delta-function

Õ and the resonance conditions @l2 =O, Ky =O. For Rossby waves it

happens ifand only if § =8 (k) [°].
The proof of the stability of generalized equilibrium solutions for arbitrary

wave systems is shortly presented in the Appendix. Its structure and Eq. (A1
reveal another interesting feature of wave systems with possible generalized
spectra. Namely, the actual presence of the generalized spectra additionally
suppresses the evolution of the disturbances from the equilibrium.

(11)

(12)
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6. CONCLUSIONS

We considered a case in which it was formally possible to analyse several

thermodynamical properties of the “interaction” between the parts of the motions

described by classical and singular functions in a unique framework. Although
these parts can be distinguished mathematically rather than physically, their

evolution scenarios are principally different. Wave subsystems with singular
spectra are not generated during the evolution of wave fields with a smooth

spectrum. Even interactions between the equilibrated classical spectrum and an

arbitrary generalized spectrum generally lead to energy flow into the classical

wave system.
The occurrence of spectral singularities accelerates the evolution of the

classical spectrum towards thermodynamical equilibrium. Moreover, their

presence additionally suppresses the amplitude of small disturbances of the

classical equilibrium spectra. In other words, wave systems with generalized
spectra serve as a catalyst for the evolution of the whole field towards

equilibrium even if they do not change themselves.

Literally, one can say that singularities not only make our life more beautiful

but they also always accelerate evolution. Another question is whether we like

the direction of the evolution or evolution itself.
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APPENDIX

STABILITY OF GENERALIZED EQUILIBRIUM SOLUTIONS

Let us again consider the perturbed spectra F= fš +Fey+G, G<<F,

where fõc +F,, 1s a generalized equilibrium solution to the kinetic equation.

Substituting F into Eq. (6), choosing $ =G/Fezq, and dropping the terms

0(G?), aftera little algebra we have:

2 2
2
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and the first additive on the right-hand side of Eq. (A1 is familiar from Eq. (7).
Here we have made use of the fact that Py, [ 0(f16; + Fioq)(f2o2 + Fpy) ] =O,

since functions fš + F,, are equilibrium solutions to the kinetic equations. In

further reduction of Eq. (Al) we shall repeatedly use the fact that terms

containing factors V,š?],;zõ do not contribute to W, since, by the definition of

generalized eguilibrium spectra, Vig,e, oO=o at the manifold jointly defined by

the delta-function § and the resonance conditions. Dropping such terms gives:
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In the kernel of the right-hand side of Eq. (A2 the coefficient at G,G, is

2 2 2 2
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Dropping the terms containing Vrš?u?z &o, we reduce Eg. (A2 to

2 2
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Substituting o(x,) =-m(K,) — o into the latter equation and again dropping the

terms containing V'?Zr?v?z Õ, we finally have:
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Comparison of Egs. (7), (A1 and (A3 shows that the presence of singular
spectra additionally suppresses amplitudes of small disturbances of the

equilibrium states.
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KLASSIKALISTE JA SINGULAARSETE SPEKTRITE ÜHINE
EVOLUTSIOON KINEETILISES TEOORIAS

Tarmo SOOMERE

Kineetilise teooria raames on analiiiisitud lainesiisteeme, mille energiaspekter
on kirjeldatav klassikalise ning iildistatud funktsioonide superpositsioonina.
Varasemad Rossby lainete jaoks saadud tulemused on iildistatud suvaliste triaad-

interaktsiooni vOimaldavate lainesiisteemide juhule. On tdestatud, et singulaarse
ja klassikalise spektri vastasmdju viib iildjuhul singulaarse osa kadumisele,

singulaarsetele spektritele vastavad lainesiisteemid kiirendavad aga siledate

funktsioonidega kirjeldatava osa evolutsiooni termodiinaamilise tasakaalu-

seisundi suunas.
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