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Abstract. We describe and partly explain the change of the form of bichromatic surface waves

with large amplitudes. This phenomenon was recently observed in laboratory experiments and

reported by C. T. Stansberg at the Third International Symposium on Ocean Measurement and

Analysis (WAVES 97) in 1997. We motivate the use of a Korteweg—de Vries-type equation;
improved dispersive properties are necessary in view of the relatively short wavelengths in

the experiments. A second-order expansion is shown to be quite capable of describing waves

of small and moderate amplitudes. However, waves of extreme amplitude require a more

sophisticated attack. Based on phase-amplitude equations of a nonlinear Schrodinger model, we

are able to give an analytical description of the phenomenon which provides additional insight
into the ingenious pseudo-empirical explanation of Stansberg.

Key words: bichromatic surface wave, nonlinear effect, Korteweg—de Vries-type equation,
second-order expansion, phase-amplitude of a nonlinear Schrédinger model,

extreme-amplitude wave.

1. INTRODUCTION

The study of various wave phenomena conducted in the past decades has

increased our understanding of their theoretical aspects as well as application in

different areas. In this paper some typical problems that we have encountered

in cooperating with hydrodynamic laboratories are presented. For hydrodynamic
laboratories, the generation and control of waves are an essential prerequisite for

testing ships in specified wave fields. Below we shall consider some problems
of those identified in cooperation between MARIN (Maritime Research Institute,

Wageningen, The Netherlands) and IHL (Indonesian Hydrodynamic Laboratory,
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Surabaya, Indonesia). The geometry and dimensions of interest are therefore taken

as these of the water tanks of the laboratories. In Fig. 1 a schematic cross-sectional

view of a typical towing tank is given, which illustrates the division of the tank into

three main regions: waves are generated on the left, run “freely” to the right, and

are then partly absorbed and partly reflected by the “beach” on the right.

Typical dimensions of such a towing tank are as follows: length 235 m, width

11 m, and undisturbed water depth 5.5 m. In such tanks the performance of ships
is tested in operational conditions with waves of various kinds. For an adequate
operation of the laboratories understanding of the basic wave patterns is required.
With ever increasing demands on testing ships in a specific realistic situation,

nowadays the aim is to be able to generate waves that are precisely described at

a given position in the basin. For this requirement, the transition should be made

from the wave signal at the given position to the corresponding steering of the wave

generator, taking into account the position and performance of the wave generator
and disturbing effects such as reflection at the beach.

It is clear that for predicting the wave evolution, or determining steering of

the wavemaker, accurate quantitative data are required. Even though the basic

physical laws describing the water motion are known, it is difficult to generate and

simulate the waves because of their inherently nonlinear character, and because of

various disturbing effects in the laboratory situation. The full equations for surface

waves (restricting to irrotational flows, thus excluding nontrivial currents) can be

used in numerical codes. In the cooperation project, an efficient and reliable mixed

FEM/FD code, called HUBRIS, has been developed [l]. This 2D code is the basis of

a “numerical wave tank” to which an accurate wave generator and partial reflecting
beaches are being added with the aim of designing a practical tool for predicting the

required generator motion.

To develop such a tool, as well as to be able to interpret the many phenomena
observed, it is equally important to study the simplified models theoretically. In

this paper we will concentrate on the validity of a particular model and show that

even for this simplified model, relevant questions are still difficult to answer in a

satisfactory way. One of the major difficulties is that in typical laboratory practice,
measurements and information as functions of time are available or requested at

a specified position, whereas in theoretical investigations the modern dynamical
system theory approach leads more naturally to spatial results at a specified time;
we will see various examples of this difference below.

Fig. 1. Schematic cross-sectional view of a typical towing tank with the wave generator on the

left and (partially) absorbing “beach” on the right.
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In Section 2 we start with a simple model which will be of Korteweg—de Vries

(KdV) type and discuss briefly its (theoretical) relevance in laboratory practice.
The model is well suited for developing new methods and tools, and for studying
approximative solutions. In fact, we will derive a straightforward second-order

solution and show that it is capable of describing low-amplitude bichromatic wave

interactions. However, the second-order solution loses its validity in case of longer
time or space intervals and larger amplitudes. This will be illustrated on large-

amplitude bichromatic waves. The characteristic phenomenon described recently
by Stansberg [2], that the envelope of an initially symmetric bichromatic wave

steepens and grows in the front and flattens and decreases in the rear, cannot be

described with the second-order theory. We will show that an asymptotic model

using a nonlinear Schrédinger (NLS)-type equation for the amplitude (and phase)
is able to describe the phenomenon. Still, the asymptotic methods described here

should be improved further, which calls for a theory and methods that deal with the

full nonlinear problem. However, such a theory is not available yet, and to simplify
mathematical details, the model equation can be used for the purposes of developing
such methods.

2. MODEL EQUATION

In this section we describe a model equation for waves that are relevant in

the laboratory situation; boundary effects will be neglected. First, we briefly
describe the derivation of the model equation and motivate that the laboratory
situation requires that the dispersion be modelled in a more accurate way than

it is customary in the Boussinesq approximation. The derivation of the model

should make one realize that the purpose of the model has to be kept in mind.

We distinguish between the (quantitative) validity of the model, which concerns

the quantitative accuracy with which real phenomena are described by the model,
and its (qualitative) relevance, which is the usefulness of the model in the study of

certain properties or development of new methods that later may be applied in a

more complicated situation of the full equations.
Consider a layer of inviscid, incompressible fluid, of infinite extent in one spatial

direction (the z-axis); the atmosphere above the layer is assumed to be pressure-

free, and the surface tension is neglected. The depth of the layer, tobe denotedby H,
is the only relevant length scale with which all quantities will be normalized. The

full equations describing the layer are well known: the continuity equation in the

interior (leading to the Laplace problem for the fluid potential), and the kinematic

and Bernoulli’s equation at the free surface of the layer. The lineartheory for surface

waves is well known; infinitesimal surface waves are described by a dispersive wave

equation with the dispersion relation given by
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Here, a scaling of time has been performed such that the (maximal) phase velocity
of infinitely long waves is normalized to one, and £ and w denote the scaled wave

number and frequency, respectively.
To describe also nonlinear effects in a simplified model, it is common to

introduce two parameters: ¢ for measuring wave amplitudes and . as a measure of

the inverse wavelength. Then, looking for small-amplitude waves, i.e. € is small,

solutions in the form of a series expansion in € are substituted in the governing

equations. Often also the parameter y is treated as a small quantity, referring to

“long waves”; for instance, the well-known Boussinesq approximation, looking
for “rather small, rather long waves”, is obtained for the relation u = /e. The

governing equations, correct up to the second order in €, are of Boussinesq type
and of the second order in time, being a model for bidirectional wave propagation.
Restricting once more to waves “mainly” running in one direction then leads to

approximated unidirectional wave equations that are of the first order in time. These

equations are of KdV type, and, being correct up to the second order, are given by

Oru = —oy [Ru + šu2]
where u(z,t) denotes the (scaled) wave elevation. The quadratic nonlinearity
is characteristic of equations of this order of accuracy in €. The operator R is

a (pseudo-) differential operator and accounts for the dispersion properties. For

instance, in the Boussinesq approximation, the operator R is a differential operator

Ryay =l+B2,

and the equation becomes the famous KdV equation. ;
Letus now review the assumptions of the derivation, taking into account the

waves that are most relevant in the laboratory situation. In these cases, waves

with a height of not more than 10% of the depth are considered (higher waves are

known to break); this corresponds to the wave amplitude of the order e = 0.05. In

the Boussinesg assumption, the corresponding waves would have the wavelength
1/4/e = b, i.e. five times the depth. However, in laboratory practice waves with

wavelengths between 1 and 3 are dominant. This means that the KdV dispersion
given by the operatorR4y is not accurate enough. Indeed, comparison of the KdV

dispersion relation, w = k(1 —k?), with the exact dispersion for infinitesimal waves

given by (1), shows large quantitative and qualitative differences for the relevant

wave numbers. This motivates us to use an operator R for which the linearized

equation (2) has correct dispersive properties; it means that R is a pseudodifferential
operator with the symbol

tanh(k)R(k) = \/i
It turns out that this operator performs much better than the KdV dispersion.

A characteristic property of this operator is the fact that it is an (nonlocal) integral

2)

3)
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operator with a rather large spatial extent. The kernel of this integral operator
cannot be expressed in elementary functions (as far as we know); the plot of the

kernel (see [3]) shows a rather slow, oscillatory decrease; for instance, the values

of 2 x 1071,2 x 1072, and 2 x 10~3 are found at the distances (in units of water

depth) of 1, 3.5, and 10, respectively. This slow decrease implies a long range of

interaction between (infinitesimal) surface waves.

At this point it makes sense to give a warning that, as it is customary in such

asymptotic methods, the derivation does not provide any information about the

validity itself. This means that neither explicit bound for the wave height, nor the

spatial or temporal interval for which the solution is accurate can be deduced. This

“fact of life” is rather unpleasant, and its quantitative validity should be investigated
thoroughly. However, the equation does have the essential ingredients of the full

surface wave problem — dispersion and nonlinearity. Therefore it can be used to

develop new methods and concepts that can laterbe employed for a more intricate

full set of surface wave equations: the model is qualitatively relevant.

3. FORMAL SECOND-ORDER SOLUTIONS

In this section we will discuss the properties of the equation by actually
“solving” it in a general way whereas a characteristic bichromatic wave is

investigated in detail. Knowing that the model equation is derived to be valid in the

second order, we will present second-order solutions. The method below provides
the formal general solution in this orderof accuracy, using Fourier-integral methods

and simple series expansions. In general, we will look for the solution of the form

u(zx,t) = /ü(w,w)e'iwtdw.
The starting-point is the linearized equation, which is a simple dispersive

equation with solutions of the form

uD(x,t) = /a(w)ei{K(“’)"’_“’t}dw,
where K is the inverse of the function 2

w=O(k) >k= K(w),

so that e!{K(@)2—wt} are the monochromatic modes with the frequency w, and a(w)
is the wave spectrum. Assuming a tobe small, of order ¢, the solution of (2) correct

up to order €2 is obtained by iteration:

u(z,t) = uD(z,t) + u®(z, 1),
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where, in the spectral space, the linear and nonlinear terms are given by

ü(z,w) = ü (z,w) + 24P (z,w)

= a(w)eiK(w)at + /a(s)F(w,s)a(w P s)ei{K(s)+K(w—s)}xds |

Here, the expression I'(w, s) is a consequence of the nonlinear interaction between

the wave with the frequency s and the one with the frequency (w —s) that, together,

produce the frequency w; the expression is explicitly given by

K(s) + K(w —s) :D(w,s) =w—AK(s)+K(w—s)]

It should be noted that the formula gives the general solution in terms of the

spectral function a(w). The result implies that the complete wave field, at each

position, for each time, can be deduced from a given point measurement, i.e. from

the signal o (%) that is the wave height as the function of time at one position. Taking
the position to be z = 0 for simplicity, u(z = o,t) = o(t), and with 6(w) the

spectrum of the signal, the spectral function a should be found from the integral
equation

ü(xz = o,w) = õ(w) = a(w) + /a(s)l‘(w, s)a(w — s)ds.

In the second order, the solution is found after two iterations by

alw) = õlw) — /õ(s)T(w,s)õ(w-s)ds.

This then leads to the explicit solution of the wave field given by (4). The method

presented here is to some degree a generalization of the methods used in [4°].

3.1. Monochromatic waves

The simplest solution is the second-order variant of a monochromatic wave.

Taking for a(w) a point spectrum at wy, the solution consists of the monochromatic

mode plus a “second harmonic” wave:

u(z,t) = ay cos(klz — wit) + by cos 2(klz — wit),

where ki = K(w1) and

byi= §az—kl
.r

2 12w1 = Q(2kl)

4)
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The second harmonic is often called the “bound wave”, which is motivated by the

fact that it is intimately related to the first-order harmonic; it is not a solution of the

linearized equation, since the dispersionrelation is not satisfied: Q(2k;) # 2Q(ky).
Furthermore, although its length is onlyhalfof that of the first-order wave, the phase

velocity is the same.

The effect of the second harmonic shows itself most clearly in the profile:
the periodic cosine-profile is deformed such that the valleys become flatter and

the crests steeper. This combined effect gives also the impression that the wave

profile is shifted upwards, although the spatial average over one period remains

zero. The waveform isrecognized as the graph of a cnoidal function; for brevity, in

the following we will call these nonlinear modes. This qualitative effect of second

harmonic modes can be seen in Fig. 2.

Fig. 2. The qualitative effect of second harmonic modes (below) on monochromatic waves

(above).
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3.2. Bichromatic waves

A bichromatic wave is the next simplest wave, being composed of the linear

superposition of two monochromatic waves with nearly the same frequencies, plus
all nonlinear interactions. Neglecting effects of a higher than second order, the

nonlinearity produces two bound waves, and a high-frequency and a low-frequency
interaction wave:

u(z,t) = a 1 cos(klz — wlt) + a 2 cos(kaz — wot)
+ by cos 2(klz — wit) + b cos 2(kaz — wat)

+ acos 2(Akz — Awt) + Bcos 2(kz — @t),

where the wave number and frequency difference have been introduced as small

quantities:

——kl+k2 >W]+ W2 _kl—kg —Wl— W2
k= —— =

7 Ak=7 ,
W=

7

The dynamic interaction process of these 6 waves, with 3 speeds present, shows

complicated spatial patterns and temporal signals. We will investigate this step by

step for waves with equal amplitudes a; = as = A, in which case the other

coefficients are given by

3A2 km
bm = r

—,2 2Wm — Q(ka)

s
T

4 wl—w2—n(kl—k2),

B = fi?_ kil +ko
—

2 wl+w2—9(kl+k2)'

Linear interference of the first-orderwaves shows the characteristic picture of beats;
the pattern is displayed in Fig. 3.

The envelope is harmonic with a “long” wavelength 27/Ak which is found

from

cos(klz — wit) + cos(kox — wot) = 2cos(Akz — Awt) cos(kxz — @t),

and this envelope translates with the speed ž—j*; which is approximately the group

velocity at the average wave number. This linear interference pattern is one of

the most beautiful phenomena of nature, and it is a remarkable fact that it can be

described in such asimple mathematical form given by the formulaabove. Actually,
interference patterns of nonharmonicfunctions are just as interesting. By way of

example we show the linear interference pattern of two nonlinear modes. In that

case the coefficients b; and b» will differonly slightly. Theresult of the interference

pattern is shown gualitatively in Fig. 4 as the time signal.

(5)

(6)



214

The envelope has apart of (almost) horizontal lines at intervalswhere the waves

are out of phase, as is well seen in Fig. 5. In these regions, the (upper) envelope is

shown by a straight line at the height (A + b) — (A —b) = 2b. This picture clearly
reveals the complicated details. Taken together, the envelope is given by

envelope = max /min{2b,24 cos(Akx — Awt) + 2bcos 2(Akz — Awt),
— 2Acos(Akz — Awt) + 2bcos 2(Akz — Awt)}.

Except for the flat parts of the upper envelope, the characteristic form of the

nonlinear mode is clearly present in the envelope and its formula. Observe that, just
as for linear modes, the propagation speed is approximately the group velocity.

Fig. 3. Linear interference of the first-order bichromatic waves (beats)

Fig. 4. Qualitative interference pattern of nonharmonic modes on the first-order bichromatic

waves (beats) and the envelope.
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3.3. Free waves generated in experiments

In order to make a precise comparison of analytic solutions with experimental
data, one additional effect from the actual generation of the waves should be taken

into account, the effect of so-called free waves. For practical reasons, the steering
of the wave generator consists of harmonic motions, leading to harmonic signals.
Whatever the generated realized wave field will be, it should be compatible at the

wavemaker with the given motion. This implies that our analytic solutions should

be compensated in such a way that at the wavemaker their time signal equals the

signal of the wave generator motion. This will be done in the following, assuming
that the effect of the wave generator can be translated in a given harmonic signal at

the position z = 0, for instance, for a bichromatic wave in a time signal with two

frequencies:

generator(t) = a 1 cos(wit) + ag cos(wat) .

For the wave field to be compatible with the generator, we require generator(t)
= wu(z = o,t), which can be achieved by adding harmonic waves of opposite
sign with the same frequency as the second-order harmonics that are present in

the second-order theory. This modification is done below when we compare

experimental/numerical data with analytic solutions.

3.4. Comparison of experimental and analytic results

In this subsection we show that for small-amplitude waves, the analytic
solutions given above describe quite well the actual waves as shown in Figs. 6-8.

Fig. 5. Components of the envelope of bichromatic waves in Fig. 4.

(7)
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In the graphs below we present the analytic solution (consisting of the second-order

solution with the free wave) by a dotted line. The solid lines represent numerical

calculations with HUBRIS for full equations (performed by J. H. Westhuis); these

numerical calculations are a very good description of experimental waves generated
in the laboratory. All graphs illustrate the case of bichromatic waves; the data

have been taken exactly like in Stansberg [?] where the measured time signals of

the surface elevation on a layer of 5.0 m can be found. The parameters for the

biharmonics are given in laboratory (normalized) variables: w; = 2.992 (2.136),
wy = 3.222 (2.300); the corresponding wave numbers are k; = 1.070 (5.349),
ko = 0.907 (4.534). We will present results for various amplitudes, but in all cases

a; = az = a.

We consider small- and moderate-amplitude waves. In that respect it should be

noted that extreme waves correspond to wave heights of not more than 10% of the

Fig. 6. Small-amplitude waves at X = 10, 80, 160,computed using HUBRIS (solid line) and

according to the second-order theory (dashed line). j
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depth, i.e. 0.50 m in laboratory variables. In Figs. 6-8 are given time signals at

different positions. We use X to denote the position in laboratory variables, related

to the scaled variables x given by X = zH, where H = 5 is the depth of the basin.

The actual wave is generated (in the laboratory) at X = 0; the measured/calculated

signal at X = 10 is taken to calibrate the phases of the analytic bichromatic (using
the least-squares method). Itshould be noted that in these 10 m the nonlinearity has

already produced some effect, since the matching shows little deviation.

Small-amplitude wave. For the amplitude a = 0.02 the maximal wave height
will be approximately 0.08 m at X = 10, 80, 160 (Fig. 6).

Moderate-amplitude wave. For the amplitude ¢ = 0.04 the maximal wave

height will be approximately 0.20 m at X = 10, 80, 160 (Fig. 7).

Fig. 7. Same as Fig. 6 for moderate waves.
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Discussion. It is clear from these plots that the second-order solution describes the

real waves quite well. Taking into account the initial deviations, the most striking
difference is an error in the phase velocity: the carrier wave in the second-order

theory translates too slowly. An increase in the phase velocity is a typical (higher-
order, but well noticeable) nonlinear effect, as we shall see in the next section;

adjusting the phase velocity to take this nonlinear effect into account leads to much

better results. This is exemplified in Fig. 8 for a = 0.04 at X = 10, 40, 80, where

the phase velocity is increasedby the amount (see the next section) of —3(Ak)?/k
which is proportional to a?.

Fig. 8. Moderate-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and

according to the second-order theory with phase correction (dashed line).
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4. EXTREME BICHROMATIC WAVES

4.1. Description of the Stansberg phenomenon

Now we present results for large-amplitude bichromatic waves. This case was

investigated by Stansberg, and his experimental data can be found in [?]. The data

used here are from numerical calculations with HUBRIS; even in this extreme case

these numerical calculations agree very well with the experimental data.

Extreme wave. For ¢ = (.08 the maximal wave height will be approximately
0.5 mat X = 10,40, 80, 120, 160, 200 (Figs. 9, 10); in view of the 10% criterion,
these waves should be considered as “extreme”.

Fig. 9. Extreme-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and

according to the second-order theory (dashed line).
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Discussion. It is clear from the pictures that the second-order theory cannot

describe accurately the waves of such large amplitudes. In fact, not only the

phase difference is much greater than before; a more profound difference is that

the envelope shows large deviations. The envelope of the second-order solution

retains a symmetric form, while the actual envelope develops quickly into a strong
asymmetric form: while propagating along the basin, the envelope becomes steeper
in the front and flatter at the rear of the group. This steepening starts immediately
and is well developed already at X = 80; at X = 200 the profile seems to have

become more symmetric again, and the envelope shows some resemblance with the

envelope given above from interference of cnoidal waves.

This phenomenon seems not easy to explain. Stansberg gives a partial
description of the evolution of the envelope, using the variations in time of the

instantaneous frequencies that he found in the measurements. The basic ingredient

Fig. 10. Extreme-amplitude waves at X = 120, 160, 200, computed using HUBRIS (solid line)
and according to the second-order theory (dashed line).
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in his (partial) explanation is based on changes in group and phase velocities within

one wave group, which can be explained from the “nonlinear” dispersion relation.

4.2. Asymptotic solutions based on NLS

In this subsection we present an alternative way to describe the biharmonic

evolution that is capable of explaining the Stansberg effect. The improvement to

the second-order solutions described in Section 3 is in the fact that now we look

for an asymptotic approximation, based on the phase-amplitude equation. First, we

present a brief description of the approximate theory. The starting-point is the fact

that monochromatic solutions are of the form

u(z,t) = Ae + ce
7

where the amplitude A is constant and the phase 6y = kox — wgt should satisfy
the dispersion relation, say D(wg, kg) = 0, which can be written like conservation

of the wave number D(—6;,6,) = 0. A generalization is obtained by looking for

solutions with small and slowlyvarying amplitudes and phases. To deal shortly with

the interference pattern of a bichromatic wave, let the phase be somewhat perturbed,
say, given by

0 =kzx —wt = (ko + k)z — (wo + v)t, with D(wyg, ko) =O,

where k and v are small. Then a second-order, asymptotically correct solution can

be written as

) i 0u(z,t) = Ae + [B + Ceé? ] +cc

if the amplitude function A satisfies the NLS equation

[0 + V (k)Oy)A + ipA + iBO2A + iy|A]2A = 0.

Here the following parameters appear: the group velocity and the dispersion
coefficient of the group velocity

VR =), B = —so(k)
the “gen-coefficient” that consists of two terms from the generation of the second
harmonic and the nonharmonic term in the solution

—?-k(cr + 03), with o 0 = !
=

k

o
T

206 -20b
The dispersion coefficient of the group velocity 3 is positive and the gen-

coefficient oy is negative, while for wave numbers of interest in the laboratory, the

(8)

(9)
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coefficients o 9 and <y are positive. At this point the use of a model equation with

improved dispersive properties is essential; for instance, for the usual KdV equation,
the coefficient <y is negative, and none of the following explanations and properties
would be found (see van Groesen [®]). In the asymptotic solution, the amplitudes
of the generated waves are expressed in terms of A by

3 3
B = —oy|A?, C= 0,424ao| i & 202 A

Finally, the coefficient p accounts for the fact that in general the perturbed frequency
and wave number do not satisfy the dispersion relation in the third order; it is the

phase mismatch

u=-v+V(k)xy 2 —(w—wy)+ Vike)r = 28k%+ O(r’)
= Qkq +k) —w+O(K*).

In fact, in the special case kK = v = 0, the NLS equation reduces to

(8 + VoOz)A + 002A +iw|AA =O.

It is common to introduce a frame moving with the group velocity

Eno=Mit. g1

so that the equation becomes

OrA + ind + i0 ÕŽA + il APA = 0.

The solution givenabove is an “asymptotic” solution in the sense that now third-

order contributions in the solution (that are neglected) will be uniformly bounded;
the fact that A should satisfy the NLS equation guarantees that secular terms in

the third order vanish, a property that was not satisfied by the “formal” second-

order solution considered in the previous section. It follows that this presentation
of the solution is much more accurate. However, the drawback is that now another

nonlinear equation has to be solved, i.e. the NLS equation. Compared to the original
KdV-type equation, the advantage is that the NLS equation can be investigated
keeping closely to the physical quantities that seem to dominate the dynamics.

4.3. Bichromatic wave as NLS solution in the lowest order

To study the NLS equation, and to be able to relate it to the partial analysis by
Stansberg, let us first see how the bichromatic wave can be obtained in the lowest

order. To that end, write the linear bichromatic wave as a modulation of a carrier

(10)
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wave in the form (6). Clearly, the averaged wave number and frequency will not in

general satisfy the dispersion relation. Taking kg = k, observe that

@—wy=v=—LF(Ak)?.

Then, in the lowest order, for the NLS solution with the phase function as the carrier

wave,

u = Aešlkz-öt) | ce,

the amplitude should satisfy the NLS equation with the phase mismatch p = —v

OrA + iBo(Ak)'A + iBO ÕŽA + i]AA = 0.

In the lowest order this gives the solution

A = acos[Ak(z — Vpt)]

which is the modulation term cos[(Ak)z — (Aw)t] of the bichromatic wave in the

required order, since Aw = VoAk + O(Ak)3.

4.4. Phase-amplitude equations for NLS

We will now rewrite the NLS equation (10) for the complex amplitude A with

a real amplitude function f and a phase function ¢ as

A=VEe* = fe*.

Observe that f is the real amplitude, and its square F is (twice) the “energy”. With

this notation, the actual solution is given by

u(z,t) = 2f cos( + ¢) + 2f%[B + Ccos(2(o + ¢))] .

Introducing the variation of the wave number and frequency

K= 00, v=—o;d,

so that conservation of the wave number, the kinematic identity 0;x + 9v = 0, is

satisfied identically, the equations can be rewritten in various forms. We will use

the notation V' = V(ky + k) = W —286 x for the group velocity, and D; for

the material time derivative moving with the group velocity. With this notation, the

amplitude/energy equation is found to be

(õt + Voõa:)E = Oy [2lB(6m¢)E]

(11)
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which can be written like O,F + O,(VE) = 0 or

DiE + EO,V = 0;

this is precisely the energy equation used by Stansberg (see below).

The phase equation is a bit more involved; a direct formulation for the phase is

[(Bs + VoOz)d — B(0:0)?]f + BO2f +vf° =0

which can be written like

[—v +Vok — Bx® + yE] f + BO2f =0

Observe that this is a generalization of the result above where x and v were

constant. The appearance of the specific combination Vyx —32 4+~ E in the phase
equation leads to introduction of the nonlinear dispersion relation

9nonlin(k) — Q(k) + 7E

50 that Qp,oniin (ko + &) = Q(ko) + Vok — Bk? + yE and hence

—V + %H — IBK'2 + 7E — Qnonlin(ko + H) — W

is recognized as the phase mismatch in this case.

The phase velocity is affected like

E
Voiontin(K) =Vi(k) + 77,

which is a simple explanation of the phase lag that was observed above in the plots
for small-amplitude waves. This modification of the phase velocity has been taken

to improve the second-order results above by approximating the energy by some

averaged value.

Finally we shall observe alternative ways to describe the phase equation.
Differentiating with respect to z gives

Otk + Oy [Vof-s — ,Bn2] = —0; [fiafi + 'yE]
which can also be written as an evolution equation for the group velocity:

(12)

(13)



225

4.5. Explanation of the phenomenon

Stansberg gives a semiempirical explanation of the phenomenon along the

following lines. He solves the energy equation D;E = —FEJ,V by updating the

amplitude F with the Euler forward method. However, he does not use (as he

mentions explicitly) the kinematic wave equation, i.e. the phase equation above.

Instead, he estimates the change O,V by using the approximation for the kinematic

equation

where he exploits this equation in an ingenious way by applying on the right-
hand side an estimate for the group velocity by extracting from the experiment the

instantaneous frequency at each position of measurement.

Equation (15) is actually an approximation of (14). Together with the energy

equation these equations form a closed system of nonlinear equations (note

E = f?). Observe that neglecting the term b 1 (that introduces dispersion
in the equations) it would be a set of first-ordgr (nonhyperbolic) equations,
showing the phenomenon of breaking. We will not investigate here the equations
in this generality; instead, we shall explain the phenomenon in the following

approximative way.
At the initial position where the wave is generated, we can assume the wave to

be nearly linear bichromatic, which was shown in Subsection 4.3 to be described by
taking

v=—B(Ak)?, f== a cos[(Ak)(o= V()t)]

From the phase equation [—v + Vok — Bk* + vE| f + BO2f = 0, the first term

suggests the approximation

Vok — Br* +3E=0

We solve this equation approximately for x as kK = —%, which then leads to an

approximation for the group velocity

—
E.0

V
0[/

=
[/ ‘/ +

The last expression shows that the group velocity depends in a specified way
on the energy: the larger the amplitude, the larger the group velocity. Adjusting the

amplitude function to the changing group velocity leads to the updated amplitude:

= X —
=

X — ot)].
V.

)(V V. =% a? cos?[(Ak V+
_0] with = V 0t) ))((Aka COSsf

(15)
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The phase function is given approximately by

p = B(Ak)*t — ’){/—Eaz with E = a? cos?[(Ak)(z — Vot)].
0

In this way the evolution of the envelope can be followed along the basin in an

iterative way. The solution given here is only approximate, stressing the evolution

from the linear limit to the bichromatic limit. Nevertheless, numerical results show

the tendency of Stansberg’s phenomenon. Some numerical results are shown in

Fig. 11, recorded at z = 0, 16, 32 in the normalized value. Taking the wave basin

depth to be 5.0 m, the corresponding physical positions are at X = 0, 80, 160.

5. CONCLUSION AND DISCUSSION

In this paper we presented a KdV-type equation to model the behaviour

of surface waves as they appear in experiments performed in hydrodynamic
laboratories. A critical investigation of the relevant waves showed the necessity
to use a model that describes the dispersive properties of waves with rather small

lengths; this led us to consider the dispersion as known for linear theory, thereby
introducing an integral rather than a differential operator. The practical problems
associated with such a nonlocal operator were solved, while the use of this improved
dispersion was critical to achieve a reliable description and explanation of the

phenomena.
A second-order theory that formally gives the general solution of the equation

was shown to perform quite well for waves with small or moderate amplitudes.
The main discrepancy is an error in the phase velocity, which was observed

by comparing experimental results with very accurate numerical solutions of

bichromatic waves. This phase error could be reduced by using the phase velocity
as predicted by the nonlinear dispersion relation. It should be noted that since this

error can be attributed to the approximate nature of the analytical solution, the good
agreement confirms the validity of the model equation as a simplified description of

the surface wave problem.
The relevance of the model equation was strongly supported by its successful

use in case of extreme bichromatic waves. In order to explain the phenomenon
observed and described by Stansberg, the approximate solution technique had to

be adjusted to deal with the waves of extremely large amplitudes. Adding to

the semiempirical explanation given by Stansberg, we derived a complete set of

phase-amplitude equations that should describe the phenomenon of large deviations

of the envelope of bichromatic waves. Approximate analytical and numerical

investigations of these equations showed that the observed phenomenon can be

described and explained, at least qualitatively. In a subsequent paper we will deal

with this problem in more detail.
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Fig. 11. Numerical simulation of extreme-amplitude bichromatic waves (right, second-order

effects are added) and their envelopes f recorded at x = 0, 16,32 in normalized variables.

The horizontal axis shows the number of time discretization while the vertical axis shows the

normalized elevation.
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BIKROMAATILISTE PINNALAINETE MITTELINEAARSED

NÄHTUSED

E. van GROESEN ANDONOWATI jaE. SOEWONO

Vaadeldud on Stansbergi laboratoorses eksperimendiskirjeldatud suure ampli-
tuudiga bikromaatiliste pinnalainete nahtust. Kasutades Kortewegi—de Vriesi tiitipi
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vorrandis tdpsemat dispersiooni kirjeldust, mis on vajalik eksperimendis esinevate

suhteliselt liihikeste lainepikkuste tottu, on ndidatud, et selle teist jarku arendus

kirjeldab iisnagi histi viikese jamooduka amplituudiga laineid. Suure amplituudiga
lainete korral osutub teist jdrku teooria aga ebapiisavaks. Asilimptootilise mudeli

abil on analiiiitiliselt tOestatud, et mittelineaarse Schrodingeri tiilipi faasi ja
amplituudi vorrand on suuteline kirjeldama kvalitatiivselt vaadeldavat ndhtust.

Sellega on tdiendatud Stansbergi esitatud poolempiirilist seletust.
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