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Abstract. Concepts of scaling laws for turbulence at large Reynolds numbers (Re) are

analyzed. Instead of classical Re-independent logarithmic dependence of the average velocity
on governing parameters, a new version of the power law is proposed and verified on the basis

of recent experimental data. Reasons for mistaking the logarithmic law are explained.
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Turbulent fluid flow surrounds us, in the atmosphere, the oceans, in engineering,
and biological systems. First examined by Leonardo, for the past century it has been

intensely studied by engineers, mathematicians, and physicists, including giants
such as Kolmogorov, Heisenberg, Taylor, Prandtl, and von Kédrman. Every advance

in a wide collection of subjects, from chaos and fractals to field theory, and every
increase in the speed and parallelization of computers, is heralded as ushering in the

solution of the “turbulence problem”, yet turbulence remains the greatest challenge
of applied mathematics as well as of classical physics. In particular, none of the

main results of turbulence theory has been derived from the first principles such as

the equations of fluid mechanics, and all rest on additional assumptions which must

be reexamined as knowledge expands. This is exactly what we have done.

Consider the turbulent flow in a pipe — one of the most common, familiar,
and useful flows. It is surely surprising that it should be poorly understood, in

important respects less understood than the structure of stars. The scientific study
of pipe flow began when Osborne Reynolds discovered, in the nineteenth century,
that pipe flow becomes turbulent when the “Reynolds number” Re, the mean

velocity across the pipe « times the pipe’s diameter d divided by the fluid’s viscosity
v, 1s sufficiently large; once turbulence sets in, the fluid’s velocity and pressure
fluctuate unpredictably. For engineering reasons it is important to know how the
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time averaged velocity u varies as the distance y from the wall increases; long ago,

after much painstaking labor, engineers determined a “power” relation between u

and y:

u = Ay”,

where the power n and the coefficient A were known to depend slightly on Re

and were determined from experiment. This law was supposed to hold everywhere

except very near the wall and the centerline and was good enough for practical

applications. However, at the beginning of the 1930 s two famous fluid dynamicists,
von Karmén and Prandtl, convinced the world [l?] that in truth the relation between

u and y had the “universal logarithmic” form:

1
*

U =Ux (——lny-—y+C),K v

where u, 1s a reference velocity (square root of the shear stress at the wall divided

by fluid density), and «,C should be “universal” constants, independent of the

Reynolds number Re. The argument for the “universal” law was purely theoretical;
it can be derived by requiring that therelation between u and y be independent of the

units of measurements and that certain functions that appear in the analysis remain

bounded and not vanish. Indeed, the lack of dependence on the units (dimensional
analysis) gives

U iRe).
Oy y

Here n = u4y/v, @ is an unknown dimensionless function of its dimensionless

arguments.
The quantity 7 is large outside a very thin layer close to the wall y = 0. The

Reynolds number Re isalso very large, more than 10 000 for “developed” turbulent

flows, for which the validity of asymptotic laws can be expected. Therefore it was

natural to assume, as von Kdrmén and Prandtl did, that at large 1 and Re the function

® can be replaced by its value at 7 = 00, Re = 00, which was denoted by 1/x; for

the constant < a special name was coined: the von Kdrman constant. There was a

tacit assumption ofboundedness in this argument that the constant Kk was finite. The

relation (3) then becomes

gl ol v 1
oy ky' on kn’

where ¢ is the dimensionless velocity ¢ = wu/u., and the relation (2) is obtained

from (4) by simple integration, however, under another tacit assumption: the

integration constant is Re-independent. Izakson, Millikan, and von Mises (IMM)
(see [3]) then provided what seemed to be a second mathematical derivation of (2)
based on unassailable principles, and a famous series of experiments by Nikuradze

[4] did not contradict the logarithmic law too much. This law hardened into dogma

(1)

(2)

3(3)
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and became one of the pillars of turbulence theory and a mainstay of engineering
science, widely taught and used [3°:].

We originally became suspicious of the logarithmic law on mathematical

grounds: A more detailed analysis cast a doubt on the boundedness assumptions
in the original von Kdrman—Prandtl argument and also on the Re-independence of

the integration constant. Then a careful processing of Nikuradze data [*], based on

new mathematical tools such as incomplete similarity and intermediate asymptotics
(closely related in fact to a concept of the renormalization group, well known in

theoretical physics), as well as vanishing-viscosity asymptotics, showed that they
were compatible with the law

o

1 5
3/21nRe’u,/’u,*-— (%IDRC+2>7’ 3

which has the power-law form(1). Indeed, in Fig. 1 the complete set of Nikuradze

data is presented in “universal” coordinates v, In 7, where

1 2a u UxY
=—ln———, =—, etv an\/§+sa ?

Us v

If (5) 1s correct, then at large 77 the experimental points should lie on the bisectrix of

the first quadrant. The agreement is instructive. There is a big difference between

the power law (5) and the logarithmic law; in particular, according to the logarithmic
law the relation between u and y is independent of Re, while according to the

proposal (5), it does depend on Re.

Could the logarithmic law be wrong, could most people have been mistaken

for seventy years, and could the engineering community not have noticed that a

conclusion of such practical significance was in error? The answer is yes, and the

reasons are subtle: The family of curves produced by the power law (5) has an

envelope, which is nearly identical to the graph of the von Karman—Prandtl law

with the usual values of its constants. If one plots points for many values of Re

on a single graph, as is natural if one believes with von Karman and Prandtl that

Re does not play a role, then one produces a cloud of points whose boundary, the

envelope, acquires aspurious prominence; this envelope can thuseasily be mistaken

for the curves themselves. In addition, as the viscosity decreases, the slopes of the

family of power law curves (5) in the intermediate, middle part of the curves which

only has the physical interest tend to a finite, constant, limit. However, it does not

mean that the integration constant also tends to a finite Re-independent limit! This

is enough for the power law to be permitted by the IMM argument, apossibility that

had been overlooked. In fact, there is a fixed angle between the envelope and the

asymptotic slope in the power law, which should be observable in good data. By a

happy coincidence, new experimental datahave recently become available, and they
verify the proposed law (5); indeed, an anomaly that could have slightly altered the

constants in (5) (but not its form) allowed us to identify a flaw in the experimental
procedure. Figure 2 shows a schematic of the power law curves in (Inn, u/u)

(5)

(6)
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Fig. 1. The experimental points in the coordinates (In 77, W) at 7> 30 lie close to the bisectrix of the

first quadrant, confirming the scaling law.

A Re=4xlo° O Re=233xlo" v 0 Re=396xlo° + Re=1.959 xlo°
A Re=6.lxlo° B Re=434xlo* e Re=72sxlo° x Re=23sxlo°
O Re=9.2xlo° V Re=losxlo° O Re=lllxlo° 2 Re=279xlo°
® Re=l.67xlo* W Re=2os%xlo° & Re=ls36xlo° = Re=3.24xlo°

Fig. 2. A schematic ofthe power law curves in a pipe, their envelope and their asymptotic slope. The

apparent motion of the curves to the right is due to the changes in the Reynolds number. (1) The

velocity as a function of the distance to the wall (in appropriate units), (2) the envelope of the power

laws (formerly mistaken for the curves themselves), (3) the asymptotic slope.
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coordinates, and Fig. 3 exhibits the corresponding experimental data for a pipe. A

detailed comparison is available; the logarithmic law must be abandoned (see the

details in [7—197).
Why are these results important? Engineers have long known that conclusions

drawn from the logarithmic law, for example friction coefficients and other

quantities of practical interest, are unreliable, and they use instead empirical
functions that fit the data. They will presumably be happy to hear that now

the empirical fits can be derived from a better law. Laws such as (2), (5)
and their generalizations to other geometries enter into various computer models

of turbulence, which now will presumably be upgraded. However, the main

significance of this work lies in its impact on theory; it corrects but also solidifies

our understanding of key issues in turbulence and has broad implications.
Consider the second pillar of turbulence theory, the Kolmogorov—Obukhov

law [>lll2] which applies to turbulence far from a wall. Turbulent flow has

many scales of motion, just as a detailed weather map contains patterns that

encompass continents and others that affect mere neighborhoods. The larger scales

are determined by what stirs the fluid, while the smallest simply dissipate energy

by friction. It is the range of scales in between, the “inertial range of local

structure”, that is the proper locus of a general theory, and that controls effects

such as the diffusion of pollutants in the atmosphere or of fuel in a turbine. The

great mathematician Kolmogorov and his student at that time, Obukhov, proposed
a theory forthat range ofscales, which has been challenged over the years on various

grounds. The tools we used in pipe flow can be used here too, and affirm the basic

correctness of the classical version of the Kolmogorov—Obukhov theory.

Fig. 3. The corresponding experimental data (reproduced with permission from Zagarola et al. [s]
The curves turn down at the center of the pipe, where the theory above is invalid.
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More generally, the solutions of the equations of motion in fluid mechanics

are chaotic when the Reynolds number Re is large, and the minutest perturbations
change them. What is of interest is not specific solutions, which may never be

observed, but the properties of collections of solutions with attendant probability
measures. Such “random solutions” are also more amenable to analysis; we have

made progress towards describing them, and indeed this progress contributed to the

analyses above. We have also been able to calculate numerically, from the statistical

theory, some of the properties ofthe inertialrange, and found that they are consistent

with the new understanding. The general statistical theory is thus validated by the

data in special cases, and it is our contention that this happy agreement constitutes

a step towards a fundamental theory of turbulence.
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TURBULENTSI SKALEERUMISE SEADUSED VÄGA SUURTE

REYNOLDSI ARVUDE KORRAL

G. I. BARENBLATT ja A. J. CHORIN

Essee vormis on analiilisitud turbulentsi struktuuri, sh. keskmise kiiruse

kirjeldamise kontseptsioone suurte Reynoldsi arvude puhul. Uute eksperimentaal-
andmete pohjal on esitatud klassikalise Reynoldsi arvu soltumatu logaritmilise
seose asemel erikujuline astmefunktsioon. On néidatud, et logaritmilist sdltuvust

kirjeldav graafik on samastatav nimetatud astmefunktsioonide parve méhisjoonega.


	b10720984-1999-4 no. 3-4 01.07.1999
	Chapter
	CONTENTS
	Chapter
	PREFACE
	ON THE “ANALYTIC CONTINUATION” OF CONTINUUM MECHANICS
	Fig. 1. Dissipation vs. nonlocality vs. nonlinearity diagram.
	“ANALÜÜTILISEST JÄTKAMISEST” PIDEVA KESKKONNA MEHAANIKAS

	CONTINUOUS AND DISCRETE ELASTIC STRUCTURES
	Fig. 1. Deformation of a continuous body.
	Fig. 2. Deformation of a neighbourhood
	Fig. 3. Deformation of a truss.
	Fig. 4. Deformation of the neighbourhood of a single node
	Fig. 5. Various placements of a continuous body.
	Fig. 6. Various placements of a truss.
	PIDEVAD JA DISKREETSED ELASTSED KONSTRUKTSIOONID

	MORPHOLOGICAL INSTABILITY OF GRAIN BOUNDARIES IN SOLIDS
	Fig. 1. The geometry of the grain microstructure.
	TAHKE KEHA MIKROSTRUKTUURI TERADE PINNA MORFOLOOGILINE EBASTABIILSUS

	SCALING LAWS FOR TURBULENCE AT VERY LARGE REYNOLDS NUMBERS
	Fig. 1. The experimental points in the coordinates (In 77, W) at 7> 30 lie close to the bisectrix of the first quadrant, confirming the scaling law. A Re=4xlo° O Re=233xlo" v 0 Re=396xlo° + Re=1.959 xlo° A Re=6.lxlo° B Re=434xlo* e Re=72sxlo° x Re=23sxlo° O Re=9.2xlo° V Re=losxlo° O Re=lllxlo° 2 Re=279xlo° ® Re=l.67xlo* W Re=2os%xlo° & Re=ls36xlo° = Re=3.24xlo°
	Fig. 2. A schematic of the power law curves in a pipe, their envelope and their asymptotic slope. The apparent motion of the curves to the right is due to the changes in the Reynolds number. (1) The velocity as a function of the distance to the wall (in appropriate units), (2) the envelope of the power laws (formerly mistaken for the curves themselves), (3) the asymptotic slope.
	Fig. 3. The corresponding experimental data (reproduced with permission from Zagarola et al. [s] The curves turn down at the center of the pipe, where the theory above is invalid.
	TURBULENTSI SKALEERUMISE SEADUSED VÄGA SUURTE REYNOLDSI ARVUDE KORRAL

	NONLINEAR EFFECTS IN BICHROMATIC SURFACE WAVES
	Fig. 1. Schematic cross-sectional view of a typical towing tank with the wave generator on the left and (partially) absorbing “beach” on the right.
	Fig. 2. The qualitative effect of second harmonic modes (below) on monochromatic waves (above).
	Fig. 3. Linear interference of the first-order bichromatic waves (beats)
	Fig. 4. Qualitative interference pattern of nonharmonic modes on the first-order bichromatic waves (beats) and the envelope.
	Fig. 5. Components of the envelope of bichromatic waves in Fig. 4.
	Fig. 6. Small-amplitude waves at X = 10, 80, 160, computed using HUBRIS (solid line) and according to the second-order theory (dashed line). j
	Fig. 7. Same as Fig. 6 for moderate waves.
	Fig. 8. Moderate-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and according to the second-order theory with phase correction (dashed line).
	Fig. 9. Extreme-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and according to the second-order theory (dashed line).
	Fig. 10. Extreme-amplitude waves at X = 120, 160, 200, computed using HUBRIS (solid line) and according to the second-order theory (dashed line).
	Fig. 11. Numerical simulation of extreme-amplitude bichromatic waves (right, second-order effects are added) and their envelopes f recorded at x = 0, 16,32 in normalized variables. The horizontal axis shows the number of time discretization while the vertical axis shows the normalized elevation.
	BIKROMAATILISTE PINNALAINETE MITTELINEAARSED NÄHTUSED

	JOINT EVOLUTION OF GENERALIZED AND CLASSICAL SPECTRA IN THE KINETIC THEORY
	KLASSIKALISTE JA SINGULAARSETE SPEKTRITE ÜHINE EVOLUTSIOON KINEETILISES TEOORIAS

	NONLINEAR ACCELERATION WAVES IN APPROXIMATELY CONSTRAINED ELASTIC BODIES
	MITTELINEAARSED KIIRENDUSLAINED LIGIKAUDSETE PINGEKITSENDUSTEGA ELASTSETES KEHADES

	NONLINEAR INTERACTION OF LONGITUDINAL WAVES IN ELASTIC MATERIAL
	Fig. 1. Interaction of longitudinal stress waves in homogeneous elastic material
	Fig. 2. Dependence of wave interaction on frequency variation
	Fig. 3. Evolution of second-order nonlinear effects of longitudinal wave propagation.
	Fig. 4. Second-order nonlinear effects on boundaries
	Fig. 5. Third-order nonlinear effects on boundaries
	PIKILAINETE MITTELINEAARNE INTERAKTSIOON ELASTSES MATERJALIS

	DECAY ESTIMATES FOR PARABOLIC CONSERVATION LAWS
	KUSTUMISE HINNANGUD PARABOOLSETELE JÄÄVUSSEADUSTELE

	HYPERBOLIC WAVE FEATURES OF AN EXACT SOLUTION TO A MODEL FOR NERVE PULSE TRANSMISSION
	Untitled
	Fig. 1. Plot of u versus t at z 0 = 0, T 1 = 03, Ty = 08, T 3 = 1.2. Fig. 2. Plot of u versustat z = 6
	Untitled
	Fig. 4. Plot of v versus with vg = A andv; = A+ % Fig. 3. Level curves defined by (3.4), (3.5)
	NÄRVIIMPULSI ÜLEKANDEMUDELI TÄPSE LAHENDI HÜPERBOOLSE LAINE OMADUSED

	MATHEMATICAL MODELLING OF CARDIAC PHENOMENA: ARRHYTHMIAS, CELL ENERGETICS, AND CONTRACTION
	Fig. 1. Simplified functional scheme of the heart.
	TEOREETILISED SÜDAMEALASED UURINGUD

	MATHEMATICAL FORMULATION OF OPTIMAL COMPETITIVE RUNNING BY PONTRYAGIN’S MINIMUM PRINCIPLE
	OPTIMAALSE VÕISTLUSJOOKSMISE MATEMAATILINE FORMULEERING PONTRJAGINI MIINIMUMI PRINTSIIBI ALUSEL

	THE WONDERFUL HOOKE’S LAW: HISTORY, THEORY, AND STORY
	ket
	IMEPÄRANE HOOKE’I SEADUS: AJALUGU, TEOORIA JA LUGU
	CHRONICLE
	JÜRI ENGELBRECHT 60
	Untitled

	INSTRUCTIONS TO AUTHORS
	The following table should be used for transliteration:
	CONTENTS OF VOLUME 48




	Illustrations
	Fig. 1. Dissipation vs. nonlocality vs. nonlinearity diagram.
	Fig. 1. Deformation of a continuous body.
	Fig. 2. Deformation of a neighbourhood
	Fig. 3. Deformation of a truss.
	Fig. 4. Deformation of the neighbourhood of a single node
	Fig. 5. Various placements of a continuous body.
	Fig. 6. Various placements of a truss.
	Fig. 1. The geometry of the grain microstructure.
	Fig. 1. The experimental points in the coordinates (In 77, W) at 7> 30 lie close to the bisectrix of the first quadrant, confirming the scaling law. A Re=4xlo° O Re=233xlo" v 0 Re=396xlo° + Re=1.959 xlo° A Re=6.lxlo° B Re=434xlo* e Re=72sxlo° x Re=23sxlo° O Re=9.2xlo° V Re=losxlo° O Re=lllxlo° 2 Re=279xlo° ® Re=l.67xlo* W Re=2os%xlo° & Re=ls36xlo° = Re=3.24xlo°
	Fig. 2. A schematic of the power law curves in a pipe, their envelope and their asymptotic slope. The apparent motion of the curves to the right is due to the changes in the Reynolds number. (1) The velocity as a function of the distance to the wall (in appropriate units), (2) the envelope of the power laws (formerly mistaken for the curves themselves), (3) the asymptotic slope.
	Fig. 3. The corresponding experimental data (reproduced with permission from Zagarola et al. [s] The curves turn down at the center of the pipe, where the theory above is invalid.
	Fig. 1. Schematic cross-sectional view of a typical towing tank with the wave generator on the left and (partially) absorbing “beach” on the right.
	Fig. 2. The qualitative effect of second harmonic modes (below) on monochromatic waves (above).
	Fig. 3. Linear interference of the first-order bichromatic waves (beats)
	Fig. 4. Qualitative interference pattern of nonharmonic modes on the first-order bichromatic waves (beats) and the envelope.
	Fig. 5. Components of the envelope of bichromatic waves in Fig. 4.
	Fig. 6. Small-amplitude waves at X = 10, 80, 160, computed using HUBRIS (solid line) and according to the second-order theory (dashed line). j
	Fig. 7. Same as Fig. 6 for moderate waves.
	Fig. 8. Moderate-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and according to the second-order theory with phase correction (dashed line).
	Fig. 9. Extreme-amplitude waves at X = 10, 40, 80, computed using HUBRIS (solid line) and according to the second-order theory (dashed line).
	Fig. 10. Extreme-amplitude waves at X = 120, 160, 200, computed using HUBRIS (solid line) and according to the second-order theory (dashed line).
	Fig. 11. Numerical simulation of extreme-amplitude bichromatic waves (right, second-order effects are added) and their envelopes f recorded at x = 0, 16,32 in normalized variables. The horizontal axis shows the number of time discretization while the vertical axis shows the normalized elevation.
	Fig. 1. Interaction of longitudinal stress waves in homogeneous elastic material
	Fig. 2. Dependence of wave interaction on frequency variation
	Fig. 3. Evolution of second-order nonlinear effects of longitudinal wave propagation.
	Fig. 4. Second-order nonlinear effects on boundaries
	Fig. 5. Third-order nonlinear effects on boundaries
	Untitled
	Fig. 1. Plot of u versus t at z 0 = 0, T 1 = 03, Ty = 08, T 3 = 1.2. Fig. 2. Plot of u versustat z = 6
	Untitled
	Fig. 4. Plot of v versus with vg = A andv; = A+ % Fig. 3. Level curves defined by (3.4), (3.5)
	Untitled

	Tables
	Fig. 1. Simplified functional scheme of the heart.
	ket
	The following table should be used for transliteration:




