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Abstract. Morphological instability of grain boundaries in solids is studied with the help of

the second energy variation approach. The second variations of the elastic energy prove to

be certain integro-differential quadratic forms, the structure and properties of which depend
essentially on the physical nature of the interfaces. The grains are assumed to be chemically
different substances, each with the ability of recrystallization. It is demonstrated that the ability
of rearrangement (recrystallization) dramatically diminishes the morphological stability of

interfaces with that ability (which might experience the Biot surface morphological instability
at deformation of the order of 1). An explicit criterion of morphological stability of two

prestressed nonlinear isotropic elastic half-spaces is established. In the case of small pre-
stresses the criterion is formulated in terms of Lamé elastic modules.

Key words: morphological instabilities, thermodynamics of heterogeneous systems, micro-

structures in solids.

1. INTRODUCTION

Morphological instabilities of different microstructures in solids are actively
studied in many disciplines like geomechanics, metallurgy, materials science, etc.

(see [l] and references therein). In this paper the morphological instability of grain
boundaries is discussed in the framework of the exact nonlinear theory of elasticity
on the basis of variational approach goingback to Gibbs [2]. The study relies on the

criterion of sign-definiteness of the second energy variation of the heterogeneous
elastic system (the variation is understood in the spirit of the approach presented in

[3]). The grains are treated as one-component, chemically different solids without

mass exchangeacross the separation boundary between them. We assume, however,
that in the immediate vicinity of the interface the material particles of each body
are able to change their relative positions by means of, say, the interface diffusion
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within the (microscopic) intergrain space. The study, though, is purely static

(thermodynamic) and does not rely explicitly on any specific kinetic mechanism

of mass rearrangement. The role of mass rearrangement is widely discussed in

materials science, and the reader can find many useful references in [l].
In the present paper (i) for arbitrarily stressed nonlinear isotropic elastic solid

grains the secular eguation — (5.3) — is derived, determining the spectrum of

singular values of the second energy variation (hence, the stability criterion),
and (ii) the explicit formula — (5.6) — of the critical (neutral) wavelength of the

surface corrugations is established: the surface disturbances of the wavelength

exceeding the critical one appears tobe morphologically unstable with respect to

mass rearrangement (this formula is established in the frameworkof 2D approach,
and the grains are treated as slightly stressed isotropic elastic half-planes).

2. EQUILIBRIUM EQUATIONS (THE FIRST ENERGY VARIATION)

We use here the Euler description of continuous medium and the notation,

variational technique, and some results of [3]. The reference frame isreferred to the

affine Euler coordinates z* with the metric tensor 2%/ used for “juggling” the Latin

indices.

The grains, treated as simple elastic solids, are supposed to be immobile on

the external boundary S of the spatial domain 2 (Fig. 1). Therefore, the virtual

velocities f*(z*) of the material particles vanish on S. We denote by = the surface

of the contact of the grains. At the grain boundary = the material particles of both

substances can migrate freely, thus making the recrystallization process possible.
We assume that no macroscopic voids exist between the grains. Also, we assume

that the system is maintained at constant absolute temperature by certain external

thermal agents. The total (free) energy of the heterogeneous system includes two

ingredients: a) the bulk (elastic) energy of the grains and b) the surface energy of

the grain boundary = which is proportional (with the surface tension coefficient o)
to the area of = in the actual configuration. Thus, we arrive at the following formula

of £:

E = /dee (Viu;) +/dEa,
Q =

where p4(2*) are the actual density distributions of the bodies; e is the elastic

energy densityper unit mass; u; (2%) are the Eulercomponents of the displacements;
V; and V, are the symbols of covariant differentiation in space and at the actual

intergrain surface = (the Latin and Greek indices take on the values 1, 2,3 and 1,2,
respectively); {24 are the spa}\tial domains occupied by the bodies (which can change
due to the rearrangement); f is the symbol ofsummation of the integrals over the

domains Q. 4 (Fig. 1).

(2.1)
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The equilibrium and stability of such a system can be studied on the basis of

minimization of the total free energy E under the constraints that the total masses

M. of the grains remain fixed:

= /dflpi.ML=

Q 4

Thus, we arrive at the problem of minimization of the functional ®

— /dnpe+/dEa+L+/d9p++L"/d9P—v
Q = Q4 -

where L* are the Lagrange multipliers associated with the isoperimetric constraints

(2.2). Following the scheme of [3], we arrive at the formula of the first variation:

&= — [dQf'V,;P"]
- [ d2fC(oB -[ple+LD)]]*) + [pbi + LBN AT N}

Here P7¢ is the Cauchy stress tensor, C is the virtual velocity of the intergrain
boundary =, B¢, is the doubled mean curvature of = (the trace of the second

quadrics B%? of ), N;j are the components of a unit normal of =, x’* is the Bowen

chemical potential tensor. We recall the following definitions of the tensors P7% and

Xl
;

PP’ = p—(8; — Viu'), ' =ez¥ — -P.pav„-uk( k Vku), x
3

In the case of two recrystallizing solids of different chemical composition, the

virtual velocity C' of the boundary = and the limit values of the virtual velocities of

Fig. 1. The geometry of the grain microstructure.

(2.3)

(2.2)

(2.4)

(2.5)
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the material particles f;+ on the two sides of the surface = appear to be independent
functions defined at the intergrain boundary (which are also independent of the

virtual velocities of the material particles within the domains {2,.). Separating these

independent variations, we arrive at the following equations of equilibrium:
a) within the grains

VPi ==0

b) at the boundary =

[o(e+ L)t =aß2,

p(x%t + L6Y)LN; = 0.

The boundary conditions (2.7), (2.8) show, in particular, that, at equilibrium, the

boundary = appears to be free of traction. In the case of an intergrain boundary of

plane shape, the remaining equilibrium conditions are the following:

pifes +Ly)=p.le. + L.)

ei-l-Li—P—!š:O
pr

7

where P are the normal components of the equilibrium stresses.

Equation (2.10) implies the following formulas of the Lagrange multipliers:

Li=—(e:|:—P—£)
o

Inserting (2.11) into (2.9), we arrive at the following standard equation of

mechanical equilibrium:

PY =P".

3. THE SECOND ENERGY VARIATION

In what follows, we investigate the stability of uniformly stressed grains
separated by a flat intergrain boundary, using the method of the second energy
variation. Differentiating (2.2) one more time and using the equilibrium equations
(2.6)—(2.8), we arrive at the following formula:

(2.12)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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For further reduction, we need the following formulas which are valid in the

vicinity of piecewise uniform configuration with a flat intergrain boundary (see []
for details):

7a
5

a__aP,;.— — cwklvlfka

0 . . &

or Uple +M) PN|= --N;Vifk

—Vo {Cz2(p(e + L)27* — PP*)} — N;V;f* {p(e + L)2" — P},

where ¢/ is the tensor of “instant” elastic modulae.

Combining (3.1), (3.2), we can reduce the second energy variation to the

following form:

6°b = — /dQcijlejfiVlfk
°

.

— /d2{aVVC + 2C[D9V;f;]t — [f¥DYUV,f;]TNi},

where the tensor DY is defined as

DY —

Piii A

PY — p(e+ L)z".

For the equilibrium configuration in question to be stable, the second variation

ofenergy §2® shouldbe non-negative for all virtual velocities obeying the following
constraints (which are the “linearized” version of the isoperimetric constraints

2.2)):

(3.1)

(3.3)

(3.4)

(3.2)
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4. THE SPECTRAL PROBLEM

One of the standard approaches to analyze sign-definiteness of the integro-
differential quadratic form is to study its extreme values on the set ofkinematically
admissible virtual velocities f* and C' of the material particles and of the intergrain
boundary, respectively, satisfying the normalizationcondition

Gz/dflpfifizl.
Q

The last question is reduced to the investigation of the unconstrained minimum

of the functional IT = 625 —17 G — wiM, where T is the Lagrange multiplier
associated with the constraint (4.1) and .. are the Lagrange multipliers associated

with the constraint (3.5), respectively.
Varying the functional II in the set of thekinematically admissible fields, we get

SL = 2/dQO; (sfi) Vifx — rpf'õfi
+

oV*CYV (SC) +SC [DÜV;f;]*

+ 2/dE +C [DYVi5f;]" —[p (5C — N'6f3)]T
= L

57k i £Dv; (55;)| N
-3 [ L NlP DNi( fj)]_ k

= -2/dQéf; {V; (C*¥Y,fi) + npfi}
Q4

[C*3k (6£) Vifn]TN;

+2 / g=d T(“avavac + [DŠVif; — wp]f) -Va [DYz;%6f;]T
J 1 . ) .
:

-> [6P*DÜVifj + 81,0950 V a f¥| Ni + [mpNiöfi]t

Separating independent variations in (4.2), we arrive at the following linear

boundary value problem:
a) within the solids

VUCfi.) + mpf* = 0;

b) at the intergrain boundary

4.1)

(4.2)

(4.3)
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C;:mjleJfk:}:Nj — VaCD;njzf
1 4 .

— ž(zkngVifj:t + D;mz;_avifi)Nk + wipLN™ =O.

The non-negativeness of the singular values 7 is the necessary condition of the

non-negative definiteness of the second energy variation, and, thus, of the stability.
This standard assertion can be proved following [3]. It reveals the connection

between the second energy variation sign-definiteness and the singular numbers (the
eigenvalues) of the uniform linear boundary value problem (4.3)—(4.5).

S. THE SPECTRAL PROBLEM AND THE STABILITY CRITERION

FOR THE NONLINEAR ISOTROPIC SOLIDS

In what follows, we limit ourselves to the study of isotropic solids in the

framework of the 2D approach (all fields depend on the variables z! = z and

z? = z only and f 3 vanishes identically). Using the notation A,, P, of the principal
elongations and stresses, we arrive at the following expressions of the nonzero

components of the tensor of instant elasticities C**/*!:

,
OP!

4
P 2

Ä
oP?

L
opP!

C 2211
— Ala—Al = C2l, C 1122

— A2Õ—A2 = Cl2,

OMII — 22 =b OPL - 2l— =b.
AZ3 ° M? - M 3

With the help of the notation (5.1) the two nontrivial partial differential

equations in the set (4.1) can be rewritten to read

0 of! f? õ of 2 of' 12
g (o 5 oy)+ 55 (g +ongy) +mort =O,

0 of° of" 0 of' of°
2—

55 l +L)+ 2(n L+ nSL) +p =O.

Using the same notation, the boundary condition (4.4) and the two nontrivial

boundary conditions (4.5) take the following forms:

4.5)

(5.1)

(5.2)
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ofL of 2 000 1 õfi—-
b2l:h"äz—+bl2iõ—x—Ri'ä'£+žßi—ä?—oa

arfl õfi 1. 90@1;&% + C22i“äf?i — žRi% + 74+p+ =O,

where R = Pi* — P} .
Let us consider the solutions of (5.2)—(5.4) of the following form:

(=
, ) F 1 (z)e ikx

,
F (z) = F:2 (Z)eika: ,

C(z ) =Geika:

Inserting (5.5) into (5.2) and making a rather simple routine computation, we

arrive at the following solutions (which exponentially decay in the upperand lower

half-planes, respectively):

fi(m, z) = (Kl“e—klrllz + Kz—e—klrzlz)eikz’

f2(z) = i((O,Kre*l"k 1, O,K7e-hraljeiks,

fl(z,2) = (Krehl"ik+ Kreklalžjeiks,
f2(2) = (01K}eklrlz @yK eklrale)gikz

where |ll 2| are two different positive roots of the biquadratic equation

2 2 2159
af +as — (cl 9 + b12)(co1 +b2 aYa

,’,,4_,’,_2 1 2 ( )( )
+

172 (W,_cll)(fl"—bIZ):O,
c22b01 c22b21

where 7' = 7 pk~2, and © 5 are defined as

e>1 — 11 + |rl;2|b2l
' (cl 2 + b12)|71:2]

Inserting (5.5), (5.6) into the boundary conditions (5.3), (5.4), we arrive at the

following linear algebraic system of the unknown coefficients Kf’fzz
ok?G + ik {R.(K] + K;) — R_(K} + K})} = 0;

bol+k(|rl+|Ky + |ro4| K 5 ) + bio+k(@l4KT + ©2lK5)

+ikGßy + šß+k(e„K; +O2;K7) =O,

bor-k(lri- K+ +ra |KF) 85 ROK Oo)

-ikGRy + šR..k(G)I„Kf +O3K7) =0;

c2I+(KT + Ko) — c224(014+/rl4+|KT + O24|r2+|K2) - šR+(Kl— +K,)=O,

en-(K + KF) — e (Olc]i- ]Kt +O3 |KF) — SR_(KY + Kf) =0

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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The linear uniform system (5.9) has nonzero solutions if and only if its

determinantvanishes. This gives us the following equation of the spectral values 7:

1 R 2
b2l+/724+| + b124+024 + žß+©2+ — ;-]‘gi

1 R 2
1 (b2l+|7'l+| + b124+9014 + žß+9l+ — —a—g)

1 R 2
b2l-|r2—| + bl2-O2- + 'Z'R—Gg— 2

X 1
o

R 2
+L- b2l—lTl—| +bl2-O1- + -R.OI- -

—

2 ok

R+R.N”
=| —— I+L )1+ L_( ok ) ( + +)( + )7

where L. are defined as follows:

1
C2l+ — €22+ 02+ |rot| — 5R+

D =(STSR A2
C2l+ — C224+Ol+|7l+] — 5R+

For the stability of the intergrain boundary all solutions 7 of Eq. (5.10) must

be non-negative. The equilibrium state at which one of the spectral values changes
its sign is the neutral state. To find the neutral configuration (i.e., the critical wave-

number £, for the system under study), we find the limit of (5.9) at m approaching
Zero.

In the vicinity of undistorted configurations of the isotropic solids the following
approximate formulas are valid:

b124 = bol4 = cPY = cPY = u4,

+ = =), c24+=co2 = +244,

where Al+ and pi are the Lamé modules of the grains. Inserting (5.12) into the

equation of neutral equilibrium, we arrive at the final result

R 2 2
Qo) B L 1+) e+ (1 V—')

e

= O'knev

where v are the Poisson ratios of the solids: v+ =A+/2 (Ax + p).
The formula (5.13) is quite close to the formula of the critical wavelength

relating to the morphological instability of the boundary “solid-melt” (see [3]
and references therein). It shows, in particular, that the boundary separating
recrystallizing grains is less stable than the boundary “solid-melt” (in the sense

that the wider domain of the unstable corrugations corresponds to the first of two

heterogeneous systems).

(5.10)

(5.11)

(5.12)

(5.13)
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TAHKE KEHA MIKROSTRUKTUURI TERADE PINNA

MORFOLOOGILINE EBASTABIILSUS

Michael GRINFELD

Elastse tahke keha mikrostruktuuri terade pinna morfoloogilise ebastabiilsuse

uurimisel on vaadeldud meelevaldset staatilist pingeseisundit. Probleem on

taandatud mittelineaarse isotroopse poolruumi iilesandeks ja lahendatud energia
avaldise teist jarku variatsiooni abil. On ndidatud, et kui teradel on omadus

rekristalliseeruda, siis vdheneb tunduvalt nende pinna morfoloogiline stabiilsus.

On tuletatud avaldis kriitilise lainepikkuse médiramiseks. Kui pinnahéirituste

lainepikkus tiletab kriitilise piiri, muutub pind ebastabiilseks.
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