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Abstract. A theory of elastic trusses is developed on the model of the elasticity theory
of continuous bodies. The analogies and differences between the continuous and discrete

representatives of elasticity are discussed. Using the concept of material uniformity,
configurational nodal forces in a truss are introduced, which correspond to the configurational
stresses in a continuous elastic body.
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1. INTRODUCTION

Elasticity theory is usually regarded as a branch of continuum mechanics in

which the material behaviour is characterized by a constitutive equation relating
the local stress to the local deformation of the material. The study of the mapping
from the undeformed body to its deformed state is closely related to differential

geometry, and, from the historical point of view, it was the same people that created

both elasticity theory and differential geometry.
Three-dimensional elasticity theory is taught as an “advanced” subject, since

its mere formulation needs differential-geometric prerequisites, such as vector and

tensor analysis, integral theorems, etc. One-dimensional models of elastic bodies

are simpler in the sense that only one space variable enters the theory. Therefore the

bending of elastic beams, for instance, is taught prior to the general elasticity theory.
But is it really “simpler”? Once the notions of multivariate and tensor analysis
are absorbed and accepted as a standard, three-dimensional elasticity appears
easier and more reasonable than the Cosserat-type theory of beams! Although the
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Euler-Bernoulli beam theory provides only an approximation to the exact three-

dimensional behaviour of a beam, it leads to equations of the fourth order and is,

from this point of view, more complicated than the three-dimensional theory of

elasticity.
Still more elementary is the static theory of elastic trusses, which leads to

algebraic rather than differential equations. No prerequisites from calculus are

needed to formulate the theory, and in this sense it is the simplest elastic structure.

But, again, the simplicity is questionable. In a continuous elastic body the stress

depends only on the local deformation. In a truss, however, there is no locality.
Forces can be communicated directly between distant nodes if these nodes are

connected by a member of the truss.

Another aspect is related to the formulation of the theory: In continuous

elasticity all the relevant quantities, such as stress, strain, dislocation density, stress

functions, etc., are fields defined in every interior point of the elastic body. In a

truss we have to attach displacements or external forces to the nodes, elongation,
stress, and strain-energy density to the members of the truss, and it is not clear

from the outset, where and how a stress function or the strength of a dislocation

has to be defined for a truss. In this respect a truss is far more complicated than

a continuous elastic body, where all these quantities are fields depending on the

material position X and, in the dynamical case, on time ?.

Further insight into both the continuous and the discrete version of elasticity

may be obtained by exploiting the analogy between continuous elastic bodies and

trusses as far as this is possible. The present paper is but the first attempt in this

direction. A theory of trusses is developed to some extent by carrying over the well-

known concepts of continuum mechanics, as presented in [l+2], to this problem of

discrete elasticity. The analogies and also the differences between continuous and

discrete elastic systems are made evident.

In Section 2, following this introduction, the deformation of continuous elastic

bodies and trusses are contrasted with each other. The relevant quantities for

the material behaviour are the right stretch tensor in the continuous case and the

stretches of the members in the case of a truss. Section 3 is devoted to strain

energy, which is obtained by integrating its density in the continuous case and by
collecting the contributions of all the individual members in the case of a truss. The

equilibrium conditions of statics are presented in Section 4.

Epstein and Maugin [®] have used the concept of material uniformity and

inhomogeneity to introduce the Eshelby stress tensor in continuous elasticity.
Translating this idea to trusses leads to internal configurational forces, or Eshelby
forces, acting along the members of a truss. Configurational forces in a truss are

studied in Section 5.

The last section takes up J. Engelbrecht’s motif of “complexity and simplicity”
[*]. In the present context the discussion is centred around the question “Is the

theory of trusses really simpler than that of continuous bodies?”
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2. DEFORMATION

The time-dependent deformation of an elastic continuum is characterized by a

mapping

X — z(X,I),

which describes the position x at the time ¢ of any material point that has been

located at X in a certain reference placement (Fig. 1). A neighbourhood of a

material point X is mapped to the corresponding neighbourhood of (X, ¢) by the

linear transformation

dX —»dx= FdX.

The deformation gradient F = 0z /0X assigns to any material line element dX
the corresponding line element dz in the actual placement of the body (Fig. 2).

In general, the linear transformation involves both a rigid-body rotation and a

real deformation. According to the polar decomposition theorem, the deformation

gradient can be written as a product

F = RU.

The neighbourhood undergoes adeformation described by the symmetrical,positive
definite stretch tensor U, which is followed by a rigid-body rotation expressed
by the rotation tensor R. As a consequence of the principle of material frame

indifference, it is only the (right) stretch tensor U which is relevant to the material

response of the body.
The previous description of deformation in the continuous case is now carried

over, as closely as possible, to the case of a discrete truss. A truss consists of a

finite number of nodes which are connected by members. So we have to deal not

with a continuum of material points X € B, but with a finite collection of nodes

Fig. 1. Deformation of a continuous body.

(2.1)

(2.2)

(2.3)
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at positions { X ;}”; in the reference placement. Each of the m members connects

two different nodes of the truss. The topological structure is described by incidence

numbers [°]

—1 ifmember a starts at node 1,
[a,i] = < +1 ifmember a ends at node 1,

0 otherwise,

constituting an m x n matrix C. Each row of C contains 41 and —1 exactly once,

while all other entries vanish, and each column of C has at least one nonzero entry.
In principle, it would not be necessary to distinguish between “start” and “end” of a

member, but it is convenient to give eachmember an orientation. Actually, the use

of signed incidence numbers endows the truss with the structure of adirected graph.
The deformation of the truss is characterized by the mapping

Xy wy= eilt),

which assigns to every material node X; its actual position x; at the time ?

(Fig. 3). A placement or configuration of the truss, in analogy to the placement
of a continuous body, is the mapping 7+ —x;. This means that a placement of a

truss is simply the collection of all its nodal positions {z;}7—;. The deformation

is the mapping from the reference placement with nodal positions X; to the actual

placement with nodal positions ;.
In a continuous body the neighbourhood of a material point X is the local

tangent spaceT'x (B) at this point. In atruss the neighbourhood of anode iis formed

by the members emerging from this node (Fig. 4). Instead of the line elements d X

and dz we have a finite number of vectors

n n

AX, = Z[a,i]Xi dild>A, — Z[a,ž]mi,
i=l i=l

which are aligned with the members ofthe truss in thereference placement and in the

actual placement, respectively. Actually, the sums are reduced to a difference of two

Fig. 2. Deformation of a neighbourhood

(2.4)

(2.5)

(2.6)
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position vectors, i.e., AX, = X+ — X-,where [a, kl] = +land [a, k7] = —1

are the only nonzero entries in the ath row of the incidence matrix. Depending on

the signs of the incidence numbers, each member a is equipped with an orientation

induced by the vector AX,. The final results must not depend on the prescribed
orientation. It is introduced, since we want to attach a vector to each member, and

by this vector the member becomes oriented.

In a continuum the vectors dX undergo a linear transformation (2.2) generated
by the deformation gradient F'. The deformation of the whole neighbourhood of

a material point X is determined by the mapping dX > dz of three linearly

independent line elements d X attached to this material point (Fig. 2).
In a truss the situation is quite different: Each of the members emanating from

a single node X; has its own deformation. There is no linear transformation of the

neighbourhood of a node (cf. Fig. 4). If a transformation is introduced in analogy
to the deformation gradient F', it has to be formulated independently for each

member a. So we can write, for instance,

AX,+— Az, =F,AX,,

where each of the members a undergoes its own transformation F',

Fig. 3. Deformation of a truss.

Fig. 4. Deformation of the neighbourhood of a single node

2.7)
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However, as in the continuous case, the transformation F', still contains both

the actual deformation and the rotation of the member. The polar decomposition is

reduced to the simple form

Fa — Äaßaa

where )\, and R, denote the scalar stretch and the rotation tensor, respectively.

Explicitly, the stretch of a member can be written as

la
Aa::i;

where

o =lBX boad 0 = |42,

denote the lengths of the member a in the reference and the actual placement,

respectively. Introducing the unit vectors

1 1
Ea = —AXa and ea = —Axa

La la

in reference and actual placements, respectively, one can express the rotation tensor

explicitly as

R, = e,%Ea.

This representation does not play any further role, since the relevant part of the

transformation of a truss member is its stretch Aa.

3. STRAIN ENERGY

The strain energy stored in an elastic body B is

H=/BW(F(X,t),X) av,

where W denotes the strain-energy density, measured per unit volume in the

reference placement. Also, the integration is performed over the body in its

reference placement. The strain-energy density is a function W = W(F', X) that

depends on the local deformation gradient F' and, in the case of an inhomogeneous
material, also directly on the material position X. The principle of material frame

indifference states that the strain-energy density is not changed by any local rigid-
body rotation. Therefore the strain-energy density may depend on the deformation

gradient only via the right stretch tensor U. Additional restrictions arise from the

(2.10)

(2.11)

2.12)

(2.8)

(2.9)

(3.1)
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symmetry properties of the material. If the material is isotropic, the strain-energy

density is a function of the eigenvalues of U, i. e., the principal stretches Al, Ao, A3.
In the sequel we simply write W = W (F', X) and disregard the special form of

dependence due to material frame indifference and material symmetry.
In order to exploit the principle of virtual work, one needs the variation ¢II of

the strain energy (3.1). This is obtained as

õII:/T—õF dV,
B

where 0 F = 0(dx)/0X is the variation of the deformation gradient and

01l

denotes the nominal (or first Piola—Kirchhoff) stress tensor. Using Gauss’ theorem,

the variation of the strain energy can be written in the form

õII =/ 6x -Tn dA- / dx- DivT dV,
oB B

with m denoting the outer normal vector of the boundary 0B in the reference

placement. Also, the divergence operator Div refers to the reference placement,
where all the integrations have to be performed.

The strain energy of a truss is obtained by collecting the contributions of all of

its members. The strain energy per unit reference length of a member is denoted

by w,. Since the strain energy is not affected by a rotation of the member, it may

depend only on the stretch A\,. Thus we have

.

a(t)) La-II = ž—:lwa(Ä (

The strain energy per unit length w, of eachmember is multiplied by the length L,
of the member in the reference placement; then the contributions of all members a

are collected. In the continuous case we have assumed the strain-energy density W

to depend on the position X not only via the deformation gradient F' but also

directly, to allow for inhomogeneous media. The same holds for the case of a

truss: The strain energy per unit length of a member a depends on the stretch A,
of that member, but this functional relationship may be different for each individual

member, which is indicated by the subscript a in w,. Ifthe truss consists of uniform

members, one has the same strain-energy function w = w(A,) forall members.

The principle of virtual work, applied to a truss, needs the variation ¢II of (3.5).
Following the proceeding in the continuous case, one first obtains the equation

m

OTI = Fa(Aa)oXaLa,
a=l

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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in which the scalar member force

dw,
A= d_)\a

has been introduced. As usual, we denote the force by the letter F', but this should

not be mistaken for a deformation gradient, which is denoted by a bold-face F'.

Using (2.9), (2.10)5, and (2.11), the variation of the stretch A\, can be expressed
in terms of the virtual displacements dx; of the nodal positions, viz.,

1
n

N = — Co* Z[a, ilox;
La

i=l

Changing the orderof summation, one obtains the variation of (3.6) in the form

6ÕII = z (Z[a,ž]Fa(Äa)ea) *ÕT:.
=1 Xa=l

The vector [a, i]e,, for [a,i] # 0, is a unit vector aligned with the member a and

pointing towards the node i. Thus the expression in parentheses, >”[a, ]Fa(Xa)€a»
can be interpreted as the negative sum of all member forces acting on the node .

Equations (3.4) and (3.9) are, in a sense, counterparts to each other. These

equations express the variation 011 of the total strain energy in terms of the virtual

displacements dz(X') and dz,, respectively. Of course, in the case of a truss there

is no distinction between inner points X € B and boundary points X € 08.

Therefore, instead of a volume integral and a surface integral there is only a sum

extending over all nodes. Moreover, the discrete equivalent of the vector Div T in

(3.4) seems to be the total member force

> [a,i]Fa(Xa)ea
o=

acting on the single node 3.

4. EQUILIBRIUM

The equations of equilibrium can be derived from the principle of virtual work,

according to which the variation of total strain energy equals the virtual work done

by the external forces. This principle holds true for both the continuous and the

discrete case.

A continuous elastic body is, in general, loaded by volume forces of density f
and by surface tractions of density ¢. Both the volume and the surface density

(3.10)

(3.7)

(3.8)

3.9
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are understood per unit volume and per unit surface of the body in its reference

placement. Explicitly, the principle of virtual work for a continuous elastic body

stipulates that

6H=/f—6:c dV+/ t-dx dA
B 8B

holds for arbitrary virtual displacements dz. Comparing this assertion with the

expression (3.4) for the variation JII, one obtains immediately the equations

DivT+f=0 inBg, Tn=t ondß,

which constitute the corresponding boundary-value problem.
In a truss the external forces are acting on the nodes. Therefore, the principle of

virtual work states that

O=" i ow,
3=l

holds for arbitrary virtual displacements dz; of the nodes. On the other hand, Eq.
(3.9) represents the variation ¢II in terms of the virtual nodal displacements dz;.
Comparing these two equations, one finds the condition

= Z[aa ž]Fa(Äa)ea +fi=o,
a=]l

which expresses the balance of forces: At every node ¢ the internal member forces

(3.10) and the applied external force f; must be in equilibrium.

S. CONFIGURATIONAL FORCES

Epstein and Maugin [?] introduce the Eshelby stress tensor by using the concept
of material uniformity of an elastic body. They regard the body in its reference

placement as being composed of uniform material pieces, the reference crystals,
which, in general, do not fit together in their natural, stress-free form. Therefore,
each of these reference crystals firsthas to undergo a local deformation K to assume

its proper form in the reference placement (Fig. 5). The deformations K are not

necessarily identical for different pieces of the body but may depend on the material

position X.

The strain-energy density of a uniform elastic body has the form

W(F,X) = 3;1(?) W(FK(X)).

4.1)

(4.2)

(4.3)

4.4)

(5.1)
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Here K (X) is the deformation that is necessary to insert the stress-free crystals
into the reference placement, where these individual pieces are assembled, and W

denotes the strain-energy density per unit volume of the stress-free crystal. The

volume factor Jg = detK takes into account that the strain-energy densities W

and W refer to different volumes: W is measured per unit volume in the reference

placement and W per unit volume of the stress-free crystal. All material pieces obey
the same constitutive equation provided by the function W, but the deformation K

may depend on the material position X.

Thus the strain-energy density W depends on both the local deformation K

generating thereference placement from the disconnectedreference crystals and the

deformation gradient F' that maps the reference placement to the actual placement
(Fig. 5). The derivative of W with respect to the deformation gradient F' yields the

nominal stress tensor (3.3), which, on account of (5.1), can be written as

OW g S . 1

T—öF—JKÕ(FK)K' (5.2}

The derivative of W with respect to K is obtained as

9W 1 - r 1 W
I-D L
o g

LR +7F K
(5.3)

Using (5.1) and (5.2), the function W (FK) and its derivative are substituted back

and expressed in terms of the original strain-energy density function W and its

derivative. The derivative (5.3) can then be written as

Z—Vl[{/ - (WI-F'T)KT, (5.4)

where I denotes the unity tensor. The tensor in parentheses coincides with the

Eshelby stress tensor or, strictly speaking, a modification of Eshelby’s original

Fig. 5. Various placements of a continuous body.
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tensor adjusted to nonlinear elasticity. Epstein and Maugin [3] use this equation to

introduce the Eshelby stress tensor (or energy-momentum tensor)

ow
QE:———————— T:

—

T

ÕKK WI-F T.

A thorough discussion of this approach can be found in [%].
The concept presented for a continuous elastic body can be transferred to the

case of the discrete elastic truss. Also here the reference placement of the truss is

not the real starting point. The truss is assembled from members that are collected

in a construction set. To generate the reference placement, each member a has to be

rotated into its proper attitude and, if it does not fit as it is, stretchedby an amount k,,

to its reference length L,. Afterwards, by application of appropriate loads, the truss

is deformed from its reference placement into its actual placement, stretching the

member a further by the amount )\, (Fig. 6).
In analogy with the continuous case, the truss will be called uniform if all the

members collected in the construction set have the same material properties. The

strain-energy per unit length in reference placement can then be expressed as

1
wa(Äa) = k—w(Äaka),

a

which is the discrete analogue of (5.1). The strain energy per unit stress-free

length has the same value w for all members in the construction set, but individual

stretchesk, have to be applied to assemble the members in thereference placement.
The factor 1/k,reflects the fact that the strain energy w is measured per unit length
in reference placement, while w refers to the stress-free length. The product Aaka
describes the total stretch from original to actual length of the member a.

Fig. 6. Various placements ofa truss.

(5.5)

(5.6)
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[a, i]ei, L [a, ]Ei. (5.13)
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Using(5.6), the scalar member force(3.7) can be written as

ow dw
F.(\,) = A ) v

e TOaka)'

Differentiating w, with respect to the stretch &, yields

OWa 1— 1 dü,
e —Ae d.
ok, k 2 Ba(Xaka) +7Ak 2

The function w,(\.k,) and its derivative can now be expressed in terms of the

original strain-energy function w, by using (5.6) and (5.7), respectively. Thus the

derivative (5.8) becomes

OWa 1

'äz:;—
= —k—a('wa — ÄaFa).

In analogy with (5.5), we define the scalar Eshelby force within a member a as

ok
OWa

a
=

——Õ—ÄI; ka = Wa — )\aFa()\a)-

This corresponds to a one-dimensional version of the Eshelby stress tensor €.

There is one difference in our treatment of the continuous and the discrete case:

The strain-energy function of a truss member is assumed as a function wg(Ag)
depending on the stretch A, of a member but not on its rotation. In the continuous

case the corresponding property has not been exploited. The strain-energy density is

expressed as a function W(F(X)), X), although the dependence on F' is restricted

to take place only via the right stretch tensor U.

There is also a more direct way to introduce configurational orEshelby forces in

a discrete elastic structure [7]. The total strain energy (3.5) of a truss depends on the

nodal positions in both the actual and the reference placement. It can be regarded
as a function

H=H(:cl,... ,wn;Xl,... ,Xn)

The dependence on the x; is caused by the lengths [, of the members in the

actual placement, while the lengths L, in the reference placement give rise to

the dependence on the positions X;. From (2.10), (2.6), and (2.11) one obtains

immediately

la 5 n OLa £ Ip.

T [a,i]e;, x [a, ]Bi.

The stretch Aa = 1,/L, depends on either position and has the partial derivatives

(5.10)

(5.11)

(5.12)

(57

(5.8)

(5.9)
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With these formulas everything is prepared to write down the partial derivatives of

the total strain energy II with respect to the nodal positions ; and X;. From the

explicit expression (3.5) one obtains

O
<, .

a—m';
= Z[a, z]Fa(Äa)ea.

a=l

In the balance of forces this expression has already been interpreted as the external

nodal force f; acting on the node ?.

The partial derivative with respect to the material positions is

o
&

3%,
= 210 {wa(A) — daFa(da)) Ba

a=]l

Using the definition (5.10) of the Eshelby force in a member, one can write this

derivative in the form

M
£

äfi
= Z[aa Z.]iš'a.(Äa)-Ea

a=]l

which has the same appearance as (5.14).
The partial derivatives of the total strain energy of a truss with respect to

the nodal positions ; and X; have been presented here without recourse to a

corresponding counterpart in the continuous case. It seems that this approach is

closely related to the “variational formulation using two variations” as described

by Maugin [6].
Despite the close resemblance of the two expressions (5.14) and (5.16), there

is a marked difference in their interpretation: According to the balance of forces

or, equivalently, the principle of virtual work, the partial derivative 011/0x; equals
the external force applied to the node ¢. If the node is free of external loads, the

derivative has to vanish. No such law holds for the derivative 011/9.X ;. Ofcourse,

one can define an external configurational force f; impressed on the node ¢ and being
in equilibrium with the internal configurational forces (5.16) acting on this node, but

the physical relevance of such an external configurational force is questionable. In

designing a truss we are completely free to choose the geometry at will. There is no

rule stating that a truss should be constructed such that the total strain energy attains

a stationary value, i. e., that the Eshelby forces acting on a node are in equilibrium.
The reason for this lack of symmetry is the following: The geometrical shape of

a truss in its actual placement, described by the nodal positions x;, is determined

by the load applied to the truss, according to physical laws. The original shape,
however, given by the nodal positions X;, is at our disposal and, in general, free

of any restrictions.

(5.14)

(5.15)

(5.16)
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6. COMPLEXITY AND SIMPLICITY

Engelbrecht [*] has raised the question of complexity and simplicity in science.

With respect to the present problem, one could ask: What is simpler, the theory of

continuous elastic deformations or the theory of elastic trusses?

Certainly, the theory of trusses has some aspects that make it rather simple:
There is no need for fields depending on space coordinates, the resulting equations
are purely algebraic and, if the deformations are assumed to be small, one obtains a

linear system of equations determining deformation and stresses. The truss problem
consists in establishing and solving this linear algebraic system of equations. The

deformation of a continuous body is governed by partial differential equations.
Even if linearity is assumed, there are but a few special cases in which the resulting
boundary-value problems can be solved in closed form. This seems to confirm

that the discrete truss problem is simpler than the corresponding problem for a

continuous elastic body.
However, from a different point of view, the theory of trusses is more

complicated than continuous elasticity theory. This starts with the geometrical
description of the object: A continuous body is determined by describing its shape
in the reference placement. The body itself is a collection of an infinite number

of material points; it is endowed with the natural metric topology. A truss is

not sufficiently described by fixing only its nodes in the reference placement. To

complete the description, one has to know which nodes are connected by members.

The connectivity of the nodes represents the topological structure of a truss.

There are (at least) two basic elements of a truss, namely nodes and members.

In a continuous body one has to deal only with material points. Whatever field

quantities are introduced in continuous elasticity, be it displacement, strain, stress,

dislocation density, stress function, they all can be regarded as functions of the

material position X. In the case of a truss, however, one has to select the proper

support for amechanical quantity: Displacements and external forces are defined in

the nodes and only there. Strains (elongations), stresses, and strain-energy densities

refer always to the members of the truss. One could also find counterparts to

dislocation densities and stress functions, but first one has to identify the geometrical
element at which these quantities have to be anchored. Theseconsiderations suggest
that the theory of trusses might be more complex than the theory of continuous

elastic bodies.

Whether a theory appears simple or complex depends to a great extent on the

prerequisites that are allowed to formulate the theory. For instance, the problem
of the catenary is quite simple if the tools for establishing and solving differential

equations are available. It is simpler than the corresponding discrete problem, with

mass points attached to a massless string, where a closed-form solution cannot be

given as easily. On the other hand, in an elementary course one can present the

discrete problem, which needs only some geometry and the equilibrium of forces

as prerequisites, and in this sense the discrete problem is simpler.
Returning to the comparison of a truss versus a continuous body: It is certainly
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favourable to work out both theories and study their interrelations. Continuous

elasticity theory is well developed and can serve as a paradigm for a corresponding
discrete theory. Insights gained by the discrete theory could also be valuable for

the continuous theory. Discrete conceptions are sometimes easier to understand

than their continuous limits. An example is the concept of the crystal reference:

The picture given in Fig. 5 (or any other picture taken from the relevant literature)
represents a discrete situation, although it is meant to describe the continuous limit.

But one cannot draw an appropriate picture representing a continuously dissected

body. This shows that ideas of discrete systems appear also in theories forcontinua.

Certainly, either theory can contribute to the other one, shedding some light on

hidden connections and unfolding apparent complexity. The main goal of any

theory is to make complex things appear simple.
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PIDEVAD JA DISKREETSED ELASTSED KONSTRUKTSIOONID

Manfred BRAUN

On edasi arendatud elastselt deformeeruvate sorestike teooriat ldhtudes pideva
elastse keha modelleerimisel kasutatavatest terminitest. On viélja toodud sarnasused

ja erinevused, mis tekivad elastsete deformatsioonide kirjeldamisel pideva ja
diskreetse ldhenemisviisi alusel. Eeldusel, et materjal on homogeenne, on sisse

toodud sorestiku sdlmedesse rakendatud kujujou mdiste, mis on analoogne pideva
elastse keha teoorias kasutatava kujupinge mdistega.
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