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Abstract. A pictorial representation is given in order to discuss the essential generalizations of

classical continuum mechanics in the presence of space and/or time nonlocality, and nonlinearity.
This covers most of the recently introduced generalizations within a critical framework that

emphasizes both singularity of the classical theories and the fact that real physical phenomena
amenable via continuum theories in sufficiently simple analytical terms remain close, in some

sense, to the ideal purely elastic and purely fluid cases. All efforts, however, must be directed at

getting closer to physical reality both for intellectual satisfaction and practical endeavours, and

hence at facing a reasonable complexity.
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1. INTRODUCTION

Recently, some engineers have expressed a rather spurious and somewhat

overenthusiastic interest typical of new converts in so-called nonlocal theories of

continua, in particular in relation to problems of plasticity and damage of

materials. For lack of cultural background, sufficient documentation, and a

deeper knowledge of the bases of their own science, some of these authors (of
whom, wantonly, we do not give the names) have discovered the Moon and in

fact use concepts and redraw general schemes which have been expanded by
physicists and applied mathematicians for quite a long time. Among the new

fashionable expressions most commonly used at meetings on continuum physics
are those of “nonlocality”, “localization”, “regularization”, occurrence of a

“characteristic length”, etc. Some simple words of explanation are needed before

dealing in greater detail with our subject matter. The purpose of this discursive

contribution is to present a general setting for these improved complex theories

that a better understanding of material behaviour by engineers, the visibly
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influential microstructure of some materials (composites), and the necessity of

going to a finer scale due to emerging micro- and nanotechnologies require.

2. NONLOCALITY

It is commonly accepted in continuum physics that a theory is said to be local

when the effect at a spatial point x is directly, and only, related to its cause at the

same point. Otherwise, the theory is said to be nonlocal. The nonlocal mechanical

theory of materials which expresses constitutive equations by means offunctionals
over space was addressed by pioneers in the field when nonlocal theories became

fashionable in the 19605—70 s (see the works of D. Rogula, I. A. Kunin, E. Kréner,
D. G. B. Edelen, A. C. Eringen) (see, e.g., ["]). The notions of range of interaction

and coherence length enter naturally these phenomenological descriptions. In other

words, one (several) characteristic length(s) intervene(s) in the problem (cf.
themes of some conferences; [**]). Among the possible approximations to spatial
functionals are representations by gradients of successive orders [’] of the cause

and/or effects (cf. the author’s contribution in [*]) at the point x where the effect is

represented. The degree of fineness of the description depends on the order of

gradients considered. In the past [°] we simply called truly nonlocal theories those

theories that make use of spatial functionals and weakly nonlocal theories those

that consider an appoximation of a certain gradient order to these functionals, it

being understood that for technical (mathematical) reasons, this “order” remains

small in all events, e.g., only first- and second-ordergradients are contemplated as

otherwise field equations become extremely stiff (with high-order derivatives). The

simultaneous occurrence of a field and its gradient in the list of arguments of an

energy function clearly appeals to the notion of characteristic length, by strict

dimensional analysis (ratio of the norms of the two arguments). Nondimensional

numbers are then introduced to characterize the “weakness” of the nonlocality of

interest. In classifying “gradient theories” one must pay attention to the notion of

field, i.e., the basic physico-mathematical entity of which one takes spatial
gradients (cf.[']). We may have gradient theories without characteristic length.
Examples of these are the classical theory of elasticity, and electrostatics in which

the basic fields (displacement in the former, electric potential in the latter) are

excluded from the list of arguments of the potential energy on account of a gauge

condition, and there remains only a dependence on their first-order gradient (strain
in the first case, electric field in the second case) so that these are per se

“degenerate” gradient theories. A gradient theory will exhibit a characteristic

length only if two gradients of different orders are present simultaneously in the

energy dependence. But this remark hints at some caution in qualifying verbally
theories. For instance, the first strain-gradient theory of elasticity of Mindlin and

Tiersten [*] is better called a second-gradient theory (of the deformation mapping).
Furthermore, engineers newly converted to nonlocality often do not realize the

seniority of gradient theories. For instance, Maxwell, in his celebrated treatise [9]
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insists on the potentials being the primary quantities, and for that very reason,

using the alphabetic order, he designates by A the magnetic potential. What we

nowadays call fields are gradients (sometimes of a special type, e.g., curl) of such

quantities. But classical electromagnetism admits gauge conditions. Early gradient
theories that exhibit length scales are the liquid theory of Korteweg (considering
the gradient of density) at the end of the nineteenth century, and Einstein’s general
relativity of gravitation (1916) that is none other than a special second-gradient

theory of the elasticity of space-time. The corresponding Lagrangian—Hamiltonian
formulation involves the space-time metric (through its determinant), its first

space-time gradients (through the Christoffel symbols), and its second-order space-
time gradients (curvature). In condensed-matter physics it was also soon realized

that gradient theories provide a key to opening the way to a phenomenological
representation of the ordering phenomena prevailing in low-temperature phases.
The names of E.M. Landau, I. M. Lifshitz (e.g., in ferromagnetism), and

V. L. Ginzburg remain attached to this weak nonlocality (moderately long-range
interactions) ever present in those quantum-mechanics based phenomena that have

macroscopic manifestations in everyday life. This led theorists to introducing the

celebrated Frank energy in terms of the spatial gradient of the so-called director

f}gld in a liquid crystal (see the modelling by Ericksen, Leslie, and de Gennes, in

[D.
The simultaneous presence of fields and their gradients in a physical theory is

tantamount to saying that the corresponding field theory will exhibit dispersion
from the point of view of harmonic-wave propagation, because the field equations
will then present nonhomogeneous polynomials of differentiation: signals at

different frequencies travel at different speeds. This phenomenon, combined with

nonlinearity present in many physical theories that exhibit relatively high-energy
levels (see below), yields by compensation the phenomenon of wave localization
of which the most publicized example is the solitonic structure, a strongly
localized stable wave structure that acts more or less like a particle in elastic

collisions [“’]2]. Thus, through some fancy verbal dialecticism, nonlocality yields
localization of solutions. Domain wall structures in ferromagnets and shape-
memory alloys are physical examples of such structures [“]. Applied
mathematicians employ another expression for, if there were no gradients, only
jump-like solutions of otherwise spatially uniform fields would have to be

introduced in order to explain the clearly observed domain structure. Accounting
for gradients smooths out those discontinuities and thus regularizes the solutions.

The characteristic length then naturally materializes in the thickness of the smooth

transition zone, i.e., theregularization of the solution.

In his research works, Prof. Jiiri Engelbrecht has always shown a vivid

interest in all manifestations of solitonic phenomena, as also in nonlocality
whether in space ['*] or in time [*° ], where by the latter the effects of viscosity
must be understood. This naturally brings us to considering a larger framework in

which space, time, and energy level will all enter in competition or will

collectively contribute to a better understanding of physical reality.
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3. “ANALYTIC CONTINUATION” OF CLASSICAL CONTINUUM

MECHANICS

From here on we shall perform all reasonings with respect to Fig. 1 in which we

propose to relate axes to the time scale, the length scale, and the energy-level scale

of the studied phenomena and where, to be specific, we consider continuum

mechanics as a paragon of continuum physics. Perhaps surprisingly enough to

many readers, we place at the origin not particle physics, but the continuum

mechanics of nondissipative behaviours that present neither viscosity, nor

characteristic length, nor also typical energy level. These are, indeed, pure linear

elasticity in solids and the Eulerian fluidity in fluids. Then one may wonder where

the rest of continuum mechanics and of mechanics in a more general way stands

when the continuity hypothesis becomes doubtful. The three axes of the figures are

marked with nondimensional numbers. We remind the reader that such numbers

are usually offshoots of their parent subject, dimensional analysis. Most such

numbers consist of the ratio of two “forces”, such as viscous and gravitational, or

viscous and magnetic. But they can be contrived without formal analysis to

practical utility. They typically permit simple but still quantitative views of

complicated physical phenomena. This is the case here.

Fig. 1. Dissipation vs. nonlocality vs. nonlinearity diagram.
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In Fig.l the X-axis accounts for the time scale inherent in viscous or

relaxation effects. A characteristic nondimensional number then is the Deborah

number ['°] De which compares a typical relaxation time 7 inherent in the

system and a time scale attached to an external source, e.g., a frequency of

excitation w, through the obvious definition De=wt. A representative point
such as A along the X-axis but in the vicinity of the origin, clearly represents a

weakly viscous material, such as a material exhibiting Newtonian viscosity. A

point farther out of the origin would indicate a possible non-Newtonian — albeit

still linear — viscous behaviour, and a point far out but still along the X-axis a

material with long-range memory (naturally represented by a constitutive

functional over time in the manner of Boltzmann and Volterra). A truly nonlinear

viscoelastic behaviour, such as that of a Bingham fluid or in electro- or

magnetorheological fluids, requires a coupling with the Z-axis, hence an off

X-axis situation.

The Y-axis relates to length-scale effects. The nondimensional number € =II/A
or kI, where [ is an intrinsic length scale and A = k™" is a typical excitation length
scale — k is a wave number — measures the degree of nonlocality or dispersion. The

symbol used for that nondimensional number carries a connotation of the

“infinitesimally small”, but this being set apart, it does measure in which way one

deviates from the continuum hypothesis as, parodying the philosopher
G. Bachelard (['], p. 136), we may say that “it is the wavelength which, by itself,
creates the phenomenon. Confusion would reign if the wavelength was not large
enough to overlap the discontinuities of the punctiform distribution.” On the

contrary, in a weakly nonlocal theory we focus attention on the possible
resonances between structure and excitation. A nondissipativebut weakly nonlocal

behaviour has a representative point such as B in the vicinity of the origin along the

Y-axis. A representative point far away from the origin but still along the Y-axis

would then correspond to true nonlocality, where the notion of contact force dear

to continuum mechanics disappears altogether to the benefit of action at a distance

dear to Newton, Boscovich, Laplace, and others. We then touch two domains of

apparently disjoint interest, the microcosm — the “infinitesimally small” —, and the

“infinitesimally large”, as a large € may correspond either to a large / or an

extremely small A. The notion of representative-volume element, so useful in

homogenized continuum theories ['*], is essential in deciding whether an

inhomogeneous material can be reasonably represented by a classical continuum or

a weakly nonlocal one. Standard asymptotic periodic homogenization does not

involve a characteristic length and therefore misses the dispersion typical of such

systems. A different type of homogenization technique must be exploited which

accounts for this characteristic size which enters in competition with the

wavelength of an excitation (cf. Bachelard’s remark). The Bloch expansion issued

from quantum-mechanical considerations is a useful tool in that context [&
The Z-axis compares the energy content (say, per unit volume) of the material

and the energy level of external forcing. It is clear that a high level of energy
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requires considering nonlinearities in the system. This is classically illustrated by
plasticity without time scale — i.e., no characteristic time — in which the nonlinear

response is exhibited for a sufficiently high level of input, although some

materials (extremely ductile ones, such as gold and silver) show this nonlinear

behaviour very early in mechanical loading, if not from its origin. Thus classical

strain-rate independent plasticity would be represented by a point C along the

Z-axis, but still not far from the origin, for we know that an excessive forcing
yields fracture and failure of the material. Other examples include shock-wave

propagation [*°], but this requires a consideration of interactions between the

various ‘“coordinates” in Fig. 1, being a dynamical effect. The singular nature of

strain-rate independent plasticity (placed on the Z-axis), which is shared by
magnetic and ferroelectric hysteresis at low frequencies ['*], is enhanced by the

fact that, although exhibiting no time scale, it is nonetheless dissipative, so that

its dissipation has a peculiar nature, being homogeneous of degree one in the said

strain-rate [*'].
It was rightly remarked by M. Ostoja-Starjewski (Atlanta) during a meeting in

Poznan (Poland, August 1998), where a sketch of Fig. 1 was presented for the

first time, that an additional, fourth axis accounting for stochasticity should be

added. Not only does the representation then become visually difficult, but I am

not an expert in this technical speciality and leave it out of consideration due to

my own ignorance. At this point it is then natural to envisage the couplings
between the three properties delineated by the three axes in Fig. 1 for, in practice,
we have to face behaviours that do not “diagonalize” simply along these

“principal” axes. Most representative points will be out of the origin in the three-

dimensional Euclidean space spanned by (X,Y,Z). First of all, space and time

responses can hardly be disconnected, for instance, because of causality, and

because of the importance of dynamical or wave-like phenomena. That is, most

physical systems exhibit not only a characteristic length or time but also a

characteristic speed, e.g., the velocity of light in vacuum or an elastic speed
related to the linear elastic behaviour, c. The general notion of phase p(x,t)
from which one deduces frequency @ and wave-vector k by (cf. the kinematic

theory of waves developed by J. Lighthill and G. B. Whitham; see [°°])

p
O=-—, k=V

dt
g

is essential in that context. The (X,Y) plane of our symbolic representation
becomes the realm of dynamical processes, and causality (in other words

hyperbolicity — the fact that information travels at a finite speed) becomes- the

focus of consideration of all potential “relativists”. Logically enough, space and

time nonlocalities come to be considered simultaneously with constitutive

equations represented by space-time functionals [***’]. Next to, but rather

different from, hyperbolicity, one has dispersion. While nonlinearity and

causality permeate the theory of shock waves, but with a dissipation in the
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background as a regularizing factor (in other words, shock waves exist because

the considered physical phenomenon is ultimately dissipative, but with a

localized dissipation), dispersion and nonlinearity provide necessary ingredients
for the propagation at finite speed of strongly localized solutions, solitonic

structures, in the complete absence of dissipation. The (Y,Z) plane is therefore

the realm of such strange dynamical phenomena that have invaded part of the

physico-mathematical literature. It must also be emphasized that the necessity of

mixed time-space considerations allied to invariance properties (that of the

phase) led to the original introduction of wave mechanics and the resulting wave-

particle dualism in the expert hands of L. de Broglie. As a matter of fact, space,
time, and energy scales are basically related via a characteristic velocity ¢ and

Planck’s reduced constant 7z by

@=ck, p=hk, E=hw,

where p and E are characteristic momentum and energy level, respectively. In

this vision, the sphere at infinity §_ centred on the origin in Fig. 1 stands for

particle (continuum is no longer valid), high energy, and action-at-a-distance

physics. But we could have inversed the space-time representation by noting that,
because of the phase definition, the couple (@,k) is dual to the couple (z,x) in

Fourier space so that, just the same as in crystal physics, we could have carried

out the reasoning in the dual of the (X,Y) plane. Finally, a representative point in

the (X,Z) plane will relate the time scale with the energy level due to forcing.
This classically provides the realm of dissipative structures (including chaos,
when a bit of nonlinearity is injected in the system). Active systems, e.g., nerve

fibres, such as those dealt with by Engelbrecht [**] belong in this vision.

4. HOW FAR FROM THE ORIGIN?

The origin in Fig. 1 represents a physical singularity (pure elasticity or pure

fluidity) in the sense of the relative scarcity of this situation in real problems
while being probably the most exploited scheme by reason of its mathematical

simplicity. Real physical systems clearly most often reside outside this origin, but

how far? The idea underlying this contribution is that staying in the continuous

domain of validity of the representation of mechanical phenomena makes that we

never take excursions far away from this origin. This justifies the title of the

paper in the sense that all descriptions of interest in the continuum framework

involve relatively small levels of forcing, small Deborah numbers, and rather

small dispersion, and consequently remain in a neighbourhood of the origin.
However, artificially produced materials with a microstructure and

nanotechnologies will force us to consider this slight deviation. The question
remains of the regularity of the origin point in Fig.1 in the analytical sense.

Unfortunately, more than often, this regularity is not guaranteed. On the contrary,
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introducing a dispersion leading to high-order space derivatives in the governing
system of partial differential equations renders the system singular as € tends

towards zero. This is probably where the most important mathematical problem
arises in this “analytic continuation” of standard continuum mechanics (see very
stiff systems in Christov et al. [*°]). This necessarily high degree of dispersion is a

characteristic trend of many recent works, especially in the dynamic framework

2], where the degree of nonlinearity increases simultaneously to that of

dispersion allowing for the emergence of new rich, practically stable, dynamical
structures (e.g., soliton complexes, etc.). The representative point of such

promising systems that are closer to physical reality remains in a neighbourhood of

the origin, but outside it. What we also learn from the above is the importance,
before attacking the phenomenological description of any physical phenomenon, of

the delineation of the domain of time, space, and energy scales that one wants to

accommodate in the description; any course on phenomenological physics and

thermomechanics should begin with such a study [*’], something too often

neglected in many textbooks. The art of modelling then consists in selecting a

framework that is both physically justified in its complexity, but not further, and

sufficiently simple so as to be amenable by (more sophisticated than in old times)
analytical means or numerical simulations.
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“ANALÜÜTILISEST JÄTKAMISEST” PIDEVA KESKKONNA

MEHAANIKAS

Gérard A. MAUGIN

Loomulike iildistuste selgitamiseks klassikalise pideva keskkonna mehaanika

raamides ruumi ja/vdi aja mittelokaalsuse ning mittelineaarsuse olemasolul on

esitatud piltlik skeem. See katab suurema osa hiljuti esitatud iildistusi, mis

rohutavad klassikaliste teooriate singulaarsust ja fakti, et reaalsed fiiiisikalised

nahtused, mis kajastuvad pideva keskkonna teooria piisavalt lihtsates analiiii-

tilistes terminites, jadksid mingis mottes ldhedaseks ideaalse, pelgalt elastse keha

või vedeliku juhule. Siiski tuleb suunata k&ik pingutused fiiiisikalise reaalsuse

voimalikult tidpseks kirjeldamiseks, seades eesmérgiks nii intellektuaalse rahul-

duse kui ka praktilised piitidlused, s.t. arvestada moistlikku keerukust.
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