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Abstract. The eddy-to-mean energy transfer in turbulent flows is discussed. The discussion 
proceeds from the theory of rotationally anisotropic turbulence (RAT theory). It is shown that the 
rotational viscosity introduced in the RAT theory to quantify the interaction between the orientated 
(large-scale) turbulence constituent and the average flow can explain the eddy-to-mean energy 
transfer. The theoretical predictions are particularized for a jet stream model in a geophysical 
situation and compared with the data measured in the Gulf Stream transverse sections along 26°N 
(Florida Straits) and along 35°N (off Onslow Bay). The suggested model agrees with the measured 
data and points to a substantial difference in the data interpretation within the suggested model and 
within the conventional turbulence mechanics. 
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1. INTRODUCTION

The observational evidence of the eddy-to-mean (ETM) energy transfer 
accompanied by the upgradient momentum transport in turbulent flows [1–4] 
reveals a major inconsistency in the conventional turbulence mechanics (CTM). 
The CTM agrees with the observed phenomenon only if the negative shear 
viscosity coefficient (not accepted by the physics of viscosity) is allowed. This 
paper shows that the theory of rotationally anisotropic turbulence (RAT theory 
[5–7]) overcomes the indicated inconsistency in the CTM. Unlike the CTM, which 
explains the phenomenon as forced by the (turbulent) shear viscosity, the RAT 
theory explains the phenomenon as forced by the (positive) rotational viscosity, 
introduced within that theory to quantify the effect of shear in relative rotation. 

The discussion starts with an introduction to the RAT theory (Section 2), 
which outlines some essential aspects like the interrelation between the RAT 
theory and the CTM, insufficiently addressed in earlier RAT treatments. The 
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physics of the ETM energy transfer in turbulent flows is explained in Section 3. 
Section 4 particularizes this explanation on the model of a jet stream in a geo-
physical situation. In Section 5 the theoretical predictions of the model are 
compared with the data measured in the Gulf Stream along transverse sections at 
about 26°N (Florida Straits) and 35°N (off Onslow Bay) [8]. It is shown that the 
model explains the marked difference between the turbulence regimes on the 
cyclonic and anticyclonic sides of the stream. Unlike the approach in [9], treating 
the phenomenon as specific to the considered region of the Gulf Stream, the 
suggested model treats the phenomenon as an effect common to geophysical jet 
streams independent from the particularities of their occurrence location. 

The interpretation of the observed data within the CTM would state the 
domination of the ETM energy transfer in almost the entire cross-sectional area 
of the stream and would presume the presence of a substantial turbulent energy 
source in the region. It is shown that the same data, if interpreted from the point 
of view of the RAT theory, show a rather marginal role of the ETM energy 
transfer in the area. The majority of the energy exchange is directed from the 
mean flow to the turbulence within this interpretation and no additional energy 
source is required for the data explanation. 

The discussion of the energy transfer processes in geophysical turbulent jets 
presented in this paper complements earlier oceanographic applications of the 
RAT theory [10–15]. 

 
 

2. INTRODUCTION  TO  THE  RAT  THEORY 
 
The CTM proceeds from presenting the velocity of the turbulent flow field v  

as the sum ,′= +v u v  where ,=u v  in which (and henceforth) angular brackets 
denote statistical averaging, and ′v  is the fluctuating constituent of the flow 
velocity. The flow description is then realized within the average momentum 
(Reynolds) equation with the symmetric turbulent stress tensor ij j iv vσ ρ ′ ′= −  
(ρ  is the medium density, iv′  and jv′  are components of ,′v  the Latin indices  
,i  j  obtain the values 1, 2, and 3) and the equation for the turbulence energy 

21
2 .K v′=  The symmetry of the turbulent stress tensor presumes the probability 

distribution invariance under commutation of its arguments jv′  and .iv′  
The RAT theory [5–7] generalizes the CTM to account for the preferred 

orientation of the eddy rotation. The generalization is realized by including the 
curvature radius R  of ′v  streamline into the set of arguments of the applied 
probability distribution. The inclusion allows us to determine at each flow field 
point the quantity 

 

,′= ×M v R                                                  (1) 
 

having the physical sense of the internal moment of momentum (angular 
momentum, spin) of the turbulent flow field and expressing a local measure of 
the average effect of a preferred orientation of turbulent eddy rotation. 
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As a corollary of the condition 0≠M  (turbulent flows of this type are called 
rotationally anisotropic) the turbulence energy 21

2K v′=  becomes split into the 
sum 

 

0K K KΩ= +                                                 (2) 
 

in which 1
2K Ω = ⋅M Ω  and 0 1

2 ,K ′ ′= ⋅M Ω  where 2 ,R′= ×v RΩ  
′ ′= × −M v R M  and 2R′ ′= × −v RΩ Ω  while .R = R  The quantity Ω  has 

the sense of the average angular velocity of eddies’ rotation, determined as 
independent from the average velocity .u  The energy K Ω  in (2) characterizes 
the orientated turbulence constituent contributing to ,M  and 0K  characterizes 
the turbulence constituent not contributing to .M  The motion description of 
turbulent media with the condition 0≠M  is formulated within the equations for 
the average momentum (the Reynolds equation) with an asymmetric turbulent 
stress tensor, for the moment of momentum ,M  and for energy 0.K  

The distinction between the turbulence constituents contributing and not 
contributing to M  is coupled with the difference in the interaction of the 
constituents with the average flow. The difference is revealed in the asymmetry 
of the turbulent (Reynolds) stress tensor with the symmetric constituent describ-
ing the interaction between the average flow and the turbulence constituent with 
energy 0K  and with the antisymmetric constituent describing the interaction 
between the average flow and the turbulence constituent with ,M  ,Ω  and 
energy .K Ω  The RAT theory explains the asymmetry of the turbulent stress 
tensor by the non-invariance of the applied probability distribution in respect to 
commutation of its arguments jv′  and .iv′  

In full compliance with the continuum mechanics [16,17] the antisymmetric 
constituent of the turbulent stress tensor vanishes, together with ,M  ,Ω  and 
K Ω  when either R  is not included into the set of arguments of the applied 
probability distribution or when there is no preferred orientation of eddy rotation. 
Then the RAT theory is reduced to the CTM. However, there is a considerable 
difference between the two cases of the reduction of the RAT theory to the CTM, 
leading to a difference in the interpretation of the relationship between the CTM 
and the RAT theory. The first interpretation follows from the orthodox treatment 
of the CTM. If the symmetry of the turbulent stress tensor is postulated, then any 
possibility of accounting for a preferred orientation of eddy rotation is 
constitutively excluded and the relationship between the CTM and the RAT 
theory is considered contradictory. The second interpretation (suggested by the 
RAT theory) appreciates the situation described within the CTM as limited by the 
adopted assumption about the symmetric stress tensor. It does not refute the 
CTM but merely restricts its competence by the description of the turbulence 
constituent with the symmetric stress tensor and energy 0.K  

Besides the CTM, the RAT theory also comprises the idea of the 1970s to 
incorporate the equation of the moment of momentum (angular momentum) into 
the turbulence description setup [18–21], discussed in the context of possible 
applications of the hydrodynamics of micropolar continua developed in the 
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1960s–1970s [22–25]. It also allows inclusion of some aspects of the Richardson–
Kolmogoroff concept about the cascading turbulence [26,27] into the turbulence 
mechanical description setup. The objective of the suggested approach coincides 
with the objective of large-eddy simulation methods applied to the turbulence 
description [28–30]. The main difference is that the suggested approach (RAT 
theory) accounts for effects of the large-scale turbulence immediately in terms of 
average fields. 

 
 

3. PHYSICS  OF  THE  EDDY-TO-MEAN  ENERGY  TRANSFER   
IN  TURBULENT  FLOWS 

 
Consider work W  done by the turbulent stresses, 

 

, ,ij j iW u Qσ= = ∇ ⋅ −h  
 

where ,h  defined by its components 
 

,j ij ih uσ=                                                    (3) 
 

describes the turbulent flux of energy 21
2K u=  and 

 

,ij i jQ uσ=                                                    (4) 
 

describes the energy transfer between the average flow and the turbulence. For 
0Q >  the average flow feeds energetically the turbulence and for 0Q <  the 

energy is transferred from eddies to the mean flow. The latter process is 
accompanied by the upgradient transport of the momentum. After division of the 
turbulent stress tensor in (4) into the sum of symmetric and antisymmetric 
constituents expression (4) can be represented as the sum 

 

s as ,Q Q Q= +  
 

where s
( ) ,ij i jQ uσ=  in which 1

( ) 2 ( )ij ij jiσ σ σ= +  and 
 

as ,Q = − ⋅σ ω                                                  (5) 
 

where 1
2= ∇× uω  is the vorticity and σ  is the dual vector to the antisymmetric 

constituent of the turbulent stress tensor with components k kij ijeσ σ=  ( ijke  
denotes the Levi-Civita tensor components and the Einstein summation is 
assumed). The symbol sQ describes the energetic interaction between the average 
flow and the unorientated turbulence constituent with energy 0K , while asQ  
describes the energetic interaction between the average flow and the orientated 
turbulence constituent with ,M  ,Ω  and .K Ω  

The CTM states that ( )ij ijσ σ=  with ( )ijσ  parameterized as ( )ijσ =  
( , )2 ,ij i jp uδ µ− +  where 1

( , ) , ,2 ( ),i j i j j iu u u= +  p  is the pressure, ijδ  denotes  
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the components of the unit tensor, and µ  is the coefficient of turbulent shear 
viscosity. In this case s

( , ) ( , )i j i jQ Q u uµ= =  (the medium is considered incom-
pressible) and the ETM energy transfer ( 0),Q <  together with the upgradient 
momentum transport, becomes possible only if the negative shear viscosity 
coefficient µ  is allowed. Nevertheless, if the momentum gradient is the only forc-
ing of the momentum transport, as it is assumed within the CTM, then the physics 
of the phenomenon does not foresee the possibility of upgradient momentum 
transport. Therefore the CTM evidently fails to describe the phenomenon. 

Let us treat now the turbulence with a preferred orientation of eddy rotation. 
We consider the situation within the Richardson–Kolmogoroff concept about the 
cascading turbulence generation with the large-scale turbulence interacting 
immediately with the average flow. In this case asQ  dominates over s ,Q  i.e. Q  
may be identified with as .Q  In applying to σ  the closure [5–7] 

 

4 ( ),γ= −σ Ω ω                                                (6) 
 

where 0γ ≥  is the coefficient of rotational viscosity, it is evident that, contrary to 
work sQ  being negative only for negative ,µ  asQ  can be either positive or 
negative for positive γ  and therefore the introduction of the rotational viscosity 
removes the “negative viscosity” problem. 

Finally, the situation with as 0Q <  evidently presumes a source of energy for 
the large-scale (orientated) turbulence constituent other than the average flow. 
The energy sources could be the magnetic field for the motion of ferromagnetic 
colloidal systems [2] and magnetic fluids [3] as well as the system rotation in the 
geophysical hydrodynamics. In the following the latter is specified for 
geophysical jet flows. 

 
 

4. A  SIMPLE  GEOPHYSICAL  JET  STREAM  MODEL 
 
We consider a steady plane flow with (0, ( ),0),u x=u  (0, 0, )Ω=Ω  in the 

right-hand Cartesian coordinate system ( , , )x y z  with z  directed upwards and 
with the neglected effect of advection of the moment of momentum 

(0, 0, )M JΩ= =M  (J  is the effective moment of inertia determined from 
).J=M Ω  The vertical projection of the equation for the moment of momentum 

M  [5–7], written for the motion in a frame rotating with the angular velocity of 
the Earth’s rotation 0 0(0, 0, sin ),ω ϑ=ω  where 0ω  is the magnitude of the 
angular velocity of the Earth’s rotation and ϑ  is the latitude, is reduced to the 
balance condition 

 

θ
2

0
2

4 ( sin ) 0.
x

Ω σ κ Ω ω ϑ∂ − − + =
∂

                              (7) 

 

In (7), 0θ >  is the diffusion coefficient of M JΩ=  and the moment 
04 ( sin ),κ Ω ω ϑ+  where 0κ >  is the coefficient of cascade scattering, reflects 
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the joint effect of the Earth’s rotation and the decay of M  in the cascading 
process. Together with closure (6), Eq. (7) can also be rewritten as 

 

2 2 0 sin ,
γ κΩ λ Ω λ ω ω ϑ

γ κ γ κ
 ′′ − = − + + + 

                        (8) 

 
in which 2 24( ) ,Lλ γ κ θ= +  where L  is a constant with the dimension of 
length, and the apostrophe denotes derivative with respect to the non-dimensional 

* .x x L=  The inverse 1λ −  determines the non-dimensional diffusion scale of the 
moment of momentum. 

Consider first the situation where the diffusion scale is determined as 
vanishing, i.e. 1 0,λ − =  then we find from (8) 

 

0 sin ,
γ κΩ ω ω ϑ

γ κ γ κ
= −

+ +
                                      (9) 

 

and, as a consequence, 
 

as 04 ( ) 4 ( sin ) .Q
γκγ Ω ω ω ω ω ϑ ω

γ κ
= − − = +

+
                    (10) 

 

According to (10), the ETM energy transfer would take place if 
0( sin ) 0.ω ω ϑ ω+ <  The latter condition does not hold for 0 0,ω =  therefore the 

ETM energy transfer can be considered as a specific flow property caused  
by the system rotation. Let us note that according to (9), 0ω =  and 

0 sin ( )Ω ω κ ϑ γ κ= − +  beyond the jet area, which agrees with [31] stating a 
significant turbulence in the ocean interior. 

Let us specify *( )u u x=  in the following as 
 

*2
0 exp( ).u u x= −                                           (11) 

 

The velocity profile (11) determines vorticity ,ω  moment ,Ω  ,σ  asQ  and 
as 1

2 ,h uσ=  which is the x-component of the flux vector h  constituent induced 
by the antisymmetric constituent of the stress tensor, as 

 

0 * *2exp( ),x xω εω= − −                                      (12) 
 

0 * *2sin exp( ) ,x x
κ γΩ ω ϑ ε

γ κ γ κ
 

= − + − + + 
                   (13) 

 

0 * *24 (sin exp( )),
( )

x x
κσ γω ϑ ε

γ κ
= − − −

+
                      (14) 

 

as 02 * * *2 *24 (sin exp( ))exp( ),Q x x x x
κεγω ϑ ε

γ κ
= − − − −

+
              (15) 
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as 0 * *2 *2
02 (sin exp( ))exp( ),xh u x x x

κγ ω ϑ ε
γ κ

= − − −
+

                  (16) 

 

where ε  is the Rossby number [32] specified as 0
0 2 .u Lε ω=  The dependences 

(11)–(16) for 1ε =  and γ κ=  are illustrated in Fig. 1. The profiles for the 
reduced non-dimensional ,u  ,Ω  and ω  for 40 N,ϑ = °  defined as *

0 ,u u u=  
* 0 ,Ω Ω ω=  and * 0 ,ω ω ω=  respectively, are represented in Fig. 1a. The field 

of * sin ( )Ω κ ϑ γ κ= − +  is determined as homogeneous for the missing jet or 
sufficiently far from the jet influence. The homogeneity becomes distorted in  
the jet area (Fig. 1). The distortion is revealed in an increase in *Ω  on the  
right (anticyclonic) side of the jet *( 0),x >  and in a decrease in *Ω  on  the  left 
(cyclonic) side of the jet *( 0),x <  causing this way a substantial difference in the 
turbulence regimes on either side of the jet. The difference is depicted in Fig. 1b 
by the profiles of non-dimensional ,σ  2 ,u  as ,Q  and as

xh  defined as 
* 04 ,σ σ γ ω=  *2 2

0( ) ,u u u=  * as 024 ,Q Q γω=  and * as 0
02 ,xh h uγ ω=  res-

pectively. For * 0,x <  vorticity *ω  and *σ  have opposite signs and therefore on 
the left side of the jet * 0.Q >  On the right side of the jet the signs of *ω  and *σ  
coincide and * 0,Q <  highlighting this side of the jet as a region with the  
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ETM energy transfer. The momentum transport *h  retains its positive value  
and the velocity gradient has opposite signs on either side of the jet, therefore on 
the right the momentum appears to be transported in the upgradient direction.  
To show the dependence of the depicted quantities on latitude ,ϑ  the profiles of 

*Q  and *2Ω  are presented in Fig. 1c and Fig. 1d for 10,ϑ =  20,  30,  and 40 N.°  
The depicted profiles show an increase in the effect of the ETM energy transfer 
as well as in the kinetic energy of the orientated turbulence constituent 

2( )K Ω Ω ∗
∼  with increasing .ϑ  The maximum values of *2Ω  on the right (anti-

cyclonic) side of the jet exceed its values on the left (cyclonic) jet side, separated 
by a deep minimum of *2Ω  for all latitudes. All calculations presented in Fig. 1 
are performed for the northern hemisphere. When in the northern hemisphere the 
“negative viscosity” region is on the right side of the jet, then in the southern 
hemisphere it appears on the left. 

Consider now the situation for finite ,λ  then the integral of Eq. (8) reads 
 

*

* * * * *
1 2

0

1
sin sinh ( ( ))d cosh sinh ,

x

x t t C x C x
κ γΩ λ ϑ ω λ λ λ

ε γ κ γ κ
 = − − + + + + 
∫  

(17) 
 

where 1C  and 2C  are the integration constants, determined from the condition 
* sin ( )Ω κ ϑ γ κ= − +  following from (13) at an arbitrary location outside the jet 

area where *Ω  is considered as not influenced by the ω*-field. The diffusion 
effect is illustrated in Fig. 2 by calculated *,Ω  *,σ  and *Q  for infinite λ  
(curves 1, 4, and 7, respectively), for 1.5λ =  (curves 2, 5, and 8, respectively),  
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and for 0.5λ =  (curves 3, 6, and 9, respectively). According to Fig. 2a, the 
decrease in λ  (increase in the diffusion scale of the moment of momentum )M  is 
accompanied by a decrease in the amplitude of variation of *Ω together with an 
increase in the width of the region with non-zero *.Ω  On the contrary, the 
decrease in λ  is accompanied by an increase in the amplitude of *σ  (Fig. 2b). 
Finally, the decrease in λ  is accompanied by an increase in *Q  on both sides of 
the jet, leading to a decrease in the effect of ETM energy transfer on the right side 
of the jet. On the left side of the jet the effect of the decrease in λ  on *Q  variation 
is analogous to the effect of the increase in ,ϑ  and on the right side the effect of the 
decrease in λ  is analogous to the effect of the decrease in .ϑ  

 
 

5. MODEL  APPLIED  TO  THE  GULF  STREAM  OBSERVATIONS 
 
The model suggested in the previous section presents the basic physical 

mechanism of the momentum transport and the associated energy transfer between 
the turbulence and the mean flow in an oceanic jet flow illustrated on the Gaussian 
velocity distribution. The mechanism includes the effects of momentum upgradient 
transport and the ETM energy transfer. The following particularizes the discussion 
for a realistic situation compared with the observed data in the Gulf Stream 
sections along latitudes 26°N (Florida Straits) and 35°N (off Onslow Bay) [12]. The 
calculations are performed for 61.5 10γ κ= =  kg m–1 s–1, 0.8λ =  and for the 
average velocity approximated by *2 *

0 (exp( ) ),u u x Ax B= − + +  where * ,x x L=  

0 1u =  m s–1. For the section 35 N,ϑ = °  off Onslow Bay, 41.5 10L = ×  m, 
510A −=  m–1, 0.15,B =  and for section 26 N,ϑ = °  in the Florida Straits, 

41.8 10L = ×  m, 66.9 10A −= − ×  m–1, 1.2.B =  The calculated profiles of 
*

0 ( )xy u Lσ γκ σ γ κ= +  along latitudes 35°N (off Onslow Bay) and 26°N (Florida 
Straits), together with the estimated values of the time average quantity ,x yv vρ ′ ′−  
are presented in Fig. 3a and Fig. 4a. Despite of the rough velocity approximations 
applied, the similarity between data and calculations is remarkable. It concerns not 
only the dependence of xyσ  on *x  but also on .ϑ  
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Fig. 4. The measured (diamonds) and modelled (curves) σxy (a) and Qas (b) versus normalized 
transverse distance x
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 in the Gulf Stream along ϑ = 26°N (Florida Straits). 

 
 

The similar behaviour of the calculated xyσ  and the measured x yv vρ ′ ′−  in 
Fig. 3a and Fig. 4a suggests the interpretation of x yv vρ ′ ′−  data as measured 
values of .xyσ  According to the interpretation and due to yx xyσ σ= −  in the 
suggested model, we get .yx x yv vσ ρ ′ ′=  As a consequence, 
 

as
, , .yx x x y xQ Q u v v uσ ρ= = =                                  (18) 

 

The modelled asQ  (curves in Fig. 3b and Fig. 4b), together with the values of Q  
estimated from the measured velocity and x yv vρ ′ ′−  data (diamonds in Fig. 3b and 
Fig. 4b), show the domination of the mean-to-eddy energy transfer, 0,Q >  over 
both jet sections. 

Consider now the jet from the point of view of the CTM. Then xy yxσ σ=  and 
instead of (18) we would have s

,yx x x y xQ Q u v v uσ ρ= = = −  [1]. Therefore, when 
interpreted within the CTM, the ETM energy transfer would dominate in the jet 
area. This interpretation would presume a powerful constant source of turbulence 
energy in the region. The absence of such an energy source proves the CTM as 
failing to describe the energy and momentum balance data measured within the 
Gulf Stream. 

 
 

6. CONCLUSIONS 
 
The failure of the CTM to explain the upgradient momentum transport and the 

associated ETM energy transfer in the turbulent flow challenges the researchers 
to looking for adequate mechanisms forcing the momentum transport in turbulent 
flows. This paper suggests a mechanism accounting for the eddy rotation orienta-
tion (the RAT theory). The mechanism is realized in the suggested model of a 
geophysical jet flow. The model gives a natural explanation to the significant 
differences in the turbulence regimes on the cyclonic and anticyclonic sides of 
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the jet. The model skill is tested on the data measured in the Gulf Stream sections 
along 26°N (Florida Straits) and 35°N (off Onslow Bay). It is shown that, unlike 
the interpretation of the observed data within the CTM, the interpretation of the 
measured data within the suggested model does not presume the negative 
viscosity. 
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Energia  ülekanne  pööristelt  keskmisele  liikumisele  
geofüüsikalistes  turbulentsetes  jugades 

 
Jaak Heinloo ja Aleksander Toompuu 

 
On käsitletud energia ülekannet turbulentses keskkonnas. Käsitlus tugineb 

pöördeliselt mitteisotroopse turbulentsi teooriale (PMT-teooria). On näidatud, et 
PMT-teooria võimaldab selgitada energia ülekannet turbulentses keskkonnas 
selle turbulentselt komponendilt keskmistatud liikumisele. Formuleeritud käsitlus 
ei vaja negatiivse turbulentse viskoossuskoefitsiendi rakendamist, mis on omane 
probleemi käsitlusele turbulentsi mehaanika senise formuleeringu raames. 
Artiklis tuletatud teoreetilised väited on konkretiseeritud geofüüsikalise joalise 
voolamise juhule. Golfi hoovuse ristlõigetes laiustel 26°N (Florida väinad) ja 
35°N (Onslow’ laht) mõõdetud andmetele tuginedes on näidatud, et formulee-
ritud mudel on heas kooskõlas mõõdetud andmetega, kusjuures andmete interpre-
tatsioon pakutud mudeli raames osutub oluliselt erinevaks nende interpretatsioo-
nist turbulentse liikumise mehaanika senise formuleeringu raames. 

 
 
 


