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Interpolation of approximation spaces with
nonlinear projectors
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Abstract. Approximation spaces defined by multiparametric approximation families with
possible nonlinear projectors are considered. It is shown that a real interpolation space for
a tuple of such spaces is again an approximation space of the same type.
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Let
−→
X = (X0, X1, ..., Xn) be a tuple of Banach (or quasi-Banach) spaces,

i.e. each space Xi, i = 0, 1, ..., n, is a Banach (or quasi-Banach) space linearly
and continuously embedded in some linear topological space X . As usual, the
interpolation space K−→

θ ,q
(
−→
X ) is defined by the norm

‖x‖−→
θ ,q

=

( ∫

Rn
+

(t−θ1
1 ...t−θn

n K(
−→
t , x,

−→
X ))q dt1

t1
...

dtn
tn

)1/q

,

where
−→
θ = (θ0, θ1, ..., θn), 0 < θi < 1, θ0 + θ1 + ... + θn = 1,−→

t = (t1, ..., tn) ∈ Rn
+ and

K(
−→
t , x,

−→
X ) = inf

x=x0+...+xn

(‖x0‖X0
+ t1 ‖x1‖X1

+ ... + tn ‖xn‖Xn

)

is the K-functional of the tuple
−→
X .

Let X ⊂ X be a Banach space and A =
{
A~m ⊂ X , ~m ∈ Zd

+

}
be a family

of linear subspaces A~m, where ~m = (m1, ..., md) is a d-dimensional index with
non-negative coordinates mi ≥ 0. We assume that the index set is ordered in
coordinatewise order, i.e. ~m≤~l means that mi ≤ li for 1 ≤ i ≤ d.
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Definition 1. We will say that (X,A) is a d-parametric approximation family if
{0} = A~0 ⊂ A~m ⊂ A~l

for ~m≤~l.

As usual, the approximation number e~k
(x,X) for x ∈ X is defined by the

formula
e~k

(x,X) = inf
{‖x− a‖X , a ∈ A~k

∩X
}

.

Let Φ be an ideal Banach space of functions f : Zd
+ → R such that

l0(Zd
+) ⊂ Φ ⊂ l∞(Zd

+),

where l0(Zd
+) is a space of functions with finite support.

Definition 2. The approximation space EΦ(X,A) is defined by the norm

‖x‖EΦ(X,A) =
∥∥∥
{
e~k

(x,X)
}

~k∈Zd
+

∥∥∥
Φ

.

Note that one-parametric approximation spaces have been considered by
many authors (see, e.g., [1−5]). In the paper [6] multiparametric approximation
spaces were considered, and conditions (on an interpolation functor F and
approximation familyA) were given under which the interpolation space of a tuple
E−→

Φ
(
−→
X,A) = (EΦ0(X0,A), ..., EΦn(Xn,A)) is again the approximation space of

the same type, i.e.,

F [E−→
Φ

(
−→
X,A)] = EF [

−→
Φ]

(F [
−→
X ],A). (1)

A natural condition on the interpolation functor that arises here is the so-called
splitting condition, namely

F [
−→
Φ(
−→
X )] = F [

−→
Φ](F [(

−→
X )]), (2)

where
−→
Φ(
−→
X ) = (Φ0(X0), ...,Φn(Xn)) is a tuple of vector-valued spaces Φi(Xi).

It is known that the “splitting condition” is not always fulfilled. The case where
F is a functor of real interpolation K−→

θ ,q
and

−→
Φ = (l~s0

q0
, ..., l~sn

qn
) is studied in [7]

and [8]; this case is important for applications.
In [6] it was shown that the formula (1) holds for an interpolation functor F

satisfying the “splitting condition” (2) and for a multiparametric approximation
family A with some family of linear projectors. But in some cases, for example,
when considering quasi-Banach spaces (see [9]), it is useful to have an analogous
result for approximation families with nonlinear projectors.

Let us have d one-parametric approximation families

A(k) =
{

A(k)
m ⊂ X0 + ... + Xn,m ∈ Z+

}
, k = 1, ..., d,

and let us consider a special d-parametric approximation family

A =
{

A−→m = A(1)
m1

+ ... + A(d)
md

}
.
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Definition 3. We will say that (
−→
X,A) is complemented if there exists a family of

(possibly nonlinear) operators P
(k)
m : X0 + ... + Xn → A

(k)
m such that

1. P
(k)
m x = x if x ∈ A

(k)
m ,

2. P
(k0)
m0 P

(k1)
m1 = P

(k1)
m1 P

(k0)
m0 ,

3.
∥∥∥P

(k)
m x

∥∥∥
Xj

≤ γ ‖x‖Xj
with γ independent of m, k, j, and x.

To formulate our first result, let us consider operators Q−→m : X0 + ... + Xn →
A−→m given by the formula

Q−→m = I −
d∏

i=1

(I − P (i)
mi

)

and let us also define operators

4Q−→m =
d∏

i=1

(Q−→m+ei
−Q−→m),

where ei, 1 ≤ i ≤ d, is the standard basis in Rd. Let
−→
Φ = (Φ0, ...,Φn) be a tuple

of ideal spaces Φi with the Fatou property
∥∥∥ lim

n→∞ fn

∥∥∥
Φi

≤ limn→∞ ‖fn‖Φi

and such that the operator S is bounded in each Φi:

(Sf)(~k) =
∑

~l≥~k

f(~l),~k ∈ Zd
+.

Then the following theorem is true.

Theorem 4. Suppose that (
−→
X,A) is complemented, the operators P

(k)
m are linear

for k ≤ d − 1 and the operators P
(d)
m possess the following property: for any

decomposition x = x0 + ... + xn (xj ∈ Xj) there exists a decomposition
P

(d)
m x = ym

0 + ... + ym
n such that

∥∥xj − ym
j

∥∥
Xj
≤ γem(xj ;A, Xj),

where γ > 0 is some constant independent of x and m. Then

K(·, x;E−→
Φ

(
−→
X,A)) ≈K(·, {4Q~mx}~m ;

−→
Φ(
−→
X )).

The next theorem shows that spaces considered above are stable under real
interpolation.
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Theorem 5. Suppose that the tuples ~Φ, ~X are such that for the interpolation
functor K~θ,q

the “splitting condition” is fulfilled. Then if the conditions of Theorem
1 hold, we have the equality

K~θ,q
(E~Φ( ~X,A)) =EK~θ,q

(~Φ)(K~θ,q
( ~X),A).
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Aproksimatsiooniruumid mittelineaarsete projektoritega
ja nende interpolatsioon

Irina Asekritova

On vaadeldud mitmest parameetrist sõltuvate parvede võimalike mittelineaar-
sete projektorite poolt defineeritud aproksimatsiooniruume. On näidatud, et selliste
ruumide iga reaalne interpolatsiooniruum moodustab jälle sama tüüpi aproksimat-
siooniruumi.

149


