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Abstract. The goal of the paper was to extend the results on the decomposition of the
state equations of continuous-time nonlinear systems into the discrete-time domain. The
results on accessible–nonaccessible decomposition mimic those of the continuous-time case.
Decomposition is carried out in the vector space of differential one-forms. The results on
observable–unobservable decomposition are not carried over to the discrete-time domain, in
general, since the observable space cannot always be locally spanned by exact one-forms
whose integrals would define the observable state coordinates. We conjecture that for reversible
systems the observable space is integrable.
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1. INTRODUCTION

Accessibility (controllability) and observability are fundamental properties
of control systems. For certain applications it will be useful to have system
representations in which the nonaccessible and unobservable state variables can
be clearly distinguished. Decomposition plays an important role, for example, in
the realization problem. If the realization algorithm [1] is applied to an input–
output equation, the resulting state equations are observable, but not necessarily
accessible. To get a minimal realization, one may apply the algorithm from [2] to
extracting its minimal realization whenever possible. Minimal realizability condi-
tions in [2] are stated in terms of partial derivatives of the input–output equation,
and the algorithm requires inversion of several nonlinear maps.

Although the approach of [2] is direct, it relies on the input–output equation and
is therefore not an intrinsic, coordinate-free solution to the decomposition problem.
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For a continuous-time nonlinear system the decomposition into accessible–
nonaccessible and observable–unobservable subsystems has been carried out both
via differential geometric [3,4] and algebraic methods [5,6]. We will extend the
results of [5,6] to the discrete-time domain where the decomposition is carried
out in the vector space of differential one-forms, and then the state coordinates
of the decomposed subsystems can be found by integrating the corresponding
vector spaces of differential one-forms. Although the results on the accessible–
nonaccessible decomposition mimic those of the continuous-time case, the results
on the observable–unobservable decomposition cannot be extended, ingeneral, to
the discrete-time case. The reason is that the observable space of one-forms can be
nonintegrable, which means that it cannot be spanned by exact one-forms, whose
integrals would define the observable state coordinates.

2. ALGEBRAIC FRAMEWORK

Consider a discrete-time single-input single-output nonlinear systemΣ
described by the equations

x(t + 1) = f(x(t), u(t)),

y(t) = h(x(t)),
(1)

whereu ∈ U ⊂ IR is the input variable,y ∈ Y ⊂ IR is the output variable,x ∈ X,
an open subset ofIRn, is the state variable,f : X × U → X andh : X → Y are
the real analytic functions. A systemΣ is calledreversibleif the state transition
mapf(·, u) is a diffeomorphism ofX, for eachu ∈ U . Reversible systems arise
naturally through the sampling of continuous-time systems.

In order to be able to use mathematical tools from the algebraic framework of
differential one-forms, we assume that the following assumption holds for system
(1) throughout the paper:

Assumption 1. f(x, u) is generically a submersion, i.e. generically

rank
∂f(x, u)

∂(x, u)
= n.

We follow the notation of [7]. Let K denote the field of meromorphic functions
in a finite number of variables{x(0), u(t), t ≥ 0}. The forward-shift operator
δ : K → K is defined byδζ(x(t), u(t)) = ζ(f(x(t), u(t)), u(t + 1)). Under
Assumption 1 the pair(K, δ) is a difference field [7], and up to an isomorphism,
there exists a unique difference field(K∗, δ∗), called theinversive closureof (K, δ),
such thatK ⊂ K∗, δ∗ : K∗ → K∗ is an automorphism and the restriction ofδ∗ toK
equalsδ. In [7] an explicit construction of(K∗, δ∗) is given. By abuse of notation,
hereinafter we assume that the inversive closure(K∗, δ∗) is given and use the same
symbol to denote the difference field(K, δ) and its inversive closure.
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Over the fieldK one can define a difference vector spaceE := spanK{dϕ |
ϕ ∈ K}. The operatorδ induces a forward-shift operator∆ : E → E by

∑

i

aidϕi →
∑

i

δaid(δϕi), ai, ϕi ∈ K.

We will say thatω ∈ E is an exact one-form ifω = dF for someF ∈ K. A
one-formν for whichdν = 0 is said to be closed. It is well known that exact forms
are closed, while closed forms are only locally exact.

Theorem 1 (Frobenius).Let V = spanK{ ω1, . . . , ωr} be a subspace ofE . V is
closed if and only if

dωi ∧ ω1 ∧ . . . ∧ ωr = 0, for any i = 1, . . . , r.

3. THE ACCESSIBLE SPACE

The relative degreer of a one-formω ∈ E is defined to be the least integer such
that∆rω 6∈ spanK{dx}. If such an integer does not exist, we setr = ∞.

A sequence of subspaces{Hk} of E is defined by

H1 = spanK{dx(0)},

Hk+1 = {ω ∈ Hk | ∆ω ∈ Hk}, k ≥ 1,
(2)

and proved to be invariant under the state space diffeomorphism [7]. It is clear that
sequence (2) is decreasing. Denote byk∗ the least integer such that

H1 ⊃ · · · ⊃ Hk∗ ⊃ Hk∗+1 = Hk∗+2 = · · · =: H∞.

Obviously,Hk contains the one-forms whose relative degree is equal tok or higher
thank.

The subspaceH∞ contains the one-forms with infinite relative degree so that
these one-forms will never be influenced by the input of the system. For system (1),
H∞ is a nonaccessible subspace, and the factor spaceXa := X/H∞ such that
Xa ⊕ H∞ = X precisely describes the accessible part of the system, whereX
denotesspanK{dx}.

Theorem 2[7]. The following statements are equivalent:
1. Nonlinear system(1) is strongly accessible;
2. H∞ = {0};
3. Xa = X .

Although Hk are, in general, not completely integrable, i.e. they do not
admit the basis which consists only of closed forms, the limitH∞ turns out to
be completely integrable [7]. There exist locallyr functions, sayζ1, . . . , ζr, with
infinite relative degree so thatH∞ = spanK{dζ1, . . . ,dζr}.
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Since H∞ is invariant under applying forward shift operator, one has in
particular

ζ1(t + 1) = f1(ζ1(t), . . . , ζr(t)),
...

ζr(t + 1) = fr(ζ1(t), . . . , ζr(t)).

Proposition 1. The accessible subspaceXa of system(1) is completely integrable.

Proof. Since the state spaceX and nonaccessible subspaceH∞ are completely
integrable, so is the subspaceXa.

Now, choosingζr+1, . . . , ζn, fromXa = spanK{ dζr+1, . . . , dζn}, we have

ζ1(t + 1) = f1(ζ1(t), . . . , ζr(t)),
...

ζr(t + 1) = fr(ζ1(t), . . . , ζr(t)),

ζr+1(t + 1) = fr+1(ζ(t), u(t)),
...

ζn(t + 1) = fn(ζ(t), u(t)),

where the variablesζ1, . . . , ζr are nonaccessible and the variablesζr+1, . . . , ζn are
accessible.

Example 1. Consider the system [8]

x1(t + 1) = x1(t)(x
2
3(t) + 1)2,

x2(t + 1) = x2(t)(x
2
3(t) + 1)3,

x3(t + 1) = x3(t) + u(t).

Straightforward computation shows that

H3 = H∞ = spanK{d[x3
1(t)/x2

2(t)]}.

Now, choosingζ1(t) = x3
1(t)/x2

2(t) and the other coordinates asζ2(t) = x2(t),
ζ3(t) = x3(t), we get the state equations

ζ1(t + 1) = ζ1(t),

ζ2(t + 1) = ζ1(t)(ζ
2
3 (t) + 1)2,

ζ3(t + 1) = ζ3(t) + u(t),

where the nonaccessible stateζ1 is clearly separated out.
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4. THE OBSERVABLE SPACE

We use the notationuj = [u(0), . . . , u(j)] for j ≥ 0. For eachx0 ∈ IRn and
each control sequenceuk−1 we usex(k, x0,uk−1) to denote the solution of (1) at
timek starting atx(0) = x0 and produced by the input sequenceuk−1.

Also, we define

Hn−1(x0,un−2) =











h(x(0, x0))
h(x(1, x0,u0))
...
h(x(n − 1, x0,un−2))











.

Definition 1 (Observability rank condition).System(1) is said to be locally single
experiment observable if

rankK
∂Hn−1(x0,un−2)

∂x0

= n.

Condition (1) is known as the observability rank condition and in the special
case of the linear systems it reduces the standard Kalman observability criterion.

Define the difference output spacesYk, Y, andU as follows:

Yk = spanK{dy(t), 0 ≤ t ≤ k},

Y = spanK{dy(t), t ≥ 0},

U = spanK{du(t), t ≥ 0}.

To define the observable space in analogy with the continuous-time case, we
introduce the chain of subspaces

0 ⊂ O0 ⊂ O1 ⊂ O2 . . . ⊂ Ok . . . , (3)

whereOk := X ∩ (Yk + U) is called theobservability filtration.

Definition 2. The subspaceX ∩ (Y + U) is called the observable space of
system(1).

The observable space can be computed as the limit of the observability
filtration (3). This limit will be denoted byO∞ and obviously we have

O∞ = X ∩ (Y + U).

The unobservable space of system (1), denoted byXŌ, is defined as a subspace
of X , which satisfies

XŌ
∼= X/O∞, XŌ ⊕O∞ = X ,

where the factor-spaceX/O∞ provides a precise description of the system
unobservable states.
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Proposition 2. The following statements are equivalent:
1. The observability rank condition is satisfied;
2. X ⊂ Y + U ;
3. O∞ = X ;
4. XŌ = {0}.

Unfortunately, unlike in the continuous-time case [3−6] for discrete-time
systems, in general,O∞ is not closed. Consider, for example, the counterexample:

x1(t + 1) = u(t),

x2(t + 1) = x3(t),

x3(t + 1) = x1(t) + x2(t)u(t),

y(t) = x3(t).

(4)

The observability filtration is as follows:

O1 = spK{dx3(t)},

O2 = O3 = . . . = O∞ = spK{dx3(t), dx1(t) + u(t)dx2(t)},

and it is easy to check by Frobenius Theorem thatO2 = O∞ is not completely
integrable. Of course, this is not to say that for most systemsO∞ is not integrable.
Consider another 3rd-order state-affine system

x1(t + 1) = x1(t),

x2(t + 1) = x3(t) + u(t)x2(t),

x3(t + 1) = x2(t),

y(t) = x3(t).

(5)

For this systemO∞ = spK{dx2(t), dx3(t)}, which is obviously integrable. Note,
however, that unlike (4), system (5) is reversible. Still, reversibility is nota
necessary condition forO∞ to be invertible. O∞ can be integrable for some
nonreversible systems as is demonstrated by the following example:

x1(t + 1) = x1(t),

x2(t + 1) = u(t),

x3(t + 1) = x2(t) + x3(t)u(t),

y(t) = x3(t).

Here,O∞ = spK{dx2(t), dx3(t)}.
An interesting open question is if one can find the subclasses with closedO∞.

In the continuous-time case, for analytic systemsO∞ is closed. The continuous-
time case is simpler than the discrete-time one, due to the time-reversibility of
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differential equations. It is an open question if for reversible systemsO∞ is closed
or not. At the moment, we are not aware of any examples of reversible systems
with O∞ being not integrable.

If O∞ is closed, and therefore, has locally an exact basis{dζ1, . . . ,dζr}, one
can complete the set{ζ1, . . . , ζr} to a basis{ζ1, . . . , ζr, ζr+1, . . . , ζn} of X . Then,
in these coordinates, the system reads as

ζ1(t + 1) = f1(ζ1(t), . . . , ζr(t), u(t)),
...

ζr(t + 1) = fr(ζ1(t), . . . , ζr(t), u(t)),

ζr+1(t + 1) = fr+1(ζ(t), u(t)),
...

ζn = fn(ζ(t), u(t)),

y(t) = h(ζ1(t), . . . , ζr(t)).

5. CONCLUSIONS

Using the algebraic formalism based on the classification of the differential
one-forms, we have carried out the decomposition of the state space of thediscrete-
time nonlinear control system into accessible–nonaccessible and observable–
unobservable subsystems. Although the results on accessible–nonaccessible
decomposition mimic those obtained for the continuous-time case, the results on
observable–unobservable decomposition cannot be extended to the discrete-time
case, in general. The reason is that the observable space of differential one-forms
may not be integrable. In this case the subspace cannot be spanned by exact one-
forms, whose integrals define the observable state coordinates. We conjecture that
the observable space is integrable for reversible discrete-time systems.
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Diskreetsete mittelineaarsete juhtimissüsteemide
dekomponeerimine

Ülle Kotta

Artikli eesmärgiks on sarnaselt pidevate süsteemidega dekomponeerida disk-
reetseid mittelineaarseid juhtimissüsteeme kirjeldav olekumudel juhitavaks/mitte-
juhitavaks ja jälgitavaks/mittejälgitavaks alamsüsteemiks. Tulemused juhitava/
mittejuhitava lahutuse kohta imiteerivad pidevate süsteemide jaoks saaduid. Lahu-
tus on leitud üksvormide vektorruumis üle meromorfsete funktsioonide kor-
puse. Tulemused jälgitava/mittejälgitava lahutuse kohta üldjuhul diskreetsetele
süsteemidele üle ei kandu. Põhjus on selles, et vaadeldav üksvormide alamruum
ei ole üldjuhul täielikult integreeruv, st tema baasi ei ole lokaalselt võimalik esitada
eksaktsete diferentsiaalvormide abil, mille integraalid defineeriksid vaadeldavad
olekukoordinaadid. Tuginedes näidetele ja asjaolule, et pidevad süsteemidon ajas
pööratavad, on püstitatud hüpotees, et ajas pööratavate diskreetsete mittelineaarsete
süsteemide vaadeldav alamruum on täielikult integreeruv.
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