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Abstract. The goal of the paper was to extend the results on the decomposition of the
state equations of continuous-time nonlinear systems into the discrete-time domain. The
results on accessible—nonaccessible decomposition mimic those of the continuous-time case.
Decomposition is carried out in the vector space of differential one-forms. The results on
observable—unobservable decomposition are not carried over to the discrete-time domain, in
general, since the observable space cannot always be locally spanned by exact one-forms
whose integrals would define the observable state coordinates. We conjecture that for reversible
systems the observable space is integrable.
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1. INTRODUCTION

Accessibility (controllability) and observability are fundamental properties
of control systems. For certain applications it will be useful to have system
representations in which the nonaccessible and unobservable state variables can
be clearly distinguished. Decomposition plays an important role, for example, in
the realization problem. If the realization algorithij [s applied to an input—
output equation, the resulting state equations are observable, but not necessarily
accessible. To get a minimal realization, one may apply the algorithm ftpta [
extracting its minimal realization whenever possible. Minimal realizability condi-
tions in [?] are stated in terms of partial derivatives of the input—output equation,
and the algorithm requires inversion of several nonlinear maps.

Although the approach of]is direct, it relies on the input—output equation and
is therefore not an intrinsic, coordinate-free solution to the decomposition problem.
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For a continuous-time nonlinear system the decomposition into accessible—
nonaccessible and observable—unobservable subsystems haatreshaut both

via differential geometric**] and algebraic methods{]. We will extend the
results of P-°] to the discrete-time domain where the decomposition is carried
out in the vector space of differential one-forms, and then the statelicates

of the decomposed subsystems can be found by integrating the comégpon
vector spaces of differential one-forms. Although the results on thesadie—
nonaccessible decomposition mimic those of the continuous-time case, the results
on the observable—unobservable decomposition cannot be extendemeiral, to

the discrete-time case. The reason is that the observable space ofmsezn be
nonintegrable, which means that it cannot be spanned by exact oms;fahose
integrals would define the observable state coordinates.

2. ALGEBRAIC FRAMEWORK

Consider a discrete-time single-input single-output nonlinear sysiem
described by the equations

w(t+1) = fla(t),ud)),
y(t) = h(x(t)),

whereu € U C IR is the input variabley € Y C IR is the output variabley € X,
an open subset di”, is the state variable, : X x U — X andh : X — Y are
the real analytic functions. A systeh is calledreversibleif the state transition
map f(-,u) is a diffeomorphism ofX, for eachu € Y. Reversible systems arise
naturally through the sampling of continuous-time systems.

In order to be able to use mathematical tools from the algebraic framework of
differential one-forms, we assume that the following assumption holds/fe s
(1) throughout the paper:

(1)

Assumption 1. f(z,u) is generically a submersion, i.e. generically

Of (x,u)

rank ———~= =

O(x,u)

We follow the notation of {]. Let K denote the field of meromorphic functions
in a finite number of variable$z(0), u(t), ¢t > 0}. The forward-shift operator
0 : K — K is defined byd((z(t),u(t)) = C(f(x(t),u(t)),u(t + 1)). Under
Assumption 1 the paif/C, §) is a difference field ], and up to an isomorphism,
there exists a unique difference fig¢ld*, 6*), called thenversive closuref (I, ),
such thatC c £*, 6* : K* — K* is an automorphism and the restrictionjéfto 1
equalss. In [] an explicit construction ofC*, %) is given. By abuse of notation,
hereinafter we assume that the inversive clogkie 6*) is given and use the same
symbol to denote the difference figl&f, ) and its inversive closure.
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Over the fieldC one can define a difference vector sp&ce= spany{dy |
¢ € K}. The operatod induces a forward-shift operatdy : £ — £ by

> aidpi =Y 6aid(S4), ai, i € K.

We will say thatw € £ is an exact one-form i = dF for someF € K. A
one-formv for whichdr = 0 is said to be closed. It is well known that exact forms
are closed, while closed forms are only locally exact.

Theorem 1 (Frobenius).LetV = spany{ wi, ..., w,} be a subspace &. V is
closed if and only if

dwojAwi Ao Aw, =0, foranyi=1,... 7.

3. THE ACCESSIBLE SPACE

The relative degree of a one-formw € £ is defined to be the least integer such
thatA"w ¢ spani{dz}. If such an integer does not exist, we set oco.
A sequence of subspacél } of £ is defined by

Hi1 = span{dz(0)},

(2)
Hit1 = {we€ Hi | Aw € Hi}, k> 1,

and proved to be invariant under the state space diffeomorpRjsihig clear that
sequence (2) is decreasing. Denote:byhe least integer such that

HlD"'DH}g*DHk*+1:Hk*+2:"'::HOO'

Obviously,H;, contains the one-forms whose relative degree is equabtdigher
thank.

The subspac®{, contains the one-forms with infinite relative degree so that
these one-forms will never be influenced by the input of the system. Btaray(1),
Hoo is @ nonaccessible subspace, and the factor spiace= X' /H, such that
X, ® Ho = X precisely describes the accessible part of the system, wtiere
denotespany{dz}.

Theorem 2[7]. The following statements are equivalent
1. Nonlinear systenfl) is strongly accessibje
3., =2X.

Although H;. are, in general, not completely integrable, i.e. they do not
admit the basis which consists only of closed forms, the lirdit turns out to
be completely integrabl€]. There exist locally- functions, sayi, ..., ., with
infinite relative degree so that., = span,{d¢i,...,d¢ }.

156



Since H., is invariant under applying forward shift operator, one has in
particular

Gt+1) = filG(t),.... ¢ (1),
Cr(t+1) : fr(gl(t)v"'vCr(t))‘

Proposition 1. The accessible subspadg of systen{l) is completely integrable.

Proof. Since the state spacE and nonaccessible subspake, are completely
integrable, so is the subspadg. O

Now, choosing,.+1, .. ., u, from X, = spani{ d¢11, ..., d(,}, we have
Gt+1) = fGQ),--- &),
Gr(t+1) - fr(G(@), -, 6 (1),
Gt +1) = fra(C(t),ult)),
Calt+1) _ fn(C(t), u(t)),

where the variableg, . . ., {, are nonaccessible and the variabjes, . . ., (, are
accessible.

Example 1. Consider the systei]

ri(t+1) = z(t)(3() +1)%
pa(t+1) = @2(t)(23(t) +1)°,
333(75 + 1) = xg(t) + U(t)

Straightforward computation shows that
M3 = Hoo = spanc{d[z{(t)/25(1)]}.

Now, choosing(;(t) = $(t)/z3(t) and the other coordinates &gt) = z2(t),
(3(t) = z3(t), we get the state equations

Qt+1) = G(t),
Git+1) = GG +1)2
Gt+1) = ) +u),

where the nonaccessible stgtds clearly separated out.
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4. THE OBSERVABLE SPACE

We use the notation; = [u(0),...,u(j)] for j > 0. For eachyy, € IR" and
each control sequenasg,_; we usex(k, xg, u;_1) to denote the solution of (1) at
time k starting atz(0) = ¢ and produced by the input sequenge ;.

Also, we define

h(z(0,xzg))

h(z(1,zg,up))
Hn—l(xOvun—Q) == .

h(m(n — 1,20, up—2))

Definition 1 (Observability rank condition)Systen(1) is said to be locally single
experiment observable if
rankyx OHn—1(20, Un—2) =n.

Oxg

Condition (1) is known as the observability rank condition and in the special
case of the linear systems it reduces the standard Kalman observabilitporiter
Define the difference output spac)é%, Y, andi{ as follows:

Y = spang{dy(t), 0<t <k},
Y = spanc{dy(t), t =0},
U = spang{du(t), t > 0}.

To define the observable space in analogy with the continuous-time case, we
introduce the chain of subspaces

0COyCcO,COy...CO..., 3)
whereOy, := X N (V¥ + U) is called theobservability filtration.

Definition 2. The subspaceY N (Y + U) is called the observable space of
systemn(1).

The observable space can be computed as the limit of the observability
filtration (3). This limit will be denoted by, and obviously we have

One = XN (Y +U).

The unobservable space of system (1), denotedfyis defined as a subspace
of X', which satisfies

where the factor-spac&’/O., provides a precise description of the system
unobservable states.
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Proposition 2. The following statements are equivalent
1. The observability rank condition is satisfied

2. X CYy+ U,
3.0, = X;
4. X5 = {0}.

Unfortunately, unlike in the continuous-time cas&q] for discrete-time
systems, in general), is not closed. Consider, for example, the counterexample:

n(t+1) = u),
za(t+1) = x3(t), @
vt +1) = @a(t) +aa(b)ult),
y(t) = as(t).
The observability filtration is as follows:
O1 = spr{das(t)},
Oy = 0O3=...=0c = spy{das(t),dz(t) + u(t)dza(t)},

and it is easy to check by Frobenius Theorem that= O, is not completely
integrable. Of course, this is not to say that for most syst®msds not integrable.
Consider another 3rd-order state-affine system

T (t -+ 1) = xl(t),
J}Q(t + 1) 1‘3(t) + u(t)iL'Q (t), (5)
l’3(t + 1) l’g(t),

y(t) = a3(b).

For this systen®., = spy{dz2a(t),dzs(t)}, which is obviously integrable. Note,
however, that unlike (4), system (5) is reversible. Sitill, reversibility is aot
necessary condition fo., to be invertible. O,, can be integrable for some
nonreversible systems as is demonstrated by the following example:

ri(t+1) = (1),

za(t+1) = u(t),

x3(t+1) xo(t) + x3(t)u(t),
y(t) = wxs(t).

Here,O = spic{dza(t),dzs(t)}.

An interesting open question is if one can find the subclasses with afgsed
In the continuous-time case, for analytic systafhs is closed. The continuous-
time case is simpler than the discrete-time one, due to the time-reversibility of
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differential equations. It is an open question if for reversible syst@mss closed
or not. At the moment, we are not aware of any examples of reversiblensyste
with O, being not integrable.

If O is closed, and therefore, has locally an exact béd{s, ..., d¢, }, one
can complete the sét;, ..., ¢ } toabasig(i, ..., ¢, Gy, - -+, G} Of X Then,
in these coordinates, the system reads as

Cl(t + 1) = fl(Cl(t)v ce 7Cr<t)>u<t))a

GUE+T) = (G0, G0, ult)),
C?"+1(t+1) = fr-i—l(C(t)vu(t))?

G = falC(t)u(t),
() = DG, (),

5. CONCLUSIONS

Using the algebraic formalism based on the classification of the differential
one-forms, we have carried out the decomposition of the state spacedifc¢hete-
time nonlinear control system into accessible—nonaccessible and dilserva
unobservable subsystems. Although the results on accessible—rssiblece
decomposition mimic those obtained for the continuous-time case, the results on
observable—unobservable decomposition cannot be extended to thetadtsme
case, in general. The reason is that the observable space of difitosre-forms
may not be integrable. In this case the subspace cannot be spanneatbgpree-
forms, whose integrals define the observable state coordinates. Wetocoajhat
the observable space is integrable for reversible discrete-time systems.
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Diskreetsete mittelineaarsete juhtimisstisteemide
dekomponeerimine

Ulle Kotta

Artikli eesmargiks on sarnaselt pidevate slisteemidega dekomponeekda dis
reetseid mittelineaarseid juhtimissiisteeme kirjeldav olekumudel juhitavaks/mitte-
juhitavaks ja jalgitavaks/mittejalgitavaks alamsisteemiks. Tulemused juhitava/
mittejuhitava lahutuse kohta imiteerivad pidevate silisteemide jaoks saaduid. Lahu
tus on leitud Uksvormide vektorruumis Ule meromorfsete funktsioonide kor-
puse. Tulemused jalgitava/mittejalgitava lahutuse kohta dldjuhul diskreetsetele
stisteemidele Ule ei kandu. P6&hjus on selles, et vaadeldav Uksvormideaamr
ei ole Uldjuhul taielikult integreeruv, st tema baasi ei ole lokaalselt voimaii&des
eksaktsete diferentsiaalvormide abil, mille integraalid defineeriksid vaadeldav
olekukoordinaadid. Tuginedes néidetele ja asjaolule, et pidevad sisteem@jds
podratavad, on pistitatud hlipotees, et ajas poOratavate diskreetseteandirske
suisteemide vaadeldav alamruum on taielikult integreeruv.
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