Relationship between join and betweenness geometries

Ülo Lumiste

Institute of Pure Mathematics, University of Tartu, J. Liivi 2, 51004 Tartu, Estonia; lumiste@math.ut.ee

Received 14 February 2005

Abstract

A treatment of join geometry was elaborated by Prenowitz and Jantosciak in a voluminous monograph of 1979 (Join Geometries. A Theory of Convex Sets and Linear Geometry), which in most part deals with the theory of convex sets but touches also upon linear geometry and the betweenness relation. The latter relation was taken as the only basic notion (besides the notion of point) by the Estonian mathematicians J. Sarv, J. Nuut, and A. Tudeberg (Humal) in their treatment of the foundations of geometry in the 1930s. A solid betweenness geometry as a theory of betweenness models was worked out by the author of the present paper in 1964 but it appeared in publications not widely available. On the basis of the 1979 monograph, the author analyses the relationship between these two geometries. First, betweenness geometry is recapitulated, and then the more general interimity and betwixtness geometries are introduced. It is proved that a betweenness geometry is at the same time an ordered join geometry, and conversely, an exchanged join geometry is a betwixtness geometry, but the more special ordered join geometry coincides with betweenness geometry. In higher than two dimensions the latter is Desarguesian and leads to a convex region in a linear space over an ordered skew field.

Key words: join geometry, betweenness model, convex region, Desarguesian space.

1. INTRODUCTION

After having about fifty years ago completed his investigations into betweenness geometry (see $\left[{ }^{1,2}\right]$, based on $\left[{ }^{3-5}\right]$) and carried on with problems of differential geometry, the author recently stumbled upon an interesting monograph by W. Prenowitz and J. Jantosciak Join Geometries. A Theory of Convex Sets and Linear Geometry (see $\left.\left[{ }^{6}\right]\right)$. The present paper is the author's reaction to that event.

The betweenness relation has fascinated the investigators for a long time. Already C. F. Gauss in his letter to F. Bolyai (6 March 1832; see [7], p. 222)
pointed to the absence of betweenness postulates in Euclid's treatment. Elimination of this defect was started fifty years later by Pasch [$\left.{ }^{8}\right]$. Further development of the logical foundation of synthetic geometry in the 19th century (through the works of G. Peano, F. Amodeo, G. Veronese, G. Fano, F. Enriques, and M. Pieri) led to Hilbert's fundamental Grundlagen der Geometrie $\left[{ }^{9}\right]$, where the betweenness relation is subjected to the axioms of connection and of order (I 1-7, II 1-5 of Hilbert's list), called by Schur $\left[{ }^{10}\right]$ the projective axioms of geometry.

In the first decades of the 20th century axiomatics of the betweenness relation was investigated in the U.S. by Moore $\left[{ }^{11}\right]$ and Veblen $\left[{ }^{12}\right]$ in the framework of these projective axioms. They indicated also some redundancy in Hilbert's axiomatics, which was taken into consideration by Hilbert in the following editions (e.g. in the seventh edition of $\left[{ }^{9}\right]$). In addition, the standpoint was developed that the lines and planes can be considered as sets of points and that special axioms of connection are expedient only for lines (not for planes, because all requisites for them can be deduced). Note that this standpoint was not accepted by Hilbert in the following editions of his Grundlagen, but was afterwards adopted in the U.S. by Huntington $\left[{ }^{13-16}\right]$, who in 1926 gave an elaborated system of axioms for the betweenness relation, but only in dimension 1, i.e. for the case of a line.

This standpoint was developed further in Estonia, first by Nuut [${ }^{17}$] for dimension one (as a geometrical foundation of real numbers) and afterwards by Sarv [${ }^{3}$] for an arbitrary dimension n. Extending the Moore-Veblen approach, Sarv proposed a self-dependent axiomatics for the betweenness relation, so that all axioms of connection, including also those concerning the lines, became the consequences. This self-dependent axiomatics was simplified and then perfected by Nuut [${ }^{4}$] and Tudeberg (from 1936 Humal) [${ }^{5}$]. As a result an extremely simple axiomatics was worked out for the n-dimensional geometry using only two basic concepts: "point" and "between".

The author of the present paper developed in [${ }^{1}$] a comprehensive theory of the models of betweenness, based on this axiomatics. At the same time it was proved in $\left[{ }^{2}\right]$ that in dimension >2 this model reduces to a convex domain in n-dimensional linear space over an ordered skew field. Later Pimenov [${ }^{18}$] (in Appendix: Local betweenness relation) called the perfected axiomatics the HumalLumiste axiomatics and its model in dimension 2, when the above result cannot be used, the Lumiste plane. As a whole, the theory of these models, including also the Huntington-Nuut theory for dimension 1, can be called the betweenness geometry.

Approximately at the same time, Rubinshtein $\left[{ }^{19-21}\right]$ developed (together with Rutkovskij) a theory of axial structures, which is tightly connected with betweenness geometry and uses some of its results (with exact references to $\left[{ }^{1,2}\right]$).

Independently also another approach, independent of the axioms of connection, was evolved. In $\left[{ }^{22}\right]$, Schur tried to work out a part of geometry based on the basic concepts of "point" and "line segment" (Ger. Strecke). This approach was elaborated by Prenowitz $\left[{ }^{23}\right]$ (see also $\left[{ }^{24,25}\right]$). The segment was considered as the "join" of its endpoints, and so the join operation was introduced in the set of points. In the monograph $\left[{ }^{6}\right]$ a complete join geometry of these join spaces was developed.

The aim of the present paper is to investigate the relationship between the join and betweenness geometries. In join geometry we can rest on $\left[{ }^{6}\right]$. The essential part of it is summarized here in Section 2 (and also afterwards). Since the publications about the betweenness geometry are not widely available (a great deal of them are written in Estonian, namely [${ }^{1,3}$], or in Russian, e.g. [$\left.{ }^{2,18}\right]$), we have to recapitulate here in Sections 4 and 5 the outlines of this theory, relatively little known at present. Meanwhile, in Section 3 the earlier betweenness geometry is separated into some parts having in mind the later join geometry. So the interimity models and betwixtness geometry ${ }^{1}$ are introduced separately.

The main topic is treated in Sections 6 and 7. It is shown that the betweenness geometry is at the same time the ordered join geometry. Conversely, the exchanged join geometry is a betwixtness geometry, but the more special ordered join geometry is a betweenness geometry.

In Section 8 a relationship with the projective geometry is established and the Desarguesian theorem is proved together with its converse. Finally, in Section 9, the Main Theorem is proved, asserting that in higher than two dimension the betweenness geometry (ordered join geometry) is Desarguesian and leads to a convex region in a linear space over an ordered skew field.

2. JOIN SPACE AND JOIN GEOMETRY

Following $\left[{ }^{6}\right]$, let us consider the pair (S, \cdot) of a set S and an operation \cdot, which assigns to any ordered pair (a, b) of elements of S a subset of S, denoted by $a \cdot b$ and called the join of a and b. For any pair (A, B) of subsets of S the set $A \cdot B$ determined by

$$
A \cdot B=\bigcup_{a \in A, b \in B} a \cdot b,
$$

is called the join of A and B.
The pair (S, \cdot) above is called a join system (see $\left[{ }^{6}\right]$, Sections 2.2 and 2.3) if

$$
\mathbf{J} 1: a \cdot b \neq \emptyset ; \mathbf{J} 2: a \cdot b=b \cdot a ; \mathbf{J 3}:(a \cdot b) \cdot c=a \cdot(b \cdot c) ; \mathbf{J} 4: a \cdot a=a,
$$

where in $\mathbf{J 3}(a \cdot b) \cdot c$ is, of course, the join of $a \cdot b$ and c. Further, the subset $a / b=\{x \mid b \cdot x \supset a\}$ is called the extension of a from b, and let $A \approx B$ mean that A and B have a nonempty intersection, i.e. that they have a common element.

The join system is called a join space (see $\left[{ }^{6}\right]$, Section 5.1) if, moreover,

$$
\mathbf{J 5}: a / b \neq \emptyset ; \quad \mathbf{J 6}: a / b \approx c / d \Rightarrow a \cdot d \approx b \cdot c ; \quad \mathbf{J 7}: a / a=a .
$$

[^0]The theory of join spaces, called the join geometry, is developed in the monograph $\left[{ }^{6}\right]$. Mainly the properties of convex sets, in particular of linear sets, and of convex (resp. linear) hulls are considered.

Here a set A is called a convex set if $A \supset x, y$ implies $A \supset x \cdot y$ (see $\left.{ }^{[6}\right]$, Section 2.9). A convex set A for which $A \supset x, y$ implies $A \supset x / y$ is called a linear set (see $\left[{ }^{6}\right]$, Section 6.2). The least linear set which contains a given set A is called the linear hull of this given set and denoted by $<A>\left(\left[{ }^{6}\right]\right.$, Section 6.8). The linear hull of two distinct a and b is called the line $<a b>$. It is established in $\left[{ }^{6}\right]$ (Section 6.10, (2)) that

$$
<a b>\supset a \cdot b \cup a / b \cup b / a \cup a \cup b
$$

If $\mathbf{J 1} \mathbf{- J 7}$ are complemented by

$$
\mathbf{E}:(c \subset<a b>) \wedge(c \neq a) \Rightarrow(<a c>=<a b>)
$$

then the join geometry is called an exchange join geometry (see [${ }^{6}$], Section 11.1).
In such a geometry the linear hull of three a, b, c, not in the same line, is called a plane $<a b c>$ (see $\left[{ }^{6}\right]$, Section 11.6).

In a join geometry the betweenness relation is introduced by the following definition (see $\left[{ }^{6}\right]$, Section 4.23): suppose $x \subset a \cdot b$ and $a \neq b$; then we say x is between a and b, and write $(a x b)$.

Finally the following order postulate is added in [${ }^{6}$], Section 12.1:
O. For every three distinct a, b, c of a line either $a \subset b \cdot c$, or $b \subset a \cdot c$, or $c \subset a \cdot b$, i.e. at least one is between the two others.

If \mathbf{O} is added to $\mathbf{J} \mathbf{1} \mathbf{J} \mathbf{7}$, then the join geometry is called the ordered join geometry. In this geometry (see $\left[{ }^{6}\right]$, Section 12.3)

$$
<a b>=a \cdot b \cup a / b \cup b / a \cup a \cup b
$$

It is established in $\left[{ }^{6}\right]$, Section 12.2 that an ordered join geometry is an exchanged join geometry, but the converse is not valid: there exist examples of exchanged join geometries which are not ordered join geometries (see also [${ }^{23}$, pp. 62-68).

3. BETWEENNESS GEOMETRY AND RELATED MODELS

The independent concept of betweenness model was introduced more than 40 years ago in $\left[{ }^{1,2}\right]$, following $\left[{ }^{3-5}\right]$. Having in mind the join geometry, it is more convenient to separate the definition into some parts as follows.

Let S be a set, and let there be given a subset B in $S \times S \times S$ (i.e. a ternary relation for S). Further $(a b c)$ will mean that $(a, b, c) \in \mathbf{B}$ and then b is said to be between a and c. Moreover, let us denote

$$
\begin{equation*}
\langle a b c\rangle=(a b c) \vee(b c a) \vee(c a b) ; \quad[a b c]=\langle a b c\rangle \vee(a=b) \vee(b=c) \vee(c=a) \tag{1}
\end{equation*}
$$

The triplet (a, b, c) is said to be correct if $\langle a b c\rangle$, and collinear if $[a b c]$. The subset $\{x \mid(a x b)\}$ is called an interval $a b$ with ends a and b.

Let us start with a preparatory concept. The pair (S, \mathbf{B}) is called an interimity model and \mathbf{B} an interimity relation if

$$
\mathbf{B 1}:(a \neq b) \Rightarrow \exists c,(a b c) ; \mathbf{B 2}:(a b c)=(c b a)
$$

$\mathbf{B 3}:(a b c) \Rightarrow \neg(a c b) ; \mathbf{B 4}:\langle a b c\rangle \wedge[a b d] \Rightarrow[c d a] ; \mathbf{B 5}:(a \neq b) \Rightarrow \exists c, \neg[a b c]$.
The basic concept will be introduced by the following definition: if in an interimity model (S, \mathbf{B}), in addition,

$$
\mathbf{B 6}: \neg[a b c] \wedge(a b d) \wedge(b e c) \Rightarrow \exists f,((a f c) \wedge(d e f))
$$

then this (S, \mathbf{B}) is called a betweenness model and \mathbf{B} is said to be a betweenness relation (see $[1,2]$).

A subsidiary concept gives now the following definition: if in an interimity model $(S, \mathbf{B}) \mathbf{B 6}$ is replaced by

$$
\mathbf{B} \overline{\mathbf{6}}: \neg[a b c] \wedge(a b d) \wedge(a e c) \Rightarrow \exists f,((b f c) \wedge(d f e))
$$

then this (S, \mathbf{B}) is called a betwixtness model and \mathbf{B} is said to be a betwixtness relation (see the footnote ${ }^{1}$ above).

The connecting instrument for the betweenness and betwixtness models is the so-called Pasch postulate

$$
\begin{aligned}
\mathbf{P}: & \neg[a b c] \wedge(b e c) \wedge\left(d \in P_{a b c}\right) \wedge\left(d \notin L_{b c}\right) \wedge\left(a \notin L_{d e}\right) \\
& \Rightarrow \exists f,\left(f \in L_{d e}\right) \wedge[(a f b) \vee(a f c)]
\end{aligned}
$$

where $L_{a b}=\{x \mid[x a b]\}$ is a line determined by $a, b, a \neq b$, and $P_{a b c}=Q_{a} \cup Q_{b} \cup Q_{c}$ with noncollinear a, b, c and $Q_{a}=L_{a b} \cup L_{a c} \bigcup_{x \in b c} L_{a x}$ is a plane determined by these a, b, c (and obviously not depending on their reordering).

It will be proved in the present paper that every betweenness model is a join space with an exchange ordered join geometry. On the other hand, every join space with exchanged join geometry is a betwixtness model. As a corollary, every betweenness model is also a betwixtness model. This last result can be established even directly: for every betweenness model also $\mathbf{B} \overline{\mathbf{6}}$ holds and, moreover, also the Pasch postulate \mathbf{P} is valid.

4. THE INTERIMITY MODEL

It is natural to start with the interimity model.
Lemma 1. If in an interimity model ($a b c$), then a, b, c are three distinct points.

Proof. Indeed, $\mathbf{B 3}$ excludes $b=c$, and together with $\mathbf{B 2}$ excludes also $b=a$. Finally, $a=c$ is impossible as well, because if $c=a$, then $b \neq a$ and due to B5 $\exists d, \neg[a b d]$, but on the other hand, $(a b c) \Rightarrow\langle a c b\rangle$ and $(a=c) \Rightarrow[a c d]$, and these together imply due to $\mathbf{B 4}$ that $[d b a]=[a b d]$, but this contradicts $\neg[a b d]$ and finishes the proof.

If a triplet a, b, c is correct, i.e. $\langle a b c\rangle$, then due to Lemma 1 here a, b, c are three different points and due to $\mathbf{B 2}, \mathbf{B 3}$ only one of them is between the two others. Recall that if $[a b c]$, then a, b, c are said to be collinear. It is obvious that correctness and collinearity of any three a, b, c does not depend on their order, i.e.

$$
\begin{equation*}
\langle a b c\rangle=\langle b c a\rangle=\langle c a b\rangle, \quad[a b c]=[b c a]=[c a b] \tag{2}
\end{equation*}
$$

Lemma 2. In an interimity model let a, b, c be collinear, i.e. $[a b c]$ and so (1) holds. Here only the following four possibilities occur:

$$
\text { 1) }(a=b) \vee(b=c) \vee(c=a), \quad \text { 2) }(a b c), \quad \text { 3) }(b c a), \quad \text { 4) }(c a b)
$$

Each of them excludes the three others.
Proof. The first possibility follows from Lemma 1. Due to B2, B3, $(a b c)=$ $(c b a) \Rightarrow \neg(c a b),(a b c) \Rightarrow \neg(a c b)=\neg(b c a)$. Due to the same Lemma 1, $(a b c) \Rightarrow \neg[(a=b) \vee(b=c) \vee(c=a)]$.

Lemma 3. In an interimity model there hold

$$
\begin{gather*}
\neg[a b c] \wedge\langle a b d\rangle \Rightarrow \neg[a c d], \tag{3}\\
\neg[a b c] \wedge[a b d] \wedge[a d c] \Rightarrow(a=d), \tag{4}\\
(a b c) \wedge(b c d) \Rightarrow\langle a b d\rangle, \tag{5}\\
\neg[a b c] \wedge(a d b) \wedge(a e c) \Rightarrow d \neq e \tag{6}
\end{gather*}
$$

Proof. Let us suppose for (3), by reductio ad absurdum, that $[a c d]$. Then due to (1) and B4, $\langle a b c\rangle \wedge[a c d]=\langle a c b\rangle \wedge \neg[a c d] \Rightarrow[b d a]=[a b d]$, but this is impossible.

For (4), $\neg[a b c] \Rightarrow(a \neq b), \neg[a b c] \wedge[a d c] \Rightarrow(b \neq d)$; now by reductio ad absurdum,

$$
[a b d] \wedge(a \neq b) \wedge(b \neq d) \wedge(a \neq d) \Rightarrow\langle a b d\rangle=\langle a d b\rangle
$$

and then due to $\mathbf{B 4}\langle a d b\rangle \wedge[a d c] \Rightarrow[b c a]=[a b c]$, but this is impossible.
For (5), due to Lemma $1,(a b c) \wedge(b c d) \Rightarrow(a \neq b) \wedge(b \neq d)$. Also $d \neq a$, because otherwise, due to $\mathbf{B 2},(b c d)=(b c a)=(a c b)$ and now, due to $\mathbf{B 3}, \neg(a b c)$, which is impossible. Further, due to $(1),(a b c) \wedge(b c d)=\langle b c a\rangle \wedge[b c d]$, and now due to $\mathbf{B 4}[a d b]$, which is, due to (1), equivalent to $[a b d]$, but this together with $(a \neq b) \wedge(b \neq d) \wedge(d \neq d)$ implies $\langle a b d\rangle$, as needed.

For $(6),(a d b) \Rightarrow[a b d]$, and now, by reductio ad absurdum, if one supposes $d=e$, then $(a e c)=(a d c) \Rightarrow[a d c]$, and (4) would yield $a=d$. On the other hand, due to $(1),(a d b) \Rightarrow a \neq d$, which gives a contradiction. This finishes the proof.

For a line the following assertions can be proved, which show that in an interimity model the points a, b are not some specific points of a line $L_{a b}$, but can be exchanged by every two of its different points c, d. Indeed, there holds

Lemma 4. If $c \in L_{a b}$ and $c \neq a$, then $L_{a c}=L_{a b}$.
Proof. This is obvious if $c=b$. Otherwise $[a b c] \wedge(a \neq b) \wedge(b \neq c) \wedge(c \neq a) \Rightarrow$ $\langle a b c\rangle$ and, due to $\mathbf{B 4},\langle a b c\rangle \wedge[a b x] \Rightarrow[c x a]$, thus $x \in L_{a b} \Rightarrow x \in L_{a c}$. But also $\langle a c b\rangle \wedge[a c y] \Rightarrow[b y a]$, thus $y \in L_{a c} \Rightarrow y \in L_{a b}$.

Using this lemma two times, one obtains
Theorem 5. If in an interimity model two different points c, d belong to a line $L_{a b}$, then $L_{c d}=L_{a b}$.

Otherwise, a line is uniquely determined by any two of its different points. Recall that in the definition of a line $L_{a b}$ due to (1) $[x a b]=(x a b) \vee(a b x) \vee$ $(b x a) \vee(x=a) \vee(x=b)$ (note that here $a=b$ is excluded). Hence a and b divide the remaining part of $L_{a b}$ into three subsets: 1) $a b=\{x \mid(a x b)\}$ (note that, due to $\mathbf{B 2}, a b=b a), 2) a / b=\{x \mid(x a b)\}$, and 3) $b / a=\{x \mid(a b x)=(x b a)\}$. Here $a b$ is called the interval with ends a and b; further, a / b will be called its extension over an end a. It follows that $L_{a b}=a b \cup(a / b) \cup(b / a) \cup a \cup b$, i.e. a line $L_{a b}$ is a union of an interval, its ends, and its extensions over both ends.

Note that up to now only B1-B4 are used and, in an extreme case, S can consist only of the points of one single line $L_{a b}$. Further let also $\mathbf{B 5}$ be taken along. Here $\neg[a b c]$ means that a, b, c are three noncollinear points, i.e. three different points, not belonging to one line. If a, b, c are noncollinear, then they are said to be the vertices, the intervals $b c, c a, a b$ the sides (opposite to a, b, c, respectively) of the triangle $\triangle a b c$, which is considered as the union of all of them. Here a / b and b / a are the extensions of the side $a b$, and $a b \cup a \cup b$ is the closed side.

Note that the subset $Q_{a}=L_{a b} \cup L_{a c} \bigcup_{x \in b c} L_{a x}$ in the definition of a plane $P_{a b c}$ can be now interpreted as the union of points on the lines, which are determined by a vertex a of the triangle $\triangle a b c$ and the points of its opposite closed side. The plane $P_{a b c}$ itself can be interpreted as the union of the points on the lines, which are determined by any of the vertices and the points of its opposite closed side of a triangle $\triangle a b c$.

The theory of interimity models is rather poor if one is not willing to add to $\mathbf{B 1}-$ B5 some new postulate. Some possibilities were indicated above, which will lead to the betweenness or betwixtness geometries. The added postulates allow now some interpretations. For instance, the Pasch postulate says that if a line contains a point d of the plane of a triangle $\triangle a b c$, which does not belong to a side or its extension (e.g. $d \notin L_{b c}$), and intersects a side (e.g. $b c$ in e), and does not contain
any of vertices, then this line (e.g. $L_{d e}$) intersects also one of the other two sides (correspondingly in f).

Below analogous interpretations will be given also for $\mathbf{B 6}$ and $\mathbf{B} \overline{6}$.
Remark. The interimity models are in interesting relationship with the geometry of geodesics, developed in $\left[{ }^{26}\right]$ as a theory of G-spaces.

A G-space is a metric space, i.e. a set G with $\rho: G \times G \rightarrow \mathbf{R}^{+}$satisfying a) $\rho(x, y)=0 \Leftrightarrow x=y$, b) $\rho(x, y)+\rho(y, z) \geq \rho(x, z)$, c) $\rho(x, y)=\rho(y, x)$, which is (i) finitely compact, i.e. the bounded infinite subsets in G have limit points, and (ii) convex in the sense of Menger: $(x \neq y) \Rightarrow \exists z, \rho(x, z)+\rho(z, y)=\rho(x, y)$.

Moreover, for every $a \in G$ there must exist a real number $r>0$ so that in the set $\{x \mid \rho(a, x)<r\}$ there exists a point z distinct from the points x and y with $\rho(x, y)+\rho(y, z)=\rho(x, z)$, and if here for z_{1}, z_{2} there would be $\rho\left(y, z_{1}\right)=\rho\left(y, z_{2}\right)$, then $z_{1}=z_{2}$.

The betweenness relation can be introduced in a G-space by
$(x z y) \Longleftrightarrow[\rho(x, z)+\rho(z, y)=\rho(x, y)] \wedge(x, y, z$ are three different points $)$.
Here $\mathbf{B} \mathbf{2}$ follows directly from c). Also $\mathbf{B 3}$ is satisfied. Indeed, if together with ($x z y$) one supposes $(x y z)$, then at the same time $\rho(x, z)+\rho(z, y)=\rho(x, y)$ and $\rho(x, y)+\rho(y, z)=\rho(x, z)$, but this due to c) would lead to $\rho(y, z)=0$, thus to $y=z$ (see a), which is impossible, because x, y, z must be different. If the G-space is not one-dimensional, i.e. neither a straight line nor a circle (see $\left[{ }^{23}\right]$, $\S 9$), then also $\mathbf{B 5}$ is satisfied.

With B4 the situation is more complicated. Here only a part of it holds in general. In $\left[{ }^{26}\right]$, §6 it is proved as (6.6) that $(w x y) \wedge(w y z) \Leftrightarrow(x y z) \wedge(w x z)$ (this follows easily from b)), but B4 as a whole cannot be satisfied in general.

Finally, for $\mathbf{B} 1$ the statements (7.4) and (8.5) of $\left[{ }^{26}\right]$ are substantial. According to these for every point p there exists a positive real number ρ_{p} such that in the sphere $S\left(p, \rho_{p}\right) \mathbf{B} 1$ holds. Consequently, B1 holds everywhere if $\rho_{p}=\infty$, i.e. if geodesics are straight lines.

5. THE BETWEENNESS MODEL

An interimity model will turn into a betweenness model if one adds B6 to B1-B5. The concept of a triangle, introduced in Section 3, allows us to interpret this B6 in the following way.

The premise $\neg[a b c]$ means that there exists a triangle $\triangle a b c$. The other premises $(a b d) \wedge(b e c)$ mean that there are $d \in b / a$ and $e \in b c$, where the side $b c$ and extension b / a have a common endpoint b.

Note that here the premises of $\mathbf{B} \overline{6}$ differ from those of $\mathbf{B 6}$ only by the fact that $e \in b c$ is replaced by $e \in a c$ and so $b c$ is changed by the side $a b$, which does not have a common endpoint with the extension b / a.

It is remarkable that also $\mathbf{B} \overline{\mathbf{6}}$ is valid in a betweenness model. To prove this, first some lemmas are to be established.

Lemma 6. In a betweenness model

$$
\begin{equation*}
\neg[a b c] \wedge(a f b) \wedge(b d c) \wedge(c e a) \Rightarrow \neg[d e f] \tag{7}
\end{equation*}
$$

i.e. there does not exist a line intersecting all three sides of a triangle $\triangle a b c$.

Proof. From (6) it follows that d, e, f are all distinct. Due to Lemma 1 also a, f, b are all distinct, like c, e, a. As a consequence, a, f, e are all distinct. Further, $\neg\langle a f e\rangle$ because otherwise there would be, due to $\mathbf{B 4},\langle a f e\rangle \wedge(c e a) \Rightarrow$ $\langle a e f\rangle \wedge[a e c] \Rightarrow[f c a], \quad(a f b) \wedge[f c a] \Rightarrow\langle a f b\rangle \wedge[a f c] \Rightarrow[b c a]$, which is impossible now. Using permutations, and also (1), one obtains $\neg[a f e] \wedge \neg[b d f] \wedge \neg[c e d]$.

Finally, reductio ad absurdum will be used. So, let us suppose $[d e f]$. Then due to (1),

$$
\langle d e f\rangle=(d e f) \vee(e f d) \vee(f d e)
$$

Here it is sufficient to consider the last case when $(f d e)$, because the other two differ only by a permutation. Due to B6,

$$
\neg[a f e] \wedge(a f b) \wedge(f d e) \Rightarrow \exists p,(a p e) \wedge(b d p)
$$

due to $\mathbf{B 4}$,

$$
(a p e) \wedge(a e c) \Rightarrow\langle a e p\rangle \wedge[a e c] \Rightarrow[p c a]=[c a p]
$$

and similarly

$$
(b d p) \wedge(b d c) \Rightarrow\langle b d p\rangle \wedge[b d c] \Rightarrow[p c b]=[c p b]
$$

Now due to (4),

$$
\neg[c a b] \wedge[c a p] \wedge[c p b] \Rightarrow(c=p)
$$

thus $($ ape $) \wedge(c=p) \Rightarrow(a c e) \Rightarrow \neg(a e c)$, but this contradicts $(c e a)$. Hence the supposition is impossible and (7) holds, indeed. This finishes the proof.

Lemma 7. If for $a b$ and $c d, c \in a b$ and $b \in c d$, then $b \in a d$ and $c \in a d ;$ otherwise,

$$
\begin{equation*}
(a c b) \wedge(c b d) \Rightarrow(a b d) \wedge(a c d) \tag{8}
\end{equation*}
$$

Proof. First the part $(a c b) \wedge(c b d) \Rightarrow(a c d)$ will be proved as follows.
Due to Lemma 1, B5, and B1, $(a c b) \Rightarrow(a \neq c) \Rightarrow \exists e, \neg[a c e]$ and $\neg[a c e] \Rightarrow(c \neq e) \Rightarrow \exists f,(c e f)$. Due to (1) and (3), (acb) $\wedge \neg[a c e] \Rightarrow$ $\langle c a b\rangle \wedge \neg[c a e] \Rightarrow \neg[c b e]$ and $(c e f) \wedge \neg[c e b] \Rightarrow \neg[c f b]$. Further, due to $\mathbf{B 2}$ and B6, $\neg[b c f] \wedge(b c a) \wedge(c e f) \Rightarrow \exists g,(b g f) \wedge(a e g)$ and $\neg[c b f] \wedge(c b d) \wedge(b g f) \Rightarrow$ $\exists h,(c h f) \wedge(d g h)$.

Again, due to (1) and (3), $\langle a e g\rangle \wedge \neg[a e g] \Rightarrow \neg[a b c]=\neg[a c g]$. On the other hand, (5) gives $(a c b) \wedge(c b d) \Rightarrow\langle a c d\rangle$ and now due to (3), $\langle a c d\rangle \wedge \neg[a c g] \Rightarrow$ $\neg[a d g]=\neg[d g a]$. So, due to B6, $\neg[d g a] \wedge(d g h) \wedge(g e a) \Rightarrow \exists i,(d i a) \wedge(h e i)$.

It remains to show that $i=c$. First, due to $\mathbf{B 4},(c e f) \wedge(c h f) \Rightarrow\langle c f e\rangle \wedge$ $[c f h] \Rightarrow[c e h] ;$ similarly, $(h e i) \wedge[c e h] \Rightarrow\langle e h i\rangle \wedge[e h c] \Rightarrow[e i c]$ and $($ dia $) \wedge$ $\langle a c d\rangle \Rightarrow\langle a d i\rangle \wedge[a d c] \Rightarrow[a i c]$. Now, (4) gives $\neg[c a e] \wedge[c a i] \wedge[s i e] \Rightarrow(c=i)$, thus $(d i a) \wedge(c=i) \Rightarrow(d c a) \Rightarrow(a c d)$, indeed.

The remaining part follows easily: $(a c b) \wedge(c b d) \Rightarrow(d b c) \wedge(b c a) \Rightarrow(d b a) \Rightarrow$ $(a b d)$. This finishes the proof.
Lemma 8. If for $a b$ and $a d, c \in a b$ and $b \in a d$, then $b \in c d$ and $c \in a d$; otherwise

$$
\begin{equation*}
(a c b) \wedge(a b d) \Rightarrow(c b d) \wedge(a c d) \tag{9}
\end{equation*}
$$

Proof. First let us prove the part

$$
(a c b) \wedge(a b d) \Rightarrow(a c d)
$$

By the arguments used above one can find e and f, so that $\neg[a b e] \wedge(e a f)$, and then g and h, so that $(b g e) \wedge(f c g)$ and $(a h e) \wedge(d g h)$. Due to (7), $\neg[a b e] \wedge(a c b) \wedge$ $(a h e) \wedge(b g e) \Rightarrow \neg[c g h]$, and due to (3), $\langle g c f\rangle \wedge \neg[g c h] \Rightarrow \neg[g f h]$. Now, B6 gives $\neg[h g f] \wedge(h g d) \wedge(g c f) \Rightarrow \exists i,(h a f) \wedge(d c i)$. But here $i=a$ can be established in the same way as in the previous proof. Thus $(d c i) \wedge(i=a) \Rightarrow(d c a)=(a c d)$, indeed.

It remains to prove the other part $(a c b) \wedge(a b d) \Rightarrow(c b d)$. Here $b \neq c$ and $b \neq d$, but also $c \neq d$, because otherwise $(a b d)=(a b c)$ and, due to $\mathbf{B 3}, \neg(a c b)$, which is impossible.

Further, $(a c b) \wedge(a b d) \Rightarrow\langle b a c\rangle \wedge[b a d]$, and this, due to $\mathbf{B 4}$, gives $[c d b]$ for three different c, d, b, thus $\langle c d b\rangle=(c d b) \vee(d b c) \vee(b c d)$. It remains to show that here only the middle alternative can occur; the other two lead to contadictions.

For $(c d b)=(b d c)$ this follows easily: from the part already proved $(b d c) \wedge$ $(b c a) \Rightarrow(b d a)=(a d b) \Rightarrow \neg(a b d)$.

For $(b c d)=(d c b)$ this is not so easy. Because of $\mathbf{B 5}, \mathbf{B 1},(a c b) \Rightarrow(a \neq$ $b) \Rightarrow \exists e, \neg(a b e) \Rightarrow(e \neq a) \Rightarrow \exists f,(e a f)$. Now, due to $(3),\langle a b d\rangle \wedge \neg[a b e] \Rightarrow$ $\neg[a d e]$ and $\langle b a d\rangle \neg[b a e] \Rightarrow \neg[b d e]$. From B6 now $\neg[e a b] \wedge(e a f) \wedge(a c b) \Rightarrow$ $\exists g,((e g b) \wedge(f c g))$. From the part already proved, $(a c b) \wedge(a b d) \Rightarrow(a c d)$, and from B6, $\neg[e a c] \wedge(e a f) \wedge(a c d) \Rightarrow \exists h,((e h d) \wedge(f c h))$. Now, due to B4, $(f c h) \wedge(f c g) \Rightarrow\langle f c h\rangle \wedge[c f g] \Rightarrow[c h g]$, but, on the other hand, due to (7), $\neg[b d e] \wedge(b c d) \wedge(b g e) \wedge(d h e) \Rightarrow \neg[c g h]$. A contradiction occurs here and this finishes the proof of (9).

Lemma 9. If $c, d \in a b$, then either $c \in a d$, or $d \in a c$, or $c=d$; otherwise

$$
\begin{equation*}
(a c b) \wedge(a d b) \Rightarrow(a c d) \vee(a d c) \vee(c=d) \tag{10}
\end{equation*}
$$

Proof. Due to B4, $(a c b) \wedge(a d b) \Rightarrow\langle a b c\rangle \wedge[a b d] \Rightarrow[c d a]=(c d a) \vee(d a c) \vee$ $(a c d) \vee(c=d) \vee(d=a) \vee(a=c)$. Due to Lemma 1, here $d=a$ and $a=c$ are impossible. But also (dac) is impossible, because from (8) it would follow that $(d a c) \wedge(a c b) \Rightarrow(d c b) \wedge(d a b)$ and, due to B2, B3, $(d a b)=(b a d) \Rightarrow \neg(b d a)=$ $\neg(a d b)$, which gives a contradiction.

Lemma 10. Likewise

$$
\begin{equation*}
(a b c) \wedge(a b d) \Rightarrow(a c d) \vee(a d c) \vee(c=d) \tag{11}
\end{equation*}
$$

Proof. Due to B4, $(a b c) \wedge(a b d) \Rightarrow\langle a b c\rangle \wedge[a b d] \Rightarrow[c d a]=(c d a) \vee(d a c) \vee$ $(a c d) \vee(c=d) \vee(d=a) \vee(a=c)$. Due to Lemma 1, here $d=a$ and $a=c$ are impossible. But also (dac) is impossible, because from (9) it would follow that $(c b a) \wedge(c a d) \Rightarrow(b a d)$, and, due to $\mathbf{B 2}, \mathbf{B 3},(b a d)=(d a b) \Rightarrow \neg(d b a)=\neg(a b d)$, which gives a contradiction.

Note that in (10) the premise is, due to $\mathbf{B} \mathbf{2}$, symmetric with respect to a, b. Thus

$$
(a c b) \wedge(a d b) \Rightarrow(b c d) \vee(b d c) \vee(c=d)
$$

Here $(a c d) \wedge(b c d)$ is impossible because it leads, due to $\mathbf{B 2}$, to $(d c a) \wedge(d c b)$ and this, due to (11), to $(d a b) \vee(d b a) \vee(a=b)$, which contradicts $(a d b)$ (see B1, B2 and Lemma 1). Thus

$$
(a c b) \wedge(a d b) \Rightarrow[(a c d) \wedge(b d c)] \vee[(a d c) \wedge(b c d)] \vee(c=d),
$$

where each component in the conclusion excludes the other two, which is easy to control.

Now we are able to prove
Theorem 11. Every betweenness geometry is also a betwixtness geometry, i.e. if B1-B6 hold, then also $\mathbf{B} \overline{6}$ holds.

Proof. It must be proved that $\neg[a b c] \wedge(a b d) \wedge(a e c) \Rightarrow \exists f,((b f c) \wedge(d f e))$. Due to Lemma 1 and B1, $(a e c) \Rightarrow(a \neq e) \Rightarrow \exists g,(e a g)$. Due to B6, $\neg[e a d] \wedge(e a g) \wedge(a b d) \Rightarrow \exists h,((e h d) \wedge(g b h))$. Now from B2 and (8) it follows that $(a e c) \wedge(e a g)=(c e a) \wedge(e a g) \Rightarrow(c e g)$ and again, due to B6, $\neg[c e d] \wedge(c e g) \wedge(e h d) \Rightarrow \exists i,((c i d) \wedge(g h i))$. From (9) and B2 it follows that $(g b h) \wedge(g h i) \Rightarrow(b h i)=(i h b)$ and again, due to B6, $\neg[c i b] \wedge(c i d) \wedge(i h b) \Rightarrow$ $\exists f,((c f b) \wedge(d h f))$. Now, due to B2 and $(11),(d h f) \wedge(e h d)=(d h f) \wedge(d h e) \Rightarrow$ $(d f e) \vee(d e f) \vee(f=e)$, and from B6 it follows, due to $\neg[a b c] \wedge(a b d) \wedge(b f c)$, that here only ($d f e$) is possible. This finishes the proof.

The following theorem can be proved now as well.
Theorem 12. The interval ab is not empty but is an infinite subset.

Proof. Here $a \neq b$ and, due to B5, $\exists c, \neg[a b c]$, thus $b \neq c$. Due to B1, $\exists d,(b c d)$, thus $\langle b c d\rangle$. Now, due to (3), $\langle b c d\rangle \wedge \neg[b c a] \Rightarrow \neg[b d a]$, thus $(a \neq d)$. The same B1 gives $\exists e,(a d e)$. Here b, d, a must be noncollinear, because b, d, c are correct and otherwise, because of B4, b, c, a would be collinear, which is now impossible. Due to B6, $\neg[a d b] \wedge(a d e) \wedge(d c b) \Rightarrow \exists f,((e c f) \wedge(a f b)) \Rightarrow f \in a b$.

The same argument gives $\exists g,(a g f)$ and, due to Lemma $1, g \neq f$. But from (8), $(a g f) \wedge(a f b) \Rightarrow(a g b)$, thus also $g \in a b$. So this can be continued until infinity. This finishes the proof.

Theorem 13. For a triangle $\triangle a b c$, the subset $\{x \mid \exists y,(b y c) \wedge(a x y)\}$ does not depend on the reordering of vertices a, b, c.

Proof. Here b, c can be interchanged, due to B2. Thus only the interchanging of a, b is to be considered.

Due to (3), $\neg[a b c] \wedge(b y c) \Rightarrow\langle c b y\rangle \wedge \neg[c b a] \Rightarrow \neg[c y a]$. Now, due to B6, $\neg[c y a] \wedge(c y b) \wedge(y x a) \Rightarrow \exists z,((c z a) \wedge(b x z))$. Here a, b are interchanged, indeed. This finishes the proof.

It is natural to call the subset considered in Theorem 13 the interior of the triangle $\triangle a b c$. Here any permutation of a, b, c is admissible.

The interpretation of the Pasch postulate \mathbf{P} can be detailed as follows. Its premises mean that there is a line $L_{e d}$, which is determined by a point e of a side $b c$ of the triangle $\triangle a b c$ and a point d of the plane $P_{a b c}$ of this triangle, and does not contain any of its vertices. The assertion is that this line must intersect at least one of the other two sides in a point f. (Both of them cannot intersect, because this is excluded by Lemma 6.) Briefly: if a line in a plane of a triangle intersects one side and does not contain any of vertices, then it intersects one of the other two sides (but not both of them).

Theorem 14. In the betweenness geometry the Pasch postulate is valid.
Proof. Since $P_{a b c}=Q_{a} \cup Q_{b} \cup Q_{c}$, the point d belongs to one of Q_{a}, Q_{b}, Q_{c}. If $d \in Q_{c}$, then either $d \in L_{c a}$, or $d \in L_{c b}$, or $d \in L_{c x}$, where $x \in a b$. In the first two cases one can use $\mathbf{B 6}$, or $\mathbf{B} \overline{6}$, for $\triangle a b c$ to obtain the needed point f, or simply $f=d$. In the third case one can use the same $\mathbf{B 6}$, or $\mathbf{B} \overline{6}$, for $\triangle a x c$, or $\triangle x b c$.

Note that in \mathbf{P} the vertices a and b can be interchanged. So it suffices to consider the possibility $d \in Q_{a}$. The case $d \in L_{c a}$ was analysed above, but $d \in L_{b a}$ is impossible now (then $L_{e d}$ would contain a and b). Thus only the case remains where $d \in L_{a x}$ with $x \in b c$. If $d \in a / x$ or $d \in x / a$, then $\mathbf{B 6}$ or $\mathbf{B} \overline{6}$ can be used for $\triangle a x b$. If $d \in a x$, then $\mathbf{B 6}$ can be used for $\triangle a x b$ to obtain h, so that $(a h b) \wedge(c d h)$ and now again $\mathbf{B 6}$ can be used for $\triangle a h c$ or $\triangle h b c$ to obtain f in $a c$ or $b c$, respectively. This finishes the proof.

Also the following holds.
Theorem 15. In an interimity geometry, the Pasch postulate \mathbf{P} yields B6, i.e. one can obtain a betweenness geometry adding \mathbf{P}, instead of B6, to B1-B5.

Proof. Let us consider the premises of B6. Here (abd) means, due to definitions of Q_{a} and $P_{a b c}$, that $d \in P_{a b c}$. Moreover, $d \notin L_{b c}$, because otherwise, if $d \in L_{b c}$, one would have, due to Lemma 4, that $L_{b c}=L_{b d}$, but on the other hand, here $d \in L_{a b}$, thus $L_{a b}=L_{b d}$, hence there would be $L_{a b}=L_{b c}$, which contradicts the premise $\neg[a b c]$. Similarly $a \notin L_{d e}$ due the same argument. It follows that the premises of \mathbf{P} are satisfied. The same argument as above gives that here $(a f b)$ is impossible and only (def) can occur. This finishes the proof.

Theorems 15 and 11 together give that in an interimity geometry \mathbf{P} yields also $\mathbf{B} \overline{6}$. This can be proved, of course, also directly using the same argument as above.

Let us stop here temporarily the treatment of betweenness geometry and turn to our main topic, to the relationship between betweenness and join geometries.

6. FROM BETWEENNESS GEOMETRY TO EXCHANGE ORDERED JOIN GEOMETRY

If one wants to proceed from betweenness geometry to join geometry, one has to introduce in (S, \mathbf{B}) first a join operation.

For any two different points $a, b \in S$ let the join $a \cdot b$ be defined as the interval $a b$, i.e. if $a \neq b$, then $a \cdot b=a b$; moreover, let $a \cdot a=a$.

Theorem 16. A betweenness model (S, B) with this join operation turns to be a join space with exchange ordered join geometry.
Proof. One has to show that here $\mathbf{J} 1 \mathbf{-} \mathbf{J}$ are satisfied. J1 (for $b=a$) and $\mathbf{J} \mathbf{4}$ follow directly from the definition of $a \cdot a$, and $\mathbf{J} \mathbf{2}$ from $\mathbf{B 2}$. $\mathbf{J} 1$ for $a \neq b$ follows directly from Theorem 12.

If in $\mathbf{J} \mathbf{3} a, b, c$ are noncollinear, then $(a \cdot b) \cdot c=\{x \mid \exists y,(a y b) \wedge(y x c)\}$ and, due to Theorem 13, this does not depend on the reordering of a, b, c, so that $\mathbf{J} \mathbf{3}$ for this case holds.

If $a=b=c$, then both sides of $\mathbf{J 3}$ are simply a. If $a=b \neq c$, then $(a \cdot a) \cdot c=a \cdot c=a c=\{y \mid(a y c)\}$ and $a \cdot(a \cdot c)=\{x \mid \exists y,(a x y) \wedge(a y c)\}$, but here, due to $\left(9^{\prime}\right),(a x y) \wedge(a y c) \Rightarrow(a x c)$, so that $a \cdot(a \cdot c)=\{x \mid(a x c)\}=a c$ as well. Thus $\mathbf{J} \mathbf{3}$ is satisfied. In the remaining cases $a \neq b=c$ and $a=c \neq b$ the control is similar.

This shows that (S, \mathbf{B}) is at least a join system.
Further, in $\mathbf{J 5}-\mathbf{J 7} a / b=\{x \mid b \cdot x \supset a\}$ is now $a / b=\{x \mid(b a x)\}$ for $a \neq b$ and $a / a=\{x \mid a \cdot x \supset a\}=a$. Here $\mathbf{J 5}$ follows immediately from B1, and J7 is satisfied trivially. It remains to prove that also J6 holds. For this, the following cases are to be considered.

If $a=b$ and $c=d$, then $a / b=a / a=a, c / d=c / c=c$, thus $a / b \approx c / d$ in J6 means that $a=c$, so that $a=b=c=d$ and $a \cdot d=b \cdot c=a$, thus $a \cdot d \approx b \cdot c$, indeed.

If $a=b$, but $c \neq d$, then $a / b=a / a=a$ and $a / b \approx c / d$ means that $a \in c / d$, which is equivalent to (acd), thus $a \in L_{c d}$ and, due to Lemma $1, a, c, d$ are all
different. Hence, due to Lemma 4, $L_{a d}=L_{a c}$ and either $a d \subset a c$ or $a c \subset a d$, so that $a \cdot d \approx b \cdot c=a \cdot c$, indeed.

In general, $a \neq b$ and $b \neq d$. Now $a / b \approx c / d$ means that $\exists x,(x a b) \wedge(x c d)$. Here two subcases are to be treated separately.

If x, b, c are noncollinear, then, due to Theorem 11 and $\mathbf{B} \overline{\mathbf{6}}, \neg[x c b] \wedge(x c d) \wedge$ $(x a b) \Rightarrow \exists y,(c y b) \wedge(d y a)$, thus $y \in a \cdot d$ and $y \in b \cdot c$, so $a \cdot d \approx b \cdot c$, indeed.

If x, b, c are collinear, then $b \in L_{x c}$, moreover $d \in L_{x c}$, so that $x, b, c, d \in L_{x c}$. Due to Lemma 4, $L_{x b}=L_{x c}$ and since $(x a b)$, also a belongs to the same line. Here, due to $x \in a / b$ and $x \in c / d$, there exist several possibilities for the allocation of a, b, c, d on this line. For each of them it can be shown that $a \cdot d \approx b \cdot c$.

All this shows that (S, \mathbf{B}) is a join space. Moreover, its geometry is an exchange join geometry. Indeed, Lemma 4 shows that here \mathbf{E} is satisfied, because $L_{a b}$ in betweenness geometry and $l_{a b}$ in join geometry are the same subsets, as is seen from their decompositions in Sections 3 and 2, respectively.

Also \mathbf{O} is here satisfied. Indeed, three distinct a, b, c of a line are collinear, thus $[a b c]=(a b c) \vee(b c a) \vee(c a b)$ holds, but this is exactly $b \subset a \cdot c$, or $c \subset b \cdot a=a \cdot b$, or $a \subset c \cdot b=b \cdot c$. This finishes the proof.

7. FROM EXCHANGE JOIN GEOMETRY TO BETWIXTNESS AND BETWEENNESS GEOMETRIES

Let now the converse be investigated. So let one have a join space (S, \cdot) with the exchange join geometry, i.e. J1-J7 and \mathbf{E} hold.

In join geometry the points a_{1}, \ldots, a_{m} are called linearly dependent if $a_{i} \subset<a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}>$ for some $i, 1 \leq i \leq m$. The set $\left\{a_{1}, \ldots, a_{n}\right\}$ of linearly independent points for which $<a_{1}, \ldots, a_{n}>=S$ is called the basis of exchange join geometry and $n-1$ is called its dimension (see [${ }^{6}$], Section 11.6).

The betweenness relation (...) in join geometry is introduced as follows (see Section 1 above):

$$
(a b c)=(a \neq c) \wedge b \subset a \cdot c
$$

Theorem 17. The betweenness relation turns a join space (S, \cdot), with exchange join geometry and dimension >1, into a betwixtness model.

Proof. Here B1 and B2 follow immediately from J1 and J2. To establish that B3: $(a b c) \Rightarrow \neg(a c b)$ holds, let us use reductio ad absurdum. So let together with $(a b c)$ also ($a c b$) hold; in terms of join geometry, at the same time $a \neq c$, $b \subset a \cdot c$, and $c \subset a \cdot b$. From this, by eliminating b and using J3, J4, one would get $c \subset a \cdot(a \cdot c)=(a \cdot a) \cdot c=a \cdot c$, so $c \subset a \cdot c$, but this contradicts Theorem 4.9 in $\left[{ }^{6}\right]$, which asserts that if $a \neq c$, then $a \cdot c \not \supset a, c$. (The proof of this assertion by reductio ad absurdum is simple: suppose $a \cdot a \supset c$; then due to $\mathbf{J} \mathbf{2} c \cdot a \supset c$, thus $a \subset c / c=c$ by $\mathbf{J} 7$, that is $a=c$, but this contradicts the supposition.)

For B4 we have first to interpret $\langle a b c\rangle=(a b c) \vee(b c a) \vee(c a b)$. This means that a, b, c are all different and $(b \subset a \cdot c) \vee(c \subset b \cdot a) \vee(a \subset c \cdot b)$. Thus
$[a b d]=(b \subset a \cdot d) \vee(d \subset b \cdot a) \vee(a \subset d \cdot b) \vee(a=b) \vee(b=d) \vee(d=a)$. Since in B4 $a \neq b$, but a / b in both join and betweenness geometries is the same set (indeed, $a / b=\{x \mid b \cdot x \supset a\}=\{x \mid(x a b)\}$; cf. Theorem 10), also $<a b>$ and $L_{a b}$ is the same set, as follows from their common decomposition $a b \cup(a / b) \cup(b / a) \cup a \cup b$. Hence in $\mathbf{B 4}\langle a b c\rangle \wedge[a b d]$ is equivalent to $(c, d \subset<a b>) \wedge(c \neq a)$. Now due to $\mathbf{E}<a c>=<a b>$ and since $d \in L_{a b}$ yields $d \in L_{a c}$, due to $L_{a b}=\langle a b\rangle=<a c>=L_{a c}$, so $[d a c]=[c d a]$, as is needed in $\mathbf{B 4}$.

B5 is a consequence from the assumption that dimension of the join space is >1.

Finally, $\mathbf{B} \overline{6}$ follows from J6. Indeed, $\neg[a b c] \wedge(a b d) \wedge(a e c)$ means in join geometry that $a \subset b / d$ and $a \subset e / c$, so that $b / d \approx e / c$. Due to J6 now $b \cdot c \approx d \cdot e$, thus f exists so that $f \subset b \cdot c$ and $f \subset d \cdot e$. Remembering here the definition of between in join geometry, one sees that $(b f c) \wedge(d f e)$, as is needed for $\mathbf{B} \overline{\mathbf{6}}$. This finishes the proof.

Recall that among exchanged join geometries there are ordered join geometries.

Theorem 18. Every ordered join geometry is also a betweenness geometry.

Proof. An ordered join geometry, as well as an exchanged join geometry, is also a betwixtness geometry, as was just established in the previous theorem. In $\left[{ }^{6}\right]$, Section 12.23, Exercise 2, it is asserted that in ordered join geometry, moreover, the Pasch postulate \mathbf{P} is valid. (Here it can be noted that Pasch postulate is the same for the join space and the interimity model because the line is the same, as is established above, and likewise the plane is the same. Indeed, the decomposition $P_{a b c}=Q_{a} \cup Q_{b} \cup Q_{c}$ in interimity model holds also for ordered join geometry, as follows from Theorem 12.20 of $\left[{ }^{6}\right]$, namely from its particular case for $<a_{1}, a_{2}, a_{3}>$.) Further, it is easy to prove that \mathbf{P} yields B6. Indeed, the premises $\neg[a b c] \wedge(a b d) \wedge(b e c)$ of $\mathbf{B 6}$ say that d and e satisfy the conditions stated in premises of \mathbf{P}. So also the assertion of \mathbf{P} is valid. But $(a f b)$ is here impossible, because then $d \subset<a b>$ and $f \subset<a b>$ would hold in this join geometry, thus due to Theorem 11.1 in [${ }^{6}$] one would have $\langle d e\rangle=\langle a b\rangle$, which contradicts a premise of \mathbf{P}. This finishes the proof.

Note that there exist examples of exchange join geometries which are not ordered join geometries. One such simple example is given in $\left[{ }^{6}\right]$, Section 12.1, for dimension 1, but there are indicated also other examples in dimension n; one of these can be found in $\left[{ }^{23}\right]$, pp. 62-68. Among the last examples there exist also the betwixtness geometries which are not betweenness geometries. This shows that although Pasch postulate yields both $\mathbf{B 6}$ and $\mathbf{B} \overline{\mathbf{6}}$ as was established above, $\mathbf{B} \overline{\mathbf{6}}$ does not yield B6.

At the present time betwixtness geometry is not as profoundly developed as betweenness geometry.

8. LINES AND PLANES IN A BETWEENNESS 3-SPACE

Theorem 14 shows that in a betweenness geometry one can use all concepts and results of an exchange ordered geometry, as derived in $\left[{ }^{6}\right]$. (Note that many of them are given alredy in $\left[{ }^{1,2}\right]$.) In particular, a subset is linear if it is closed under extension ($\left[^{6}\right]$, Section 6.3). In $L=<a_{1}, \ldots, a_{n+1}>$ the points a_{1}, \ldots, a_{n+1} are linearly independent if no fewer than $n+1$ of them generate L (in the sense that L is their linear hull). Then they form a basis of L and n is called the dimension of L; the denotation $n=d(L)$ will be used ($\left[{ }^{6}\right]$, Section 11.6). So every line $L=L_{a b}$ has dimension 1, every plane $L=P_{a b c}$ has dimension 2. An L of dimension 3 is called a 3 -space.

Theorem 5 above has the following generalization (given in $\left[{ }^{6}\right]$ as Theorem 11.8):

Theorem 19. Let a_{1}, \ldots, a_{n+1} be linearly independent. Then there is a unique linear subset of dimension n which contains a_{1}, \ldots, a_{n+1}, namely $\left.<a_{1}, \ldots, a_{n+1}\right\rangle$.

For $n=2$ and $n=3$ this was established earlier in $\left[{ }^{1}\right]$ (as Theorems 18 and 29 , respectively).

Let us consider further a 3 -space L and prove the following assertion (see $\left[^{1}\right]$, Theorem 30).

Theorem 20. If two planes of a 3 -space L have a common point p, then they have one more common point $q, q \neq p$, thus a common line $L_{p q}$. If these planes do not coincide, then all of their common points belong to this line $L_{p q}$.
Proof. Let the first plane be determined as $<p a b>$ and the other as $\langle p c d\rangle$. On the first points e and f can be taken so that $(b p f) \wedge(a f e)$. Then the 3space considered is $L=<a b c e>$ and is determined by the tetrahedron with vertices a, b, c, e, edges $a b, b c, c a, a e, b e, c e$, and faces $a b c, a b e, b c e, c a e$; here, e.g., $a b c=(a \cdot b) \cdot c$ (using join geometry notations) is the interior of $\triangle a b c$ and due to Theorem 13 (or J3) does not depend on the reordering of a, b, c. The opposite edges and faces are defined as usual, i.e. not having a common vertex.

For d there are, with respect to the tetrahedron above, the following four possibilities: d is collinear with 1) two vertices, or 2) one vertex and one point of some of its opposite edge, or 3) one vertex and one point of its opposite face, or 4) one point of an edge and other point of the opposite edge. (This follows from [$\left.{ }^{6}\right]$, Theorem 12.20, which for $n=4$ is the nearest generalization of the statements above that $L_{a b}=a b \cup(a / b) \cup(b / a) \cup a \cup b$ and $P_{a b c}=Q_{a} \cup Q_{b} \cup Q_{c}$; see also [${ }^{1}$], Theorem 2.)

For the first possibility, one of the vertices a, b, e is q. For the second possibility, q is one of the points of the edges $a b, a e$ or $b e$.

In the third possibility, the vertices must be considered separately. For c the point of its opposite face abe, collinear with c, d, is indeed the desired q. For b, let the point of ace, which is collinear to b, d, be denoted by g. Now
$\neg[b p d] \wedge(b p f) \wedge(b g d)$, thus, due to $\mathbf{B} \overline{\mathbf{6}}, \exists h,(p h d) \wedge(f h g)$. For g, as a point of the interior ace of $\triangle a c e$, there exists i so that $(a i e) \wedge(c g i)$. Now $\neg[i g f] \wedge(i g c) \wedge(g h f)$, and due to $\mathbf{B 6} \exists q,(i q f) \wedge(c h q)$. This q is the other point needed. For the remaining two vertices the situation is analogous.

In the fourth possibility, let d be collinear to points u and v of egdes $a c$ and $b e$, respectively. Here $L_{p v} \subset P_{a b e}$ and either $a \subset L_{p v}$, then $q=a$, or, in view of Pasch postulate, $L_{p v}$ intersects one of the other two edges $a b$ and $a e$. Let it intersect $a e$ in w, so that $(v p w)$. Now $\neg[v u w] \wedge(v u d) \wedge(v p w)$ and, due to $\mathbf{B} \overline{\mathbf{6}}, \exists f,(u f w) \wedge(d f p)$; further, $\neg[a u w] \wedge(a u c) \wedge(u f w)$ and thus, due to $\mathbf{B 6}, \exists q,(a q w) \wedge(c f q)$. This q is now the point needed.

The other pairs of opposite edges can be reduced to this previous case by reordering a, b, e.

Together with points p and q, both planes above contain also the line $L_{p q}$. If we suppose that these planes have a common point outside this $L_{p q}$, then these planes would coincide due to Theorem 19, which is impossible. This finishes the proof.

The set of all lines through a fixed point o is called a bundle of lines; o is its centre. The planes through o are called the bundle planes.

Due to Theorem 20 every two different bundle lines determine a bundle plane containing theses lines, and two different bundle planes in a 3 -space intersect in a bundle line. Hence the bundle of lines in a 3 -space turns to be a projective plane, interpreting its lines and planes as the "points" and (straight-)"lines". Then $L_{o a}$ and $P_{\text {oab }}$ will be denoted by A and $A B$, respectively. The analogue of a "triangle" is then a trihedron angle $\triangle A B C$, its "vertices" A, B, C are then the edge lines. The bundle planes through two different edge lines of a tetrahedron angle are then called the face planes $A B, B C$, and $C A$.

Theorem 21 (the Desarguesian theorem). If between the edge lines of two tetrahedron angles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ of a bundle of lines (with centre o) in a 3 -space there is a one-to-one correspondence $A \rightarrow A^{\prime}, B \rightarrow B^{\prime}, C \rightarrow C^{\prime}$, such that the bundle planes $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ intersect in a bundle line $L_{o d}=D$, then the intersected lines $A B \cap A^{\prime} B^{\prime}, B C \cap B^{\prime} C^{\prime}$, and $C A \cap C^{\prime} A^{\prime}$ of the corresponding face planes belong to a bundle plane.

Proof. Let a, a^{\prime}, d be chosen on $L_{o a}=A, L_{o a^{\prime}}=A^{\prime}, L_{o d}=D$ so that $\left(a d a^{\prime}\right)$. Further, let b, b^{\prime} be chosen on $L_{o b}=B, L_{o b^{\prime}}=B^{\prime}$ so that $\left(d b b^{\prime}\right)$, and c, c^{\prime} on $L_{o c}=C, L_{o c^{\prime}}=C^{\prime}$ so that $\left(d c c^{\prime}\right)$, but $c \notin P_{a b d}$. Here $P_{a b c} \neq P_{a^{\prime} b^{\prime} c^{\prime}}$. Moreover, $\neg\left[a^{\prime} b^{\prime} d\right] \wedge\left(a^{\prime} d a\right) \wedge\left(d b b^{\prime}\right)$. Due to B6, $\exists p,\left(a^{\prime} p b^{\prime}\right) \wedge(a b p)$.

Also $\neg[d b c] \wedge\left(d b b^{\prime}\right) \wedge\left(d c^{\prime} c\right)$. Due to $\mathbf{B} \overline{\mathbf{6}}, \exists q,(b q c) \wedge\left(b^{\prime} q c^{\prime}\right)$. Similarly, $\neg[a d c] \wedge\left(a d a^{\prime}\right) \wedge\left(d c c^{\prime}\right)$. Due to $\mathbf{B} \overline{\mathbf{6}}, \exists r,(a r c) \wedge\left(a^{\prime} c^{\prime} r\right)$.

Now $A B \cap A^{\prime} B^{\prime}=L_{o p}, B C \cap B^{\prime} C^{\prime}=L_{o q}, C A \cap C^{\prime} A^{\prime}=L_{o r}$. Here p, q, r are common points of two different planes $P_{a b c}$ and $P_{a^{\prime} b^{\prime} c^{\prime}}$, therefore they belong to a line, thus $L_{o p}, L_{o q}, L_{o r}$ belong to a bundle plane, indeed. This finishes the proof.

Also the converse holds.

Theorem 22 (the converse Desarguesian theorem). If between the edge lines of two tetrahedron angles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ of a bundle of lines (with centre o) in a 3 -space there is a one-to-one correspondence $A \rightarrow A^{\prime}, B \rightarrow B^{\prime}, C \rightarrow C^{\prime}$, such that the intersect lines $A B \cap A^{\prime} B^{\prime}, B C \cap B^{\prime} C^{\prime}$, and $C A \cap C^{\prime} A^{\prime}$ of the corresponding face planes belong to a bundle plane, then the bundle planes $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ intersect in a bundle line $L_{o d}=D$.

Proof. Let $A A^{\prime} \cap B B^{\prime}=D=L_{o d}$. It must be established that $C C^{\prime} \supset D$. To this end, let $C D \cap C^{\prime} A^{\prime}$ be denoted by C_{1}. It suffices to prove that $C_{1}=C^{\prime}$.

Now for the trihedron angles $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C_{1}$ the premises of Theorem 21 are satisfied. Thus the intersected lines $A B \cap A^{\prime} B^{\prime}, B C \cap B^{\prime} C_{1}$, and $C A \cap C_{1} A^{\prime}=C^{\prime} A^{\prime}$ of the corresponding face planes belong to a bundle plane. But now on the same bundle plane lies also $B C \cap B^{\prime} C^{\prime}$. This means that $B^{\prime} C^{\prime}$ and $B^{\prime} C_{1}$ intersect $B C$ on the same bundle line and hence coincide. It follows that also $C_{1}=C^{\prime}$. This finishes the proof.

Theorem 23. If in a 3 -space among the points $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime}$ any three are noncollinear and 1) $b^{\prime} \in P_{a a^{\prime} b}$, 2) $c, d \notin P_{a a^{\prime} b}$, 3) $c^{\prime} \in P_{a a^{\prime} c} \cap P_{b b^{\prime} c}$, 4) $d^{\prime} \in P_{a a^{\prime} d} \cap P_{b b^{\prime} d}$, 5) $P_{a a^{\prime} b} \cap P_{c c^{\prime} d} \neq \emptyset$, then $c, d, c^{\prime}, d^{\prime}$ belong to a plane.

Proof. If $L_{a a^{\prime}}$ and $L_{b b^{\prime}}$ intersect in a point o, then $P_{a a^{\prime} c} \cap P_{b b^{\prime} c} \ni o$. Due to Theorem 20 the intersection line $P_{a a^{\prime} c} \cap P_{b b^{\prime} c}$ goes through o. The same holds also for $P_{a a^{\prime} d} \cap P_{b b^{\prime} d}$ and so the assertion is valid.

If $L_{a a^{\prime}} \cap L_{b b^{\prime}}=\emptyset$, one can choose p so that $(a b p)$ and $b^{\prime} \in L_{b b^{\prime}}$ so that $\left(a^{\prime} b^{\prime} p\right)$. Due to premise 5) and Theorem 20, $P_{a a^{\prime} b} \cap P_{c c^{\prime} d}$ is a line, on which points e and e^{\prime} can be chosen so that $\exists q,\left(b q e^{\prime}\right) \wedge\left(b^{\prime} q e\right)$. Due to B6, $\exists r,\left(a^{\prime} r e\right) \wedge(p q r)$.

Let us consider, in the bundle of lines with centre c, the trihedrons determined by a, b, e^{\prime} and by $a^{\prime}, b^{\prime}, e$, respectively. The bundle planes $P_{c a a^{\prime}}, P_{c b b^{\prime}}$, and $P_{c e e^{\prime}}$ intersect in a bundle line $L_{c c^{\prime}}$. Due to Theorem 21 the intersection lines of the corresponding face planes belong to a bundle plane. It follows that $L_{a e^{\prime}} \ni r$ and so, in the bundle of lines with centre d, the corresponding face planes of trihedrons, determined by a, b, e^{\prime} and by $a^{\prime}, b^{\prime}, e$, intersect in lines belonging to the bundle plane $P_{d p q}$. Now, due to Theorem 22, the bundle planes of the corresponding edge lines, among them also $P_{d e e^{\prime}}$, intersect in the bundle line $L_{d d^{\prime}}$. But this $P_{d e e^{\prime}}$ contains both $L_{c c^{\prime}}$ and $L_{d d^{\prime}}$. This finishes the proof.

9. LINEARLY ORDERED SKEW FIELDS AND COORDINATES

A well-known construction allows us to introduce coordinates in the projective space as points-symbols, and to define the addition and multiplication operations for these symbols, using the Desarguesian postulate, so that as a result a skew field is obtained (see $\left[{ }^{27}\right]$, also $\left[{ }^{28}\right]$ and $\left[{ }^{29}\right], \mathrm{Ch} .20$). By this and Theorems 2123 one can introduce the coordinates from a linearly ordered skew field into the betweenness geometry (and due to Theorems 16 and 18 also into the ordered join
geometry) so that the considered model (join space) is isomorphic to a convex region of a linear space over an linearly ordered skew field.

What follows shows shortly how to realize this programme.
The bundle of lines with centre o in a 3-space was considered above as a projective plane, where $L_{o a}, L_{o b}, \ldots$ are interpreted as the "points" A, B, \ldots, and $P_{\text {oab }}$ is interpreted as a (straight) "line" $A B$. In [${ }^{27}$], Ch. VI, $\S 5$, two constructions are given.

Let on a "line" $A B$ three "points" O, E, U be given so that U is different from A, B. The "points" P, Q can be chosen so that P, Q, U are "collinear" (i.e. belong to a "line").
I. In general, let R, S be chosen so that R, P, A are "collinear", Q, R, O are "collinear", S, Q, B are "collinear", and R, S, U are "collinear". Then T_{I} on $A B$, which is "collinear" with P and S, is interpreted as $T_{I}=A+B$.
In [${ }^{27}$], Ch. VI, $\S \S 5,7$, it is proved that the allocation of T depends only on O, U, A, B and does not depend on the choice of P, Q, "collinear" with U. It is also established that $A+B=B+A$ and that the "points" of "line" $A B$, excluding U, with respect to this " + " constitute a commutative group. (Note that if we turn the projective plane into an affine plane with "improper points U, P, Q ", the above construction turns to the parallel transport of the segment $[O B]$, so that O coincides with A, i.e. to the classical addition of segments.)
II. In general, let R, S be chosen so that R, P, A are "collinear" and S, Q, B are "collinear" as above, but now Q, R, E are "collinear" and R, S, O are "collinear". Then $T_{I I}$ on $A B$, which is "collinear" with P and S is interpreted as $T_{I I}=A \cdot B$.
In $\left[{ }^{27}\right], \mathrm{Ch} . \mathrm{VI}, \S \S 5,7$, it is proved that the allocation of $T_{I I}$ depends only on O, E, U, A, B and does not depend on the choice of P, Q, "collinear" with U, also that with respect to " + " and "." the "points" of "line" $A B$, excluding U, constitute a skew field. Here O and E are in the role of neutral elements, i.e. of null and unit, respectively. It is established as well that if one alters the allocation of O, E, U on $A B$, the new skew field is isomorphic to the previous one.

Now the coordinates from the skew field can be introduced into a betweenness space of dimension >2 as follows.

Let first a 3-space be considered. There exist four linearly independent points $a_{0}, a_{1}, a_{2}, a_{3}$. One can choose a point e which does not belong to any of four planes, determined by some three of them.

Considering the bundle of lines with centre $a_{i}, i \in\{1,2,3\}$, and denoting $L_{a_{i} a_{0}}=O_{i}, L_{a_{i} a_{j}}=U_{k}$, where the indices i, j, k have three different values, one can take $P_{a_{0} a_{i} a_{j}} \cap P_{e a_{i} a_{k}}$ in the role of $E_{j k}$ and introduce on the "line" of "collinear" $O_{i}, E_{j k}, U_{k}$, excluding U_{k}, the structure of a skew field $K_{j k}$. Here $K_{j k}$ and $K_{i k}$ are isomorphic, as is shown in $\left[{ }^{27}\right]$, Ch . VI, §§6, 8, where the isomorphism is denoted by $T_{i k}^{j k}$; also $K_{k j}$ and $K_{j k}$ are isomorphic with isomorphism $T_{k j}^{j k}=H_{j k}$. Thus there exists a skew field which is isomorphic to all of them and which is called in $\left[{ }^{27}\right]$ the skew field K of this geometry.

Let x be a point not belonging to $P_{a_{1} a_{2} a_{3}}$. Then $L_{a_{i} x_{k}}=P_{a_{0} a_{i} a_{j}} \cap P_{x a_{i} a_{k}}$ is a "point" $X_{i, k}$ of the "line" $O_{i} E_{k}$, which does not coincide with U_{k} and thus is an element of K. Here actually $X_{i, k}$ does not depend on k, i.e. $X_{i, j}=X_{i, k}=X_{i}$, as is shown in [${ }^{1}$] using Theorem 23.

These X_{1}, X_{2}, X_{3}, as elements of K, represent in a 3-space the coordinates of the point x, not belonging to $P_{a_{1} a_{2} a_{3}}$, with respect to the frame $\left\{a_{0} a_{1} a_{2} a_{3} ; e\right\}$.

In the betweenness model (equivalently, in a join space with ordered join geometry) also of dimension $n>3$ by means of analogous construction one can introduce the coordinates from a skew field K with respect to a frame $\left\{a_{0} a_{1} \ldots a_{n} ; e\right\}$, where the points $a_{0}, a_{1}, \ldots, a_{n}$ are linearly independent, and e is linearly independent with every n of them.

Note that the projective part of this for bundles of lines with centres a_{1}, \ldots, a_{n} can be found in $\left[{ }^{27}\right]$, Ch. VI, $\S 8$, where also the following is proved.

Theorem 24. Every projective space of dimension n (either with $n>2$ or the Desarguesian theorem holds) can be represented in the form of $P_{n}(K)$, which is a set of points being in bijection with the equivalence classes in $K^{n+1} \backslash\{0\}$, where $K^{n+1}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right)\right\}, x_{i} \in K, i \in\{0,1, \ldots, n\},\{0\}=(0,0, \ldots, 0)$ and equivalence is determined by $\left(x_{i}^{\prime}\right) \sim\left(x_{i}\right) \Longleftrightarrow \exists \lambda, x_{i}^{\prime}=\lambda x_{i}$.

To be more concrete, let us return to a 3 -space, considering it with respect to a frame $\left\{a_{0} a_{1} a_{2} a_{3} ; e\right\}$. The coordinates above X_{1}, X_{2}, X_{3} for a point x are connected with projective coordinates $x_{0}, x_{1}, x_{2}, x_{3}$ for bundles of lines with centres a_{1}, a_{2}, a_{3} by $X_{i}=x_{i}: x_{0}, i \in\{1,2,3\}$. Now to the points x of the plane $P_{a_{1} a_{2} a_{3}}$ (these were left out above, but in projective coordinates they are determined by $x_{0}=0$) one can ascribe the symbols $x_{i} / 0$, where x_{i} are the last three projective coordinates of a point of $L_{a_{0} x}$. In [${ }^{27}$], Ch. VI, §8, Theorem III, it is proved that three points a, b, x with projective coordinates, respectively, $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$, $\left(b_{0}, b_{1}, b_{2}, b_{3}\right),\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$, are collinear if and only if the rank of a 3×4-matrix of these coordinates is less than 3. For different a and b this means that $\left(x_{\alpha}\right)$ is a linear combination of linearly independent $\left(a_{\alpha}\right)$ and $\left(b_{\alpha}\right)$, i.e. there exist $\lambda, \mu \in K$ such that $x_{\alpha}=\lambda a_{\alpha}+\mu b_{\alpha}, \alpha \in\{0,1,2,3\}$. For $X_{i}=x_{i} / x_{0}, i \in\{1,2,3\}$, this gives $X_{i}=\bar{\lambda} A_{i}+\bar{\mu} B_{i}$, where $\bar{\lambda}=\lambda a_{0} /\left(\lambda a_{0}+\mu b_{0}\right), \bar{\mu}=\mu b_{0} /\left(\lambda a_{0}+\mu b_{0}\right)$, $A_{i}=a_{i} / a_{0}$, and $B_{i}=b_{i} / b_{0}$. Here $\lambda+\bar{\mu}=1$ so that $X_{i}=\lambda A_{i}+(1-\lambda) B_{i}$. For $A=(1,0,0)=a_{1}$ and $B=(0,0,0)=a_{0}$ this gives $X=(\bar{\lambda}, 0,0)$. In betweenness geometry (and also in ordered join geometry) the line $L_{a_{1} a_{0}}$ (the line $<a_{1} a_{0}>$, respectively) is a linearly ordered set of points. Hence the skew field K of this geometry is a linearly ordered skew field, and x with coordinates $X_{i}=\bar{\lambda} A_{i}+(1-\bar{\lambda}) B_{i}$ is between the points a and b with coordinates, respectively, A_{i} and B_{i} if and only if $0<\bar{\lambda}<1$ in this K.

Note that there can be triples (X_{1}, X_{2}, X_{3}) which do not determine any point in the betweenness geometry. Namely, the lines, determined by $\left(X_{2}, X_{3}\right),\left(X_{3}, X_{1}\right)$, and (X_{1}, X_{2}) in bundles of lines with centres, respectively, a_{1}, a_{2}, and a_{3}, need not intersect in a point x, but only belong to a plane for every pair (and so determine a new object, a so-called ideal or non-proper point). Hence, one can obtain instead
of the whole K^{3} only a region of it, which for the betweenness geometry must be convex, of course. (For join geometry it is noted, e.g. in [${ }^{6}$], Section 2.9.)

In general, for a betweenness geometry (ordered join geometry) of dimension $n>3$ the result is the same, only in the deduction above $i \in\{1, \ldots, n\}$. All this can be summarized as follows.

Main Theorem. A betweenness model (join space with ordered join geometry) of dimension $n \geq 3$ is isomorphic to a convex region of a linear space K^{n} over a linearly ordered skew field K, where the betweenness is determined as above.

Remarks

1. The Main Theorem is formulated for a betweenness model in $\left[{ }^{1}\right]$ with a sketch of proof. For an ordered join geometry it is probably new, as far as we know; at least we cannot find it in the monograph [${ }^{6}$].
2. The betweenness geometries (ordered join geometries) of dimension $n \geq 3$, for whose bundles of lines the Pappus theorem is valid, correspond to the case when in the Main Theorem K is commutative, i.e. reduces to an ordered field (see $\left[{ }^{27}\right], \mathrm{Ch} . \mathrm{V}, \S 8$).
3. The betweenness planes (in $\left[{ }^{18}\right]$ called Lumiste planes), have not been investigated sufficiently up to now. At least the Main Theorem above does not hold for $n=2$, in general, because there exist non-Desarguesian planes. One such example, given in $\left[{ }^{30}\right]$, is described in $\left[{ }^{9}\right]$ (1930), §23, and $\left[{ }^{27}\right]$, Ch. VI, §2. Another example is given in $\left[{ }^{26}\right]$, §12: a paraboloid $z=x y$ in Euclidean E^{3}, where ($a b c$) for its points means that b is between a and c on the geodesic line through the latter two (see also $\left[{ }^{31}\right]$).
4. Due to $\left[{ }^{27}\right]$, Ch. VI, §9, Theorem 1, non-Desarguesian Lumiste planes are also non-Pappian.

ACKNOWLEDGEMENTS

The author would like to thank the referee whose suggestions helped improve the exposition. The financial support of the Estonian Science Foundation (grant No. 5281) is appreciated.

REFERENCES

1. Lumiste, Ü. Geomeetria alused. Tartu Riiklik Ülikool, Tartu, 1964.
2. Lumiste, Ü. On models of betweenness. Eesti NSV Tead. Akad. Toim. Füüs.-Mat.- ja Tehn.tead., 1964, 13, 200-209 (in Russian; Math. Rev., 1965, 29.6360).
3. Sarv, J. Geomeetria alused. Acta Comment. Univ. Tartuensis (Dorpatensis), 1931, A19, No. 4.
4. Nuut, J. Einige Bemerkungen über Vierpunktaxiome. Acta Comment. Univ. Tartuensis (Dorpatensis), 1932, A23, No. 4.
5. Tudeberg, A. Über die Beweisbarkeit einiger Anordnungsaussagen in geometrischen Axiomensystemen. Acta Comment. Univ. Tartuensis (Dorpatensis), 1934, A26, No. 6.
6. Prenowitz, W. and Jantosciak, J. Join Geometries. A Theory of Convex Sets and Linear Geometry. Springer, New York, 1979.
7. Gauss, C. F. Werke, Bd. 8. Grundlagen der Geometrie. Teubner, Göttingen, 1900.
8. Pasch, M. Vorlesungen über neuere Geometrie. Teubner, Leipzig, 1882 (2nd ed. by Pasch, M. and Dehn, M., Springer, Berlin, 1926).
9. Hilbert, D. Grundlagen der Geometrie, Festschrift zur Feier der Enthüllung des Gauss-Weber-Denkmals in Göttingen. Teubner, Leipzig, 1899 (Siebente umgearbeitete und vermehrte Auflage, Teubner, Leipzig/Berlin, 1930).
10. Schur, F. Ueber die Grundlagen der Geometrie. Math. Ann., 1901, 55, 265-292.
11. Moore, E. H. On the projective axioms of geometry. Trans. Amer. Math. Soc., 1902, 3, 142-158.
12. Veblen, O. A system of axioms for geometry. Trans. Amer. Math. Soc., 1904, 5, 343-384.
13. Huntington, E. V. and Kline, J. R. Sets of independent postulates for betweenness. Trans. Amer. Math. Soc., 1917, 18, 301-325.
14. Huntington, E. V. Set of completely independent postulates for cyclic order. Proc. Nat. Acad. Sci. USA, 1924, 10, 73-78.
15. Huntington, E. V. A new set of postulates for betweenness with proof of complete independence. Trans. Amer. Math. Soc., 1926, 26, 6-24.
16. Huntington, E. V. The four principal types of order. Trans. Amer. Math. Soc., 1935, 38, $1-9$.
17. Nuut, J. Topologische Grundlagen des Zahlbegriffs. Acta Comment. Univ. Tartuensis (Dorpatensis), 1929, A15, No. 5.
18. Pimenov, R. I. Spaces of kinematic type (a mathematical theory of space-time). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1968, 6 (in Russian; English translation: Kinematic spaces, Consultation Bureau, New York/London, 1970).
19. Rubinshtein, G. Sh. On an intrinsic characteristic of relatively open convex sets. Dokl. Akad. Nauk SSSR, 1970, 193, 1004-1007 (in Russian).
20. Rubinshtein, G. Sh. Duality in mathematical programming and some problems of convex analysis. Uspekhi Mat. Nauk, 1970, 25, 5(155), 171-201 (in Russian).
21. Rubinshtein, G. Sh. and Rutkovskij, N. V. Axial structures and foundations of geometry. Dokl. Akad. Nauk SSSR, 1980, 254, 1342-1345 (in Russian).
22. Schur, F. Grundlagen der Geometrie. Teubner, Leipzig, 1909.
23. Prenowitz, W. A contemporary approach to classical geometry. Amer. Math. Month., 1961, 68 (No. 1, Part II), 1-67.
24. Prenowitz, W. and Jantosciak, J. Geometries and join spaces. J. reine angew. Math., 1972, 257, 100-128.
25. Prenowitz, W. and Jordan, M. Basic Concepts of Geometry. Blaisdell, New York, 1965.
26. Busemann, H. The Geometry of Geodesics. Academic Press, New York, 1955.
27. Hodge, W. V. D. and Pedoe, D. Methods of Algebraic Geometry, Vol. I. Cambridge University Press, Cambridge, 1947 (Russian translation: Moskva, 1954).
28. Skornyakov, L. A. Projective planes. Uspekhi Mat. Nauk, 1951, 6, 6(46), 112-154 (in Russian).
29. Hall, M. The Theory of Groups. MacMillan, 1959 (Russian translation: Moskva, 1962).
30. Moulton, F. R. A simple non-Desarguesian plane geometry. Trans. Amer. Math. Soc., 1902, 3, 192-195.
31. Priess-Crampe, S. Angeordnete Strukturen: Gruppen, Körper, Projektive Ebenen. Springer, Berlin, 1983.

Ühenduvuse ja vahelsuse geomeetria vahekord

Ülo Lumiste

Prenowitzi ja Jantosciaki mahukas monograafia aastast 1979 ühenduvuse geomeetriast käsitleb põhiosas kumerate hulkade geomeetriat, kuid puudutab ka lineaargeomeetriat ja vahelsuse relatsiooni. Viimane oli (koos punkti mõistega) võetud eesti matemaatikute J. Sarve, J. Nuudi ja A. Tudebergi (Humala) poolt 1930. aastail arendatud geomeetria aluste ainsaks põhimõisteks. Sellel alusel töötas käesoleva artikli autor 1964. aastal välja soliidse vahelsuse geomeetria kui vahelsuse mudelite teooria, kuid sellal leidis see avaldamist ainult vähese rahvusvahelise levikuga väljaannetes. Nü̈d, mil talle sattus kätte 1979. aasta monograafia, käsitleb ta artiklis nende kahe geomeetria vahekorda. Uuesti on antud vahelsuse geomeetria lühitutvustus vajalikus ulatuses, kusjuures eelnevalt on välja arendatud selle alaosad. Põhiosas on tõestatud, et vahelsuse geomeetria on ühtlasi järjestatud ühenduvuse geomeetria, ja vastupidi: vahetuslik ühenduvuse geomeetria langeb kokku vahelsuse geomeetria ühe alaosaga, kuid spetsiaalsem järjestatud ühenduvuse geomeetria kogu vahelsuse geomeetriaga. Ühtlasi on näidatud, et viimases, kõrgema kui kahe mõõtme juhul, kehtib Desargues'i teoreem ning seetõttu on vastav mudel isomorfne kumera hulgaga samamõõtmelises lineaarses ruumis üle teatava, täielikult järjestatud kaldkorpuse.

[^0]: 1 Here the word "betwixt" has been in mind (which, according to dictionaries, is now archaic except in the expression betwixt and between), as well as the word "interim".

