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Abstract. The problem of the approximation of a given histogram by a function from Sobolev
space under inequality constraints for area matching conditions is considered. The smoothing
problem is reduced to the problem of linear programming with some nonlinear restrictions.
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1. INTRODUCTION

Let a mesh4n : a = t0 < t1 < ... < tn = b be given for the interval[a, b], and
let F = {f1, . . . , fn} be a corresponding histogram, i.e.,fi is the frequency for the
interval[ti−1, ti], wherei = 1, . . . , n. The mesh sizes are denoted byhi = ti−ti−1.

In many practical applications it is of interest to have a functiong from the
Sobolev spaceW r

2 [a, b], which satisfies the area matching conditions

ti
∫

ti−1

g(t)dt = fihi, i = 1, . . . , n.

The problem of histopolation is solvable, but not uniquely. We propose to use the
smoothing functional

b
∫

a

(g(r)(t))2 dt

as an objective function.
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We consider a more general case of the histopolation problem because the
information of the frequenciesfi, i = 1, . . . , n, which are obtained in applications
as a result of measuring, experiment or preliminary calculations may be inexact.
Let εi ≥ 0, i = 1, . . . , n, be given numbers. We pose the following

Problem 1.

b
∫

a

(g(r)(t))2 dt −→ min
g∈Wr

2 [a,b]
∣

∣

∣

∣

∣

∣

ti
∫

ti−1

g(t)dt−fihi

∣

∣

∣

∣

∣

∣

≤εi,i=1,...,n

. (1)

It is a problem of smoothing histopolation. Ifn ≤ r, then any polynomial of
degreer−1, which satisfies the condition of histopolation, gives the solution of the
problem (1). If n > r and no algebraic polynomial of degreer − 1 satisfies the
inequalities|

∫ ti
ti−1

g(t)dt − fihi| ≤ εi, i = 1, . . . , n, then the problem (1) has the

unique solution (e.g. [1]). This solution is a spline of degree2r and defect 1, which
minimizes the smoothing functional under restrictions. We assume in the sequel
the uniqueness of the solution.

Under the assumption of the existence and uniqueness of the solution of
the problem (1) it will be reduced to the problem of quadratic programming
with positive semidefined matrix and obstacles of inequality type by the series
of equivalent transformations. The method for finding this solution by the
modification of the simplex method is described.

2. SPACE OF INTEGRAL SPLINES

In the case of exact information(i.e. εi = 0, for all i) we have a histopolation
problem the solution of which is a splines of one variable from the space of integral
splines of degree2r and defect 1 over the mesh4n S(4n) (e.g. [1]):

S(4n) = {s ∈ W r
2 [a, b] : ∀g ∈ W r

2 [a, b]

ti
∫

ti−1

g(t) dt = 0, i = 1, . . . , n,

=⇒

b
∫

a

g(r)(t)s(r)(t) dt = 0 }.

This spline is called histospline.
In the case of inexact information(i.e. εi > 0 for somei) the smoothing

problem (1) has also the solution from the space of integral splines (see also,
e.g., [1]). Its solution is a smoothing histospline.

It is known that s ∈ S(4n) if and only if s can be written as
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s(t) =
r−1
∑

j=0

ajt
j +

(−1)r+1

(2r)!

n
∑

i=1

di((t − ti)
2r
+ − (t − ti−1)

2r
+ ),

where the coefficientsdi satisfy the equalities

n
∑

i=1

di

ti
∫

ti−1

tk dt = 0, k = 0, . . . , r − 1.

The coefficientsdi, i = 1, . . . , n, characterize the derivative of order2r:

di = (−1)rs(2r)(t), t ∈ [ti−1, ti].

We need the following

Theorem 2.1(e.g. [1]). A spline s ∈ S(4n) is the solution of Problem1 if and
only if it satisfies the conditions:

• s is a polynomial of degree2r on each interval(ti−1, ti), i = 1, . . . , n;

• s ∈ C2r−1[a, b];

• s(q)(a) = s(q)(b) = 0, q = r, . . . , 2r − 1;

•

∣

∣

∣

∣

∣

∣

∣

ti
∫

ti−1

s(t)dt − fihi

∣

∣

∣

∣

∣

∣

∣

≤ εi, i = 1, . . . , n;

•






























































di = 0 if

∣

∣

∣

∣

∣

∣

∣

ti
∫

ti−1

s(t)dt − fihi

∣

∣

∣

∣

∣

∣

∣

< εi,

di ≥ 0 if

ti
∫

ti−1

s(t)dt − fihi = −εi,

di ≤ 0 if

ti
∫

ti−1

s(t)dt − fihi = εi, for i = 1, . . . , n.

(2)

Lemma 2.1(e.g. [1]). For any functiong ∈ W r
2 [a, b] and any splines ∈ S(4n)

there holds
b

∫

a

g(r)(t)s(r)(t)dt =
n

∑

i=1

di

ti
∫

ti−1

g(t)dt.
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If we denote by si ∈ S(4n) the spline which satisfies the conditions
∫ tj
tj−1

si(t)dt = δijhj , i, j = 1, . . . , n, whereδij is the Kronecker symbol,

then s1, . . . , sn is a basis of the spaceS(4n) and any splines ∈ S(4n) can be
written in the form

s(t) =
n

∑

i=1

yisi(t), whereyi =
1

hi

ti
∫

ti−1

s(t)dt. (3)

3. THE SMOOTHING PROBLEM AS THE PROBLEM OF
QUADRATIC PROGRAMMING

Taking into account that the solution of the smoothing problem (1) is an integral
spline, we can restrict the class of functionsW r

2 [a, b] by the spaceS(4n) and
restate Problem 1 as

Problem 2.
b

∫

a

(s(r)(t))2 dt −→ min
s∈S(4n)

∣

∣

∣

∣

∣

∣

ti
∫

ti−1

s(t)dt−fihi

∣

∣

∣

∣

∣

∣

≤εi, i=1,...,n

.

This is a minimization problem in the spaceS(4n) of dimensionn. We
rewrite the smoothing functional as a function of newn non-negative variables

zi =
1

hi

ti
∫

ti−1

s(t)dt −

(

fi −
εi

hi

)

, i = 1, . . . , n. (4)

Let us express the splines with respect toz using (3) and (4):

s(t) =
n

∑

i=1

(

fi −
εi

hi

+ zi

)

si(t).

Therefore

di =
n

∑

j=1

(

fj −
εj

hj

+ zj

)

dji, i = 1, . . . , n, (5)

where(dij)j=1,...,n are the coefficients of the basis splinesi.
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By Lemma 2.1 we obtain

b
∫

a

(s(r)(t))2dt =
n

∑

i=1

di

ti
∫

ti−1

s(t)dt

=
n

∑

i=1

n
∑

j=1

(

fj −
εj

hj

+ zj

)

(fihi − εi + zihi)dji

=
n

∑

i=1

n
∑

j=1

zihizjdji +
n

∑

i=1

n
∑

j=1

zi

(

fj −
εj

hj

)

(hi + hj)dji

+
n

∑

i=1

n
∑

j=1

(

fj −
εj

hj

)

(fihi − εi)dji.

By introducing the matrix D = (hidji)i,j=1,...,n and the vectors c =
(ci)i=1,...,n, where ci =

∑n
i=1

∑n
j=1(fj − εj/hj)(hidji + hjdij) and z =

(zi)i=1,...,n Problem 2 can be rewritten in the matrix form:

Problem 3.
zDzT + czT −→ min

z∈IRn
+, zj≤2

εj

hj
, j=1,...,n

.

Problem 3 is a problem of quadratic programming under linear restrictions and
it is equivalent to the smoothing problem (1).

Lemma 3.1.The matrixD is symmetric and positive semidefinite.

Proof. The transformations of the expressions fordij = dj(si) and dji = di(sj)
on the basis of Lemma 2.1

hidji =
n

∑

k=1

dk(sj)

tk
∫

tk−1

si(t)dt =

b
∫

a

s
(r)
i (t)s

(r)
j (t)dt,

hjdij =
n

∑

k=1

dk(si)

tk
∫

tk−1

sj(t)dt =

b
∫

a

s
(r)
i (t)s

(r)
j (t)dt

prove the equalityhidji = hjdij .
The inequalityzDzT ≥ 0 for any vectorz ∈ IRn is proved by the identity

zDzT =

b
∫

a

(s(r)
z (t))2dt, (6)
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where sz is the spline which satisfies the conditions
∫ tk
tk−1

sz(t)dt = zkhk, k =

1, . . . , n. The equality (6) is obtained by direct calculations

zDzT =
n

∑

i=1

zihi

n
∑

j=1

zjdji =
n

∑

i=1

zihidi(sz) =
n

∑

i=1

di(sz)

ti
∫

ti−1

sz(t)dt

=

b
∫

a

(s(r)
z (t))2dt.

4. THE SMOOTHING PROBLEM AS THE PROBLEM OF LINEAR
PROGRAMMING UNDER SOME NONLINEAR CONDITIONS

Problem 3 is a problem of quadratic programming under linear restrictions and
we use Wolfe’s method to reduce it to the problem of linear programming with
some nonlinear conditions. The reasoning in this reduction is similar to that of [2]
and we consider only important steps.

We start with the Lagrange function

F (z, λ) = zDz> + cz> + λ(z − 2ε)T ,

where λ = (λi)i=1,...,n is the vector of Lagrange multipliers andε =
(εi/hi)i=1,...,n.

Taking into account necessary conditions forz to be a solution of Problem 3
(e.g. [3]), by introducing slack non-negative variables(z̄i)i=1,...,n and(µi)i=1,...,n

as µi = 2(DzT )i + ci + λi and z̄i = 2εi/hi − zi, i = 1, . . . , n, we can
rewrite Problem 3 as a linear programming minimization problem of an auxiliary
non-negative variableu under some nonlinear restrictions:

Problem 4.
u −→ min (7)

2DzT + cT + λT − µT + uE = 0,

z + z̄ = 2ε, µzT = 0, λz̄T = 0,

z ≥ 0, z̄ ≥ 0, λ ≥ 0, µ ≥ 0, u ≥ 0,

where the vectorE is any vector with components as 0, 1, and−1. The existence of
a non-negative solution of Problem 3 implies that zero is the solution of Problem 4.

Theorem 4.1. Let Problem1 have the unique solution. Then it is equivalent to
Problem4 in the following sense:

• Problem4 has the unique solution too,
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• the solution of Problem1 determines the solution of Problem4 and the
solution of Problem4 determines the solution of Problem1 by (4).

The proof is similar to the proof of Theorem 3.1 from [2] and is based on the
checking of the conditions (2) for the solution of (1), which are obtained by the
solutionz of Problem 4.

5. CONSTRUCTION BY A MODIFICATION OF THE SIMPLEX
METHOD

Problem 4 differs from problems of linear programming in two simple
nonlinear conditionsµz> = 0, λ(z̄)> = 0. For the solution of the problem a
modification of the simplex method based on Wolfe’s and Daugavet’s works [4]) is
suggested. We give a short description of this algorithm.

Initial plan

• We choose any combination ofz and z̄ taking into account the condition
zT + z̄T = 2 ε and ziz̄i = 0, i = 1, . . . , n, (only for the initial plan) (for
example,zi = 2εi/hi, z̄i = 0, i = 1, . . . , n).

• The corresponding elements ofµ andλ are determined in such a way that
µzT = 0, λz̄T = 0 (for example, ifzi = 2εi/hi, thenµi = 0).

• We take an initial value ofu > 0, choose the sign beforeu (the vectorE)
and the correspondingλ ≥ 0, µ ≥ 0 in such a way that they satisfy
the equations 2DzT + cT + λT − µT + uE = 0 (for example, if
zi = 2εi/hi, i = 1, . . . , n, then µi = 0, i = 1, . . . , n, we can take
u = max{|(2DzT + cT )i| : 1 ≤ i ≤ n}, elements ofE as−1 and choose
λi = −2(DzT )i − ci + u, i = 1, . . . , n).

Iterations

Every step of the method is a transformation of the simplex table, taking
into account the lexicographic ordering (it allows us to avoid iterative loops) and
the additional conditionsµz> = 0, λz̄T = 0. We can show that the additional
nonlinear condition does not prevent us from doing it by analogy of the proof of this
fact for a similar system in [5], where under the assumption that the next simplex
iteration cannot be done without violation of these nonlinear conditions we proved
that in this case the last basic solution givesu = 0, i.e. the solution of (7).

There are three possibilities of the location ofzi andz̄i in the table:

• zi being in the upper part of the table means that the solutions of Problem 1
satisfies the condition

∫ ti
ti−1

s(t)dt = fihi + εi;
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• z̄i being in the upper part of the table means thats satisfies the condition
∫ ti
ti−1

s(t)dt = fihi − εi;

• location of zi and z̄i in the lower part means thats satisfies the strict
inequality|

∫ ti
ti−1

s(t)dt − fihi| < εi.

Note thatzi andz̄i cannot be in the upper part of the table simultaneously.
The algorithm completes its work when the variableu appears in the upper part

of the table. As was proved by Daugavet ([4]), this occurs in a finite number of
steps when the matrixD is positive semidefinite.

This method give us the values of the components of the vector(fi − εi/hi +
zi)i=1,...,n. The corresponding histospline can be constructed by some of the known
methods of the construction of histosplines.
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Ühest siluvate histosplainide leidmise meetodist

Natalia Budkina

Töös käsitletakse antud histogrammi põhjal lähendava funktsiooni leidmist,
mis määratakse kui minimiseerimisülesande lahend. Selles ülesandes on lubatavaks
hulgaks Sobolevi ruumi osahulk, millesse kuuluvad funktsioonide keskmised või-
vad erineda histogrammi keskmistest etteantud vigade piirides, sihifunktsioonon
aga loomulik norm Sobolevi ruumi elementide kõrgeimat järku tuletisest. Kasuta-
des asjaolu, et taolise ülesande lahendiks on teadaolevalt paarisjärku naturaalsplain,
näidatakse, kuidas silumisülesanne taandub ruutplaneerimise ülesandele. Saadud
ruutplaneerimise ülesande omadused võimaldavad selle omakorda taandada
lineaarse sihifunktsiooniga minimiseerimisülesandele, milles mittelineaarsus esi-
neb kitsendustes. Vaatamata kitsendustes olevale mittelinaarsusele, on rakendatav
simpleksmeetodi modifikatsioon, mis annab lõpliku arvu sammudega lahendi.
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