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Abstract. The problem of the approximation of a given histogram by a function from Sobolev
space under inequality constraints for area matching conditions is considered. The smoothing
problem is reduced to the problem of linear programming with some nonlinear restrictions.
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1. INTRODUCTION

Letamesh\, : a =ty < t; < ... < t,, = b be given for the intervdk, b], and
let FF = {f1,..., fn} be acorresponding histogram, i.¢.js the frequency for the
interval(t;_1,t;], where: = 1,...,n. The mesh sizes are denotediyy= t;—t;_1.

In many practical applications it is of interest to have a functjoinom the
Sobolev spacéV; [a, b], which satisfies the area matching conditions

t;

/g(t)dt: fihi, i1 =1,...,n.

ti—1

The problem of histopolation is solvable, but not uniquely. We propose to use the
smoothing functional

b
[ a
as an objective function.
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We consider a more general case of the histopolation problem because the

information of the frequencieg;, i = 1,...,n, which are obtained in applications
as a result of measuring, experiment or preliminary calculations may becinexa
Lete; >0, i=1,...,n, be given numbers. We pose the following
Problem 1.
b
(r) (+))2 : 1
JePwpa—  wm )
a t;
[ g(t)dt—f;h;|<e;,i=1,..., n
ti—1

It is a problem of smoothing histopolation. H < r, then any polynomial of
degreer — 1, which satisfies the condition of histopolation, gives the solution of the
problem (1). If n > r and no algebraic polynomial of degree- 1 satisfies the
inequalities| ft g(t)dt — fih;| <e;, i =1,...,n,then the problem (1) has the

unique solution (e.g.ll). This solution is a spllne of degr@e and defect 1, which
minimizes the smoothing functional under restrictions. We assume in the sequel
the uniqueness of the solution.

Under the assumption of the existence and uniqueness of the solution of
the problem (1) it will be reduced to the problem of quadratic programming
with positive semidefined matrix and obstacles of inequality type by the series
of equivalent transformations. The method for finding this solution by the
modification of the simplex method is described.

2. SPACE OF INTEGRAL SPLINES

In the case of exact informatigne. ¢; = 0, for all i) we have a histopolation
problem the solution of which is a splisef one variable from the space of integral
splines of degre@r and defect 1 over the mesh,, S(A,,) (e.g. []):

t;
S(Ln) = {s € Wila,b] : we%ab/g i=1....n

:>/ ) dt=0).

This spline is called histospline.

In the case of inexact informatiofi.e. ¢; > 0 for somei) the smoothing
problem (1) has also the solution from the space of integral splines (see a
e.g., []). Its solution is a smoothing histospline.

Itis known thats € S(4A,) ifand only if s can be written as
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r—1 A (_1)r+1 n
s(t)=> at + T o di((t— ) — (t—ti)Y),
=0 Toi=1

where the coefficientsl; satisfy the equalities

t;

Zdi/tkdt—o, k=0,...,r—1.
i=1

1—1
The coefficientsl;, i = 1,...,n, characterize the derivative of ordar:
di = (=1)"s@@), e [tioy, bl
We need the following

Theorem 2.1(e.g. []). A spline s € S(A,,) is the solution of Problen if and
only if it satisfies the conditions

s is a polynomial of degre®r on each interval(t;_1,t;), i=1,...,n;

s € O a,b];

o sD(a)=5sDDB)=0, ¢g=r,...,2r —1;
t;

[ ] /S(t)dt—fihi SEi, ’i:1,...,n;

ti—1

t;

d; =0 if / S(t)dt — fihi| < &,

ti—1
t;

di >0 if / S(t)dt - fzhz = —&;, (2)

ti—1
t;

d; <0 if /S(t)dt—fihi:efi, for 1=1,...,n.

ti—1

Lemma 2.1(e.g. [[]). For any functiong € WZ[a,b] and any splines € S(A,,)
there holds

b n t;
/ g ()sO ()t = " d; / g(t)dt.
a =1 tiq
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If we denote by s; € S(4A,) the spline which satisfies the conditions
f;’il si(t)dt = 0i;hj, 1,7 = 1,...,n, whered;; is the Kronecker symbol,
then si,...,s, is a basis of the spac&(/A,,) and any spling € S(A,,) can be
written in the form

s(t) = ;yisi(t), wherey; = hi / s(t)dt. (3)

(]
ti

3. THE SMOOTHING PROBLEM AS THE PROBLEM OF
QUADRATIC PROGRAMMING

Taking into account that the solution of the smoothing problem (1) is an integra
spline, we can restrict the class of functiois][a, b] by the spaceS(4A,,) and
restate Problem 1 as

Problem 2.

s€S(An)
tg
S st)dt—f;hg
ti—1

b
/ (s ()2 dt — min

<g;, i=1,..., n

This is a minimization problem in the spacg(4,) of dimensionn. We
rewrite the smoothing functional as a function of newon-negative variables

Let us express the splinewith respect to: using (3) and (4):
s(t) = ; <fi - ;— + z) si(t).

Therefore

di:jgl(fj_h—;+zj>djia i=1,...,n, (5)

where(d;;);=1...» are the coefficients of the basis splife
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By Lemma 2.1 we obtain

/b )4 Zd /

ti—1

= Z Z (f] , Z'j) (fihi — i + zihi)dj;

i=1 j=1
_ZZZZhZ]d]Z—i_ZZZZ (fj )(h +h)d
i=1 j=1 i=1 j=1
+Zz<f3__> ihi —¢ ) i -
i=1 j=1

By introducing the matrix D = (h;dj;);j=1,..,, and the vectorsc =
(Ci)izl’m,n, where ¢; = Z?:l Z;-L:l(fj — Ej/hj)(hidji + hjdij) and z
(2i)i=1,....n Problem 2 can be rewritten in the matrix form:

Problem 3.

2D et — min

£; .
2€RY, ZjSQh—;, j=1,...n

Problem 3 is a problem of quadratic programming under linear restrictiahs an
it is equivalent to the smoothing problem (1).

Lemma 3.1.The matrixD is symmetric and positive semidefinite.

Proof. The transformations of the expressions tf = d;(s;) and dj; = d;(s;)
on the basis of Lemma 2.1
tr b
hidj; = Z di(s;) / si(t)dt = / s () (b,

t_l a

tr b
hdm—de s) [ side= [0 0
tk,1 a

prove the equalityh;d;; = h;d;;.
The inequality zDz" > 0 for any vectorz € IR" is proved by the identity

DT = / () (8))2dl, (6)
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where s, is the spline which satisfies the conditiorfék’“_1 s, (t)dt = zihg, k =
1,...,n. The equality (6) is obtained by direct calculations

n n tg

2D =" zihy zn: zidyi =Y zihidi(sz) = Zn:di(sz) / s (t)dt
j=1 =1 ti—1

i=1 i=1

4. THE SMOOTHING PROBLEM AS THE PROBLEM OF LINEAR
PROGRAMMING UNDER SOME NONLINEAR CONDITIONS

Problem 3 is a problem of quadratic programming under linear restrictiahs an
we use Wolfe’'s method to reduce it to the problem of linear programming with
some nonlinear conditions. The reasoning in this reduction is similar to th&} of [
and we consider only important steps.

We start with the Lagrange function

F(z,\) =2Dz" +c2" + Az —2¢)7T,

where A = (\;)i=1,..n iS the vector of Lagrange multipliers and =
(€i/hi)i=1,..n-

Taking into account necessary conditions faio be a solution of Problem 3
(e.g. P]), by introducing slack non-negative variablgs);—1, ., and(u;)i=1. »
as u; = Q(DZT)¢+Ci+)\¢ and z; = 25i/hi—zi, 1=1,...,n, we can
rewrite Problem 3 as a linear programming minimization problem of an auxiliary
non-negative variable under some nonlinear restrictions:

Problem 4.

u — min (7)
2Dz1 + e + X — T +uFE =0,
z+ZzZ = 2¢, ,uzT:0, Azl =0,
220,220, A>0,u>0, u>0,

where the vectoFE is any vector with components as 0, 1, antl The existence of
a non-negative solution of Problem 3 implies that zero is the solution of Fnoble

Theorem 4.1. Let Probleml have the unique solution. Then it is equivalent to
Problem4 in the following sense

e Problem4 has the unique solution tgo
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e the solution of Problenil determines the solution of Problethand the
solution of Problen determines the solution of Problelrby (4).

The proof is similar to the proof of Theorem 3.1 froAj &ind is based on the
checking of the conditions (2) for the solution of (1), which are obtaingdhle
solutionz of Problem 4.

5. CONSTRUCTION BY A MODIFICATION OF THE SIMPLEX
METHOD

Problem 4 differs from problems of linear programming in two simple
nonlinear conditiong.z” = 0, A(2)T = 0. For the solution of the problem a
modification of the simplex method based on Wolfe’'s and Daugavet's wépkis [
suggested. We give a short description of this algorithm.

Initial plan

e We choose any combination of and z taking into account the condition
2+ 7" = 2¢ and ;% =0, i = 1,...,n, (only for the initial plan) (for
examplez; = 2¢;/h;, z;=0,i=1,...,n).

e The corresponding elements pfand A are determined in such a way that
pzl = 0, A\zT = 0 (for example, ifz; = 2¢;/h;, theny; = 0).

e We take an initial value of: > 0, choose the sign before (the vectorF)
and the corresponding > 0, ¢ > 0 in such a way that they satisfy
the equations 2Dz7 + ¢ + AT — uT + wE = 0 (for example, if
zi = 2ei/hi, i = 1,...,n,theny; = 0, i« = 1,...,n, we can take
u = max{|(2DzT 4+ cT);| : 1 <i < n}, elements off as—1 and choose
A = —2<DZT)Z‘ —ctu,i=1,...,n).

Iterations

Every step of the method is a transformation of the simplex table, taking
into account the lexicographic ordering (it allows us to avoid iterative [papd
the additional conditiongiz” = 0, Az = 0. We can show that the additional
nonlinear condition does not prevent us from doing it by analogy of thefof this
fact for a similar system in’], where under the assumption that the next simplex
iteration cannot be done without violation of these nonlinear conditions axegr
that in this case the last basic solution gives 0, i.e. the solution of (7).

There are three possibilities of the locationzpindz; in the table:

e z; being in the upper part of the table means that the solutimiProblem 1
satisfies the conditiof,” s(t)dt = f;hi + &}
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e z; being in the upper part of the table means thaatisfies the condition

fttii_l S(t)dt = fzhz — &4y

e location of z; and z; in the lower part means that satisfies the strict
inequality| [ s(t)dt — fihi| < e.

Note thatz; andz; cannot be in the upper part of the table simultaneously.

The algorithm completes its work when the variablappears in the upper part
of the table. As was proved by Daugavet])] this occurs in a finite number of
steps when the matrik is positive semidefinite.

This method give us the values of the components of the vég¢tor ¢;/h; +
zi)i=1,..n- The corresponding histospline can be constructed by some of the known
methods of the construction of histosplines.
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Uhest siluvate histosplainide leidmise meetodist
Natalia Budkina

Toos kasitletakse antud histogrammi pdhjal lahendava funktsiooni leidmist,
mis madaratakse kui minimiseerimisilesande lahend. Selles tlesandes on kbatava
hulgaks Sobolevi ruumi osahulk, millesse kuuluvad funktsioonide keskimiSie
vad erineda histogrammi keskmistest etteantud vigade piirides, sihifunktsioon
aga loomulik norm Sobolevi ruumi elementide kbrgeimat jarku tuletisest. Kasuta-
des asjaolu, et taolise llesande lahendiks on teadaolevalt paarisjtutaateplain,
naidatakse, kuidas silumistilesanne taandub ruutplaneerimise Ulesanaadteid S
ruutplaneerimise Ulesande omadused v@imaldavad selle omakorda taandada
lineaarse sihifunktsiooniga minimiseerimisilesandele, milles mittelineaarsus esi-
neb kitsendustes. Vaatamata kitsendustes olevale mittelinaarsusele, atataken
simpleksmeetodi modifikatsioon, mis annab I6pliku arvu sammudega lahendi.
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