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Abstract. The complete, closed-form solution of a system of coupled differential equations
introduced by Ge et al. (Phys. Rev. A, 2000,62, 052110–052117) and representing a set of
potentials for which shift operators can be constructed is given. The general solution obtained
can be used to perform a systematic search for new exactly-solvable potentials. This note is
an extension of the paper published inProc. Estonian Acad. Sci. Phys. Math.(2001,50, 1,
42–48).
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1. INTRODUCTION

Nowadays the classification of solvable models in quantum mechanics attracts
much attention. Especially for the nonrelativistic Schrödinger equation numerous
methods have been elaborated to track down exact solutions. These solutions are
interesting in themselves as models of actual physical situations, and, furthermore,
they are successfully used for elaborating approximate and qualitative methods.
Besides common analytical methods, like the use of a suitable trial function
[1,2] or mappings between Schrödinger equations for different potentials [3,4],
especially algebraic methods have been found to be powerful tools for finding large
classes of solvable potentials. Such algebraic methods include supersymmetric
quantum mechanics [5−7], other factorization and intertwining techniques [8−10],
and the use of shift operators: by giving a reference state of a physical system,
the potential is determined up to a constant, and shift operators lead to the full
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spectrum of the system [11,12]. However, to come to the spectrum, one at least
needs to know a reference state and the shift operators. Recently, for obtaining
shift operators of a general physical system, a new method has been proposed
[13,14] that works without the knowledge of any state. The quantum system is
represented by a general HamiltonianH and momentum operatorP depending on
a potentialV and some unknown functions. By imposing certain constraints on
the commutators[H,Q] and[H,P ], whereQ andP are coordinate and momentum
operators, shift operators ofH can be obtained, which in turn can yield ground
state wavefunctions ofH. Examples presented in [13] and [14] include potentials of
harmonic/anharmonic oscillator type, Coulomb, Pöschl–Teller and more. However,
the technical problem that comes with the above method lies in the constraints on
[H,Q] and[H,P ], a system of coupled differential equations that has to be solved
first, before any shift operator can be obtained. In [13,14] this system is solved only
exemplarily, leading to the potentials mentioned above. As the authors mention in
[13], they did not exhaust all possibilities of solving the constraints, which would
possibly lead to more complicated solvable potentials. In this note we address this
problem by giving an explicit solution of the system of constraints. We obtain
expressions for all classes of potentials for which shift operators can be obtained
by the above method. The potentials we compute depend on at most one arbitrary
function, its integral and derivatives.

The difference between this work and the previous paper [15] is the following:
the present investigation of the constraints is much more extensive. We distinguish
more cases and give far more simplified expressions for the solutions than in [15]. In
Sec. 2 we derive the constraints; Sec. 3 and its subsections contain the computation
of the solutions.

2. DERIVATION OF THE CONSTRAINTS

Consider a quantum system with the HamiltonianH, coordinate operatorQ,
and momentum operatorP . Suppose the following relations are fulfilled [16−19]:

[H,Q] = Θ1 Q + Π1 P, (1)

[H,P ] = Θ2 Q + Π2 P, (2)

whereΘi, Πi may depend on the HamiltonianH and some constants. Then we
can construct raising and lowering operators for the HamiltonianH by a method
introduced in [13]. Furthermore, we are able to find the ground state wavefunction
and the corresponding ground state energy from the lowering operator constructed.

Let us assumeH andP to have the following general form:

H = X(x)
∂2

∂x2
+ V (x), (3)

P = Y (x)
∂

∂x
+ Z(x), (4)
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whereX, Y , Z, and the potentialV are arbitrary functions. Let us point out here
that it depends on the choice ofX andV whetherH has a discrete spectrum or not.
Since bothX andV shall turn out to be involved functions and hard to analyse in
detail, we omit to impose further a-priori restrictions on them. Instead, as in [13],
we just assumeX andV to be chosen in such a way thatH possesses a discrete
spectrum.

Computing[H,P ] we get

[H,P ] =
(
2X(x)Y ′(x)−X ′(x)Y (x)

) ∂2

∂x2

+
(
X(x)Y ′′(x) + 2X(x)Z ′(x)

) ∂

∂x
+ X(x)Z ′′(x)− Y (x)V ′(x).

Let us set for convenience

X(x)Y ′′(x) + 2X(x)Z ′(x) = αY (x), (5)

2X(x)Y ′(x)−X ′(x)Y (x) = (βQ(x) + γ)X(x), (6)

whereα, β, andγ denote complex numbers. We made the choices (5) and (6) such
that in conjunction with another setting forQ (following below) the commutator
[H,P ] takes a form close to the desired one (2). Of course it is possible to replace
(5), (6) and the following settings forQ by different ones. As was said before, the
goal is just to bring the commutator[H,P ] into the form (2). Now the commutator
[H,P ] takes the form

[H,P ] = (βQ(x) + γ)H + αP − (βQ(x) + γ)V (x)− αZ(x)− Y (x)V ′(x)

+ X(x)Z ′′(x).

To simplify the last expression, we set

Q(x) = −(βQ(x) + γ)V (x)− αZ(x)− Y (x)V ′(x) + X(x)Z ′′(x),

which can be solved forQ:

Q(x) =
1

1 + βV (x)
(X(x)Z ′′(x)− γV (x)− αZ(x)− Y (x)V ′(x)). (7)

Finally, the commutator ofH andP reads

[H,P ] = Q(x)(βH + 1) + αP + γH. (8)

In the same way we consider[H,Q]:

[H,Q(x)] = 2X(x)Q′(x)
∂

∂x
+ X(x)Q′′(x).
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Setting

X(x)Q′(x) = λY (x), (9)

−2λZ(x) + X(x)Q′′(x) = νQ(x) + τ, (10)

whereλ, ν, andτ are complex numbers, we finally come to

[H,Q(x)] = 2λP + νQ(x) + τ. (11)

We see that (8) and (11) are not exactly of the desired forms (2) and (1), in
particular, the quantitiesγH andτ do not appear in the latter. But, as mentioned
in [13], by a suitable redefinition of the operatorsQ andP , bothγH andτ , can be
absorbed in certain cases.

However, the constraints to be solved are given by Eqs. (5)–(7), (9), and (10).

3. SOLUTION OF THE CONSTRAINTS AND EXAMPLES

Let us summarize the constraints:

−γX(x)− βQ(x)X(x)− Y (x)X ′(x) + 2X(x)Y ′(x) = 0, (12)

−λY (x) + X(x)Q′(x) = 0, (13)

−αY (x) + 2X(x)Z ′(x) + X(x)Y ′′(x) = 0, (14)

−τ − νQ(x)− 2λZ(x) + X(x)Q′′(x) = 0, (15)

Q(x) + γV (x) + βQ(x)V (x) + αZ(x) + Y (x)V ′(x)−X(x)Z ′′(x) = 0. (16)

Our purpose is now to solve these equations explicitly (if possible). We are
particularly interested in obtaining an explicit result for the potentialV , because
from the five constraints it is not possible to see which potentials are compatible
with them. We distinguish three cases, that isβ = 0 andX ′(x) = 0 (first case);
β = 0, X ′(x) 6= 0, andγ 6= 0 (second case);β = 0, X ′(x) 6= 0, andγ = 0 (third
case); and the most general fourth case,β 6= 0 andX ′(x) 6= 0.

3.1. Case 1:β = 0 and X′(x) = 0

This setting is considered in a few examples in [13], yielding potentialsV like
the harmonic oscillator and the radial harmonic oscillator. The constraints (12)–
(16) simplify as follows (setX(x) = X0):

−γ + 2Y ′(x) = 0, (17)

−λY (x) + X0Q
′(x) = 0, (18)

−αY (x) + 2X0Z
′(x) + X0Y

′′(x) = 0, (19)

−τ − νQ(x)− 2λZ(x) + X0Q
′′(x) = 0, (20)

Q(x) + γV (x) + αZ(x) + Y (x)V ′(x)−X0Z
′′(x) = 0. (21)
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We further assumeλ 6= 0, because otherwise Eq. (18) would yieldQ to be constant,
which does not make much sense. Equation (17) yields immediately

Y (x) =
γ

2
x + Y0. (22)

Inserting the last result into Eq. (18) givesQ:

−λ
(γ

2
x + Y0

)
+ X0Q

′(x) = 0

⇒ Q(x) =
λγ

4X0
x2 +

λY0

X0
x + Q0. (23)

Using (22), we determineZ by Eq. (19):

Z(x) =
αγ

8X0
x2 +

αY0

2X0
x + Z0. (24)

Before we compute the potentialV , we have to fulfill Eq. (15) that represents an
interrelation betweenQ andZ. Inserting (23), (24) and solving forZ, we get

Z(x) =
1
2λ

(
−νλγ

4X0
x2 − νλY0

X0
x− τ − νQ0 +

λγ

2

)
. (25)

This expression and (24) must be the same. It is easy to see that on setting

α = −ν, (26)

Z0 =
−τ − νQ0

2λ
+

γ

4
(27)

expressions (24) and (25) coincide. Now we can consider Eq. (21) to getV . Solving
for V yields

V (x) = exp
(
−γ

∫
1

Y (x)
dx

)

×

V0 −
∫ exp

(
γ
∫

1
Y (x) dx

)
(Q(x) + α Z(x)−X0 Z ′′(x))

Y (x)
dx

 .

(28)

Using (23), (24), (26), and (27), the last expression can be simplified to

V (x) = [16 V0 X0 λ + x (4 Y0 + x γ)

×
(
−
(
(8 Q0 X0 + x (4 Y0 + x γ) λ)

(
2 λ + ν2

))
− 8 X0 ν τ

)
]

/ [16X0 (2 Y0 + x γ)2 λ].
(29)
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The numerator of the expression (29) is a polynomial of degree four with respect
to x, whereas the denominator is a polynomial of degree two with respect tox. In
more detail, the expanded numerator num(V (x)) and denominator den(V (x)) are
given by

num(V (x)) = x4
(
−2 γ2 λ2 − γ2 λ ν2

)
+ x3

(
−16 Y0 γ λ2 − 8 Y0 γ λ ν2

)
+x2

(
−16 Q0 X0 γ λ− 32 Y0

2 λ2 − 8 Q0 X0 γ ν2 − 16 Y0
2 λ ν2 − 8 X0 γ ν τ

)
+x

(
−64 Q0 X0 Y0 λ− 32 Q0 X0 Y0 ν2 − 32 X0 Y0 ν τ

)
+ 16 V0 X0 λ, (30)

den(V (x)) = 16 X0 γ2 λ x2 + 64 X0 Y0 γ λ x + 64 X0 Y0
2 λ. (31)

We now look at some special cases. Since the coefficients of the different
powers ofx are interrelated, it is not clear that we can get any combination of
powers in the numerator (30) and denominator (31). Let us first assume that we
want the term∼ x4 in the numerator to vanish. We need to impose that

−2 γ2 λ2 − γ2 λ ν2 = 0,

−λ = −ν2

2
.

It is now easy to see that this makes the term∼ x3 in (30) vanish too. Altogether
(29) becomes

V (x) =
V0ν + 4Y0τ x + γτ x2

4Y 2
0 ν + 4Y0γν x + γ2ν x2

.

Now, settingτ = 0 in the last expression leads to an inverse power potential

V (x) =
V0

(2Y0 + γx)2
.

The examples of potentials considered in [13] can of course be reobtained from
the general potential (29). If we setγ = 0 (case 1 in [13]), we get the potential of
the harmonic oscillator:

V (x) =
V0

4 Y0
2 −

x2
(
2 λ + ν2

)
4 X0

+
x
(
−2 Q0 X0 Y0

(
2 λ + ν2

)
− 2 X0 Y0 ν τ

)
4 X0 Y0

2 λ
.

This coincides with the result in [13].
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3.2. Case 2:β = 0, X′(x) 6= 0, and γ 6= 0

The settingβ = 0 andX ′(x) 6= 0 yields for example the Coulomb potential
for the hydrogen atom or a Morse-type potential [13]. The constraints read

−γX(x)− Y (x)X ′(x) + 2X(x)Y ′(x) = 0, (32)

−λY (x) + X(x)Q′(x) = 0, (33)

−αY (x) + 2X(x)Z ′(x) + X(x)Y ′′(x) = 0, (34)

−τ − νQ(x)− 2λZ(x) + X(x)Q′′(x) = 0, (35)

Q(x) + γV (x) + αZ(x) + Y (x)V ′(x)−X(x)Z ′′(x) = 0. (36)

The first of these equations is an interrelation betweenX and Y , so these two
functions cannot be chosen independently from each other. We point this out,
since in every example in [13] both X andY were chosen simultaneously without
mentioning the interrelation between them. Solving forX yields

X(x) = X0Y
2(x) exp

(
−γ

∫
1

Y (x)
dx

)
. (37)

The second equation determinesQ:

Q(x) = λ

∫
Y (x)
X(x)

dx

=
λ

X0γ
exp

(
γ

∫
1

Y (x)
dx

)
, (38)

where in the last step we inserted (37) and did one integration. The third equation
(34) yields an expression forZ (we shall use (37) again):

Z ′(x) =
1

2X(x)
(
αY (x)−X(x)Y ′′(x)

)
=

α

2X0Y (x)
exp

(
γ

∫
1

Y (x)
dx

)
− Y ′′(x)

2

⇒ Z(x) =
α

2X0γ
exp

(
γ

∫
1

Y (x)
dx

)
− Y ′(x)

2
+ Z0. (39)

We now solve the fourth equation (35) forZ. At first we need an expression forQ′′

depending onX andY . We have from (33)

Q′′(x) = λ

(
Y ′(x)
X(x)

− Y (x)X ′(x)
X2(x)

)
.
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This can be simplified using Eq. (32). Solving it forX ′(x)/X(x), we find

X ′(x)
X(x)

=
2Y ′(x)− γ

Y (x)

⇒ Y (x)X ′(x)
X2(x)

=
2Y ′(x)− γ

X(x)
.

Thus we finally have forQ′′:

Q′′(x) = λ

(
Y ′(x)
X(x)

− 2Y ′(x)− γ

X(x)

)
= λ

(
γ − Y ′(x)

X(x)

)
. (40)

Let us now solve Eq. (35) forZ. Using (40), we get

Z(x) = − τ

2λ
− ν

2

∫
Y (x)
X(x)

dx− Y ′(x)
2

+
γ

2
. (41)

Inserting finally (37), we obtain

Z(x) = − τ

2λ
− νλ

2X0γ
exp

(
γ

∫
1

Y (x)
dx

)
−Q0 −

Y ′(x)
2

+
γ

2
. (42)

For consistency, (39) and (42) must be the same, which is true if we set

α = −νλ, (43)

Z0 = − τ

2λ
−Q0 +

γ

2
. (44)

Now we can determine the potential via (36). Solving (36) yields almost the
same expression as in (28); we just have to replaceX0 by X(x):

V (x) = exp
(
−γ

∫
1

Y (x)
dx

)

×

V0 −
∫ exp

(
γ
∫

1
Y (x) dx

)
(Q(x) + α Z(x)−X(x) Z ′′(x))

Y (x)
dx

 .

Inserting the functionsQ andZ, we obtain after some elementary manipulations

V (x) = − exp
(

γ

∫
1

Y (x)
dx

)(
2λ + λ2ν2

4X0γ2

)
+

1
4

exp
(
−γ

∫
1

Y (x)
dx

)
×
(

4V0 + X0(Y ′(x))2 − 2X0Y (x)Y ′′(x)
)
− ν(2Q0λ + τ)

2γ
. (45)
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This is the most explicit form of the potentialV we are able to get. Though it
still contains an integral and derivatives of the functionY , its structure is much
more obvious than it is only from looking at the system of constraints (32)–
(36). Consequently, expression (45) makes it much easier to chooseY in order
to generate a particular potential.

As an application we reconsider case 5 from [13], that is, we setY (x) = x. It
follows from (37) that

X(x) = X0 x2−γ .

Choosingγ = 1 andX0 = −1, as in the above reference, leads toX(x) = −x.
The potential (45) generated reads (after using (43)–(44)):

V (x) =
V0

x
− ν(2Q0λ− τ)

2
+ x

(
2λ + λ2ν2

4

)
,

which coincides with the result in [13] (Coulomb potential for the hydrogen atom).
In the same way we reconstruct the Morse potential (case 6 in [13]), let

Y (x) = 1. Then we have from (37) that

X(x) = X0 exp(−γx).

Settingγ = −c andX0 = −1, we obtain from (45) the Morse-potential:

V (x) = exp(cx)V0 + exp(−cx)
(

2λ + λ2ν2

4c2

)
+

2Q0λν + ντ

2c
.

3.3. Case 3:β = 0, X′(x) 6= 0, and γ = 0

In caseγ = 0, Eqs. (32) and (36) simplify. The whole set of constraints reads

−Y (x)X ′(x) + 2X(x)Y ′(x) = 0, (46)

−λY (x) + X(x)Q′(x) = 0, (47)

−αY (x) + 2X(x)Z ′(x) + X(x)Y ′′(x) = 0, (48)

−τ − νQ(x)− 2λZ(x) + X(x)Q′′(x) = 0, (49)

Q(x) + αZ(x) + Y (x)V ′(x)−X(x)Z ′′(x) = 0. (50)

Solving the first of these equations forX yields

X(x) = X0Y
2(x). (51)
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Equation (47) gives

Q(x) = λ

∫
Y (x)
X(x)

dx

=
λ

X0

∫
1

Y (x)
dx. (52)

The constraint (48) can be solved forZ:

Z ′(x) =
1

2X(x)
(
αY (x)−X(x)Y ′′(x)

)
=

α

2X0Y (x)
− 1

2
Y ′′(x),

where we made use of (51) in the last step. After integration we get

Z(x) =
α

2X0

∫
1

Y (x)
dx− 1

2
Y ′(x) + Z0. (53)

To solve the fourth constraint (49), we needQ′′ in terms ofX andY . Using the
result (40) forγ = 0, we arrive at

Q′′(x) = −λY ′(x)
X(x)

.

Solving (49) forZ yields (41) forγ = 0, that is

Z(x) = − τ

2λ
− ν

2

∫
Y (x)
X(x)

dx− 1
2
Y ′(x). (54)

Equations (54) and (53) must coincide, therefore we set

α = −νX0, (55)

Z0 = − τ

2λ
. (56)

Finally it remains to solve (50). We get

V (x) = V0 −
∫

Q(x) + α Z(x)−X(x) Z ′′(x)
Y (x)

dx.

Inserting (51), (52), (54), (55), and (56) into the potential, we come to

V (x) = V0 −
(∫

1
Y (x)

dx

)(
X0ντ

2λ

)
−
(∫

1
Y (x)

dx

)2(1
4
X0ν

2 +
λ

2X0

)
+

1
4
X0(Y ′(x))2 − 1

2
X0Y (x)Y ′′(x). (57)
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There are no examples in [13] for the above potential, i.e. for the settingβ = γ = 0
andX ′(x) 6= 0. ChoosingY (x) = xk (k a constant andk 6= 1) yields for example
the following power law potential:

V (x) = A0 + A1 x2k−2 + A2 x−2k+2 + A3 x−k+1,

whereAi denote constants. ChoosingY (x) = x, we obtain a logarithmic potential:

V (x) = B0 + B1 log(x) + B2 log2(x),

where Bi denote constants. Depending on these constants, this potential can
represent finite depth and a repulsive singularity at zero, set for exampleB0 = 0
andB2 > 0. Let us give another example: The choiceY (x) = exp(kx) (k a
constant) leads to the following generalized Morse potential with an additional term
∼ exp(−kx):

V (x) = C0 + C1 exp(2kx) + C2 exp(−2kx) + C3 exp(−kx),

whereCi denote constants.

3.4. Case 4:β 6= 0 and X′(x) 6= 0

The constraints are now given by (12)–(16). We solve the first and second of
these equations forQ and obtain the following results:

Q(x) = −γ

β
− Y (x)X ′(x)

βX(x)
+

2Y ′(x)
β

, (58)

Q(x) = λ

∫
Y (x)
X(x)

dx. (59)

Since (58) and (59) must coincide, the following interrelation betweenX andY
arises:

λ

∫
Y (x)
X(x)

dx = −γ

β
− Y (x)X ′(x)

βX(x)
+

2Y ′(x)
β

.

We can solve this equation forX:

X(x) = exp
(
−γ

∫
1

Y (x)
dx

)
Y 2(x)

×
(

X0 − βλ

∫
exp

(
γ

∫
1

Y (x)
dx

) ∫
Y (x) dx

Y 3(x)
dx

)
. (60)
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Let us now determineZ from Eqs. (14) and (15). Equation (14) yields after
integration

Z(x) =
α

2

∫
Y (x)
X(x)

dx− 1
2
Y ′(x) + Z0. (61)

To solve (15), we needQ′′ in terms ofX andY . We have from (59)

Q′′(x) =
∂

∂x

(
λ

∫
Y (x)
X(x)

dx

)
=

λY ′(x)
X(x)

− λY (x)X ′(x)
X2(x)

.

Using this, we get from Eq. (15) the following result forZ:

Z(x) = − τ

2λ
− ν

2

∫
Y (x)
X(x)

dx +
1
2
Y ′(x)− Y (x)X ′(x)

2X2(x)
. (62)

Since (61) and (62) must be the same, we get the following interrelation between
X andY :

α

2

∫
Y (x)
X(x)

dx− 1
2
Y ′(x) + Z0 = − τ

2λ
− ν

2

∫
Y (x)
X(x)

dx +
1
2
Y ′(x)− Y (x)X ′(x)

2X2(x)
.

Solving forX, we obtain

X(x) = exp
((
−2Z0 −

τ

λ

)∫ 1
Y (x)

dx

)
Y 2(x)

(
X0 − (α + ν)

×
∫

exp
((

2Z0 +
τ

λ

)∫ 1
Y (x)

dx

) ∫
Y (x) dx

Y 3(x)
dx

)
. (63)

Equations (60) and (63) must be the same, which holds if we set

γ = 2Z0 +
τ

λ
, (64)

βλ = α + ν. (65)

Now we can obtain the potential from Eq. (16). Solving yields

V (x) = exp
(
−
∫

γ + βQ(x)
Y (x)

dx

)(
V0 −

∫
exp

((
−
∫

γ + βQ(x)
Y (x)

dx

))
×Q(x) + αZ(x)−X(x)Z ′′(x)

Y (x)
dx

)
. (66)
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The exponential function in the last expression becomes much simplified if we
insertQ as given in (58):

exp
(
−
∫

γ + βQ(x)
Y (x)

dx

)
=

X(x)
Y 2(x)

.

Thus we get for the potential (66)

V (x) =
X(x)
Y 2(x)

(
V0 −

∫
Y (x)(Q(x) + αZ(x)−X(x)Z ′′(x))

X(x)
dx

)
.

InsertingQ andZ as given in (59) and (61), we finally obtain the potential in terms
of X andY :

V (x) =
α

2
+

X(x)
Y 2(x)

(
V0 − Z0 α

∫
Y (x)
X(x)

dx−
(∫

Y (x)
X(x)

dx

)2(α2

4
+

λ

2

)

+
1
4
(Y ′(x))2 − 1

2
Y (x) Y ′′(x)

)
.

We omit to insert the functionX as given in (63), because the above formula
for V is not simplified. As in the previous section, the structure of the potential
becomes much more obvious now than from the five constraints. However, ifY is
a complicated function, the integrals in (63) and (67) are not solvable analytically.
We omit to give examples here, because even for relatively simple functionsY the
potentials (67) generated become in general very long and involved expressions.

4. CONCLUSIONS

In this note we gave the complete, closed-form solution of a system of
constraints describing a class of potentials for which shift operators can be
computed by a method introduced in [13]. Our main result was the explicit solutions
for these potentials given in (29), (45), (57), and (67). The explicit representation
of the potentials we obtained here can be used for a systematic search for new
exactly-solvable special cases.
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7. Ferńandez C., D. J. and Hussin, V. Higher-order SUSY, linearized nonlinear Heisenberg
algebras and coherent states.J. Phys. A, 1999,32, 3603–3619.
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potentials. Quantum groups and integrable systems.Czechoslovak J. Phys., 2000,50,
1303–1308.
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Täpselt lahenduvate potentsiaalide klassi modelleeriva
diferentsiaalvõrrandisüsteemi üldlahend.

II osa: laiendatud tulemused

Axel Schulze-Halberg

On uuritud artiklites [13,14] üldise füüsikalise süsteemi nihke operaatorite
leidmiseks pakutud uut meetodit. Tähtsat osa selles meetodis mängivad seo-
sed kommutaatorite[H,Q] ja [H,P ] vahel, kusH on süsteemi hamiltoniaan,Q
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ja P on koordinaadi ja impulsi operaatorid. Seosed on määratud diferentsiaal-
võrrandisüsteemiga, mille täpne lahend on leitud. Lähtudes sellest lahendist on
tuletatud potentsiaalide klasside avaldised, mille puhul on võimalik konstrueerida
vastavad nihke operaatorid. Töö on käsitluse [15] jätk, kusjuures praeguses
uurimuses on esitatud seoste põhjalikum analüüs ja eristatud rohkem juhtusid;
leitud lahenditel ja avaldistel on lihtsam kuju.
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