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Abstract. The complete, closed-form solution of a system of coupled differential equations
introduced by Ge et al. (Phys. Rev. A, 2060, 052110-052117) and representing a set of
potentials for which shift operators can be constructed is given. The general solution obtained
can be used to perform a systematic search for new exactly-solvable potentials. This note is
an extension of the paper publisheddroc. Estonian Acad. Sci. Phys. Mat{2001,50, 1,
42-48).
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1. INTRODUCTION

Nowadays the classification of solvable models in quantum mechanics attracts
much attention. Especially for the nonrelativistic Schrodinger equation numerous
methods have been elaborated to track down exact solutions. These solutions are
interesting in themselves as models of actual physical situations, and, furthermore,
they are successfully used for elaborating approximate and qualitative methods.
Besides common analytical methods, like the use of a suitable trial function
[*?] or mappings between Schrédinger equations for different potentidls [
especially algebraic methods have been found to be powerful tools for finding large
classes of solvable potentials. Such algebraic methods include supersymmetric
quantum mechanic${’], other factorization and intertwining techniqués ],
and the use of shift operators: by giving a reference state of a physical system,
the potential is determined up to a constant, and shift operators lead to the full
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spectrum of the systent!f'?]. However, to come to the spectrum, one at least
needs to know a reference state and the shift operators. Recently, for obtaining
shift operators of a general physical system, a new method has been proposed
['314] that works without the knowledge of any state. The quantum system is
represented by a general Hamiltonidnand momentum operatdt depending on
a potentiallV and some unknown functions. By imposing certain constraints on
the commutator§d, Q] and[H, P], where@ and P are coordinate and momentum
operators, shift operators éf can be obtained, which in turn can yield ground
state wavefunctions dff. Examples presented it and ['*] include potentials of
harmonic/anharmonic oscillator type, Coulomb, P&schl-Teller and more. However,
the technical problem that comes with the above method lies in the constraints on
[H,Q] and[H, P], a system of coupled differential equations that has to be solved
first, before any shift operator can be obtained.'fn'f] this system is solved only
exemplarily, leading to the potentials mentioned above. As the authors mention in
[*3], they did not exhaust all possibilities of solving the constraints, which would
possibly lead to more complicated solvable potentials. In this note we address this
problem by giving an explicit solution of the system of constraints. We obtain
expressions for all classes of potentials for which shift operators can be obtained
by the above method. The potentials we compute depend on at most one arbitrary
function, its integral and derivatives.

The difference between this work and the previous pal¢ig the following:
the present investigation of the constraints is much more extensive. We distinguish
more cases and give far more simplified expressions for the solutions tHah im[
Sec. 2 we derive the constraints; Sec. 3 and its subsections contain the computation
of the solutions.

2. DERIVATION OF THE CONSTRAINTS

Consider a quantum system with the Hamiltonidn coordinate operata®,
and momentum operatd?. Suppose the following relations are fulfilletf{1°]:

(H,Q] = ©0:Q+1I P, 1)
[H,P] = ©2Q+T1I, P, )

where©;, II, may depend on the Hamiltoniafii and some constants. Then we

can construct raising and lowering operators for the Hamiltoiaby a method

introduced in [3]. Furthermore, we are able to find the ground state wavefunction

and the corresponding ground state energy from the lowering operator constructed.
Let us assumé/ andP to have the following general form:

82
H = X(x)@+V(x), 3)
P = Y(ac)aax—i-Z(:c), 4)
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whereX, Y, Z, and the potential” are arbitrary functions. Let us point out here
that it depends on the choice &fandV whetherH has a discrete spectrum or not.
Since bothX andV shall turn out to be involved functions and hard to analyse in
detail, we omit to impose further a-priori restrictions on them. Instead, aslin [
we just assumeX andV to be chosen in such a way thHt possesses a discrete
spectrum.

Computing[H, P] we get

2
[H,P] = (2X(2)Y'(z)— X'(2)Y (2)) %
+ (X(m)Y”(a:) + 2X(m)Z’(m)) 8813 + X (2)Z2"(x) = Y (2)V'(2).
Let us set for convenience
X(@)Y"(x)+2X(2)Z (x) = aY(z), (5)
2X(2)Y'(2) = X'(2)Y (2) = (BQ(z)+7)X(2), (6)

wherec, (3, andy denote complex numbers. We made the choices (5) and (6) such
that in conjunction with another setting f¢r (following below) the commutator

[H, P] takes a form close to the desired one (2). Of course it is possible to replace
(5), (6) and the following settings fd@p by different ones. As was said before, the
goal is just to bring the commutatt, P] into the form (2). Now the commutator

[H, P] takes the form

[H, P] = (BQ(z) + M) H + aP — (BQ(z) + )V (z) — aZ(z) - Y(z)V'(2)
+ X(2)2"(z).
To simplify the last expression, we set
Q(z) = —(BQ(z)+)V(z) - aZ(z) - Y(2)V'(z) + X(z)Z"(2),
which can be solved fa:

1

)= T @

(X(2)2"(x) =V (z) — aZ(z) = Y (2)V'(2)). @)
Finally, the commutator off and P reads
[H,P] = Q(x)(BH+ 1)+ aP +~H. (8)

In the same way we considgt, Q|:

H.QW) = 2X(@)Q ) + X(1)Q" ().
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Setting

X(2)Q'(z) = AY(z), 9)
—2)XZ(x)+ X(2)Q"(z) = vQ(x)+T, (10)

where)\, v, andr are complex numbers, we finally come to
[H,Q(z)] = 2\P+vQ(z)+ 1. (11)

We see that (8) and (11) are not exactly of the desired forms (2) and (1), in
particular, the quantities H andr do not appear in the latter. But, as mentioned
in ['3], by a suitable redefinition of the operatdpsand P, both~yH andr, can be
absorbed in certain cases.

However, the constraints to be solved are given by Egs. (5)—(7), (9), and (10).

3. SOLUTION OF THE CONSTRAINTS AND EXAMPLES

Let us summarize the constraints:

—7X(z) — Q)X (x) — Y (2)X'(z) + 2X (2)Y'(z) = 0, (12)
=AY (z) + X(2)Q'(x) =0, (13)

—aY(z) +2X(2) 7' (z) + X (2)Y"(x) = 0, (14)

—7 —vQ(z) — 2MZ(x) + X (2)Q"(z) = 0, (15)

Q(x) + vV (z) + BQ(x)V () + aZ(z) + Y (2)V'(x) — X(x)Z"(x) = 0. (16)

Our purpose is now to solve these equations explicitly (if possible). We are
particularly interested in obtaining an explicit result for the poteritiabecause
from the five constraints it is not possible to see which potentials are compatible
with them. We distinguish three cases, thafis= 0 and X’(z) = 0 (first case);

B =0, X'(z) # 0, andy # 0 (second case)j = 0, X'(x) # 0, andvy = 0 (third
case); and the most general fourth cases 0 and X'(x) # 0.

31.CaselB=0and X'(x) =0

This setting is considered in a few examples'itj,[yielding potentials)” like
the harmonic oscillator and the radial harmonic oscillator. The constraints (12)—
(16) simplify as follows (sef (z) = X):

(@) = 0, (A7)

-\Y(z) + XoQ'(z) = 0, (18)

—aY (r) +2X0Z' () + XoY"(z) = O, (19)

—7 —vQ(x) — 2X\Z(x) + XoQ"(z) = 0, (20)

Q(x) + vV (2) + aZ(z) + Y (2)V'(x) — XoZ"(x) = 0. (21)
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We further assume =~ 0, because otherwise Eq. (18) would yié)do be constant,
which does not make much sense. Equation (17) yields immediately
Y

Y(z)= e + Y. (22)

Inserting the last result into Eq. (18) gives

)\< ac—}—Y0>—|—X0Q’(x) =0

_ M e &

Using (22), we determing by Eq. (19):

Y
2T 2 20y 7 (24)

Z —_
() = 8% 2X,

Before we compute the potentilll, we have to fulfill Eq. (15) that represents an
interrelation betweef) andZ. Inserting (23), (24) and solving fdf, we get

1 vAy 2 vAYy Ay
Z(J})—2)\< 4X0 X, T—T VQ0-|—2 . (25)

This expression and (24) must be the same. It is easy to see that on setting

a = —u, (26)

_ T vQo Y
Zy = o\ +4 (27)

expressions (24) and (25) coincide. Now we can consider Eqg. (21) 10.g&tlving
for V yields

oo (0 [ )

ex L dx o)+aZlz)—XoZ"(z
(V/ p(vfm) )(Q;(l; (2) = Xo <>>dx>‘

(28)
Using (23), (24), (26), and (27), the last expression can be simplified to
V(z) = [16VoXoA+x (4Yy+x7)
x (= ((8QoXo+z (4Yg+z7) ) (2A+12)) —8Xv7)]

/(16 Xo (2Yg + 7))\
(29)
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The numerator of the expression (29) is a polynomial of degree four with respect
to z, whereas the denominator is a polynomial of degree two with respectito
more detail, the expanded numerator riliit:)) and denominator dé€r (x)) are
given by

num(V(z)) = 2* (—272 A2 —’yQAyz) + 2% (=16 Yoy A2 — 8Y0’y)\y2)
+2? (—16Q0X0’y)\—32YOQ)\2—8Q0X071/2—16YO2)\1/2—8X071/T)
+z (—64Q0 Xo Yo A —32Q0 Xo Yo v — 32X You7) + 16V Xo A, (30)

denV(z)) = 16 Xov* Az® + 64 Xo Yoy Az + 64 X Yo2 \. (31)

We now look at some special cases. Since the coefficients of the different
powers ofz are interrelated, it is not clear that we can get any combination of
powers in the numerator (30) and denominator (31). Let us first assume that we
want the termv 2 in the numerator to vanish. We need to impose that

29222 42\ = 0,

2

)
2

It is now easy to see that this makes the tesm? in (30) vanish too. Altogether
(29) becomes

B Vov + 4Yyr © 4 7 22
AYPv + 4Ypyw o + 42 22

V(x)

Now, settingr = 0 in the last expression leads to an inverse power potential

Vo
= e

The examples of potentials considered'it] fan of course be reobtained from
the general potential (29). If we set= 0 (case 1 in [?]), we get the potential of
the harmonic oscillator:

Wy 22 (2A47) i (—2Qu X0 Yy 2A+1v?) —2XYovT)
4Y,? 4 X 4X0Yo? A\

V(x)

This coincides with the result ir{].
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3.2.Case23 =0, X'(x) #0,and~ # 0

The settingd = 0 and X'(z) # 0 yields for example the Coulomb potential
for the hydrogen atom or a Morse-type potentid].[ The constraints read

X (z) = Y(2)X'(x) +2X (2)Y'(x) = 0, (32)

=AY (2) + X(2)Q'(x) = 0,  (33)

—aY (z) +2X(2)Z'(x) + X(2)Y"(z) = 0, (34)

—7 —vQ(z) —2MZ(z) + X()Q"(z) = 0,  (35)

Qz) +vV(z) +aZ(z) + Y (2)V'(z) — X (2)Z2"(x) = 0 (36)

The first of these equations is an interrelation betwé&emand Y, so these two
functions cannot be chosen independently from each other. We point this out,
since in every example irt] both X andY were chosen simultaneously without
mentioning the interrelation between them. SolvingJoyields

X(z) = XoY?(z exp< / Vi dx> (37)

The second equation determir@s

w - /5
-l

where in the last step we inserted (37) and did one integration. The third equation
(34) yields an expression fdéf (we shall use (37) again):

Z(@) = 2X1(x) (oY (2) — X ()Y"(z)
B o Y’ (x)
- 2%, Y( )eXp<7 Y(x dx>_ 2
= 20) = ge-on (7 [ 50 )— 9z e

We now solve the fourth equation (35) f8t At first we need an expression @’
depending onX andY. We have from (33)

s (V@) Y@)X()
A A(X(zw‘ X2(a) )
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This can be simplified using Eq. (32). Solving it f& (x)/X (z), we find

X(@) _ 2(@) v

X (x) Y(x)
Y (2)X'(z) B 2Y'(x) — v
T TX)  X(@)

Thus we finally have fo€)”:

O'e) - A(Y’(x)_QY“(w)—*y)

X(x) X(x)
_ 7 =Y'(x)
_ (15, 0
Let us now solve Eq. (35) far. Using (40), we get
T v [Y(x) Y'(x) v
Z(x)——z)\—Q/X(x) dx — 5t (41)

Inserting finally (37), we obtain

Y'(@) CHENC)

T VA 1
2(z) = 2N 2Xgy P (7/ Y (x) dw) ~ Qo 2 +

For consistency, (39) and (42) must be the same, which is true if we set

a = —UA, (43)
_ T 7
Zo = —5y ~Qty (44)

Now we can determine the potential via (36). Solving (36) yields almost the
same expression as in (28); we just have to replégby X (z):

V() = exp <’y / Y(lx)dx)

) (VO e (7 J vt da) (Q(;c/)(:)a Z(x) = X(2) 2" (x)) dm) |

Inserting the functiong) andZ, we obtain after some elementary manipulations

o+ oo st ) (52 o )

B v(2Qo\+ T)
2y '

X <4% + Xo(Y/(w))2 — 2XOY<$)Y”(1’)> (45)
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This is the most explicit form of the potenti® we are able to get. Though it
still contains an integral and derivatives of the functidnits structure is much
more obvious than it is only from looking at the system of constraints (32)—
(36). Consequently, expression (45) makes it much easier to choaseorder
to generate a particular potential.

As an application we reconsider case 5 frddj,[that is, we set (z) = z. It
follows from (37) that

X(z) = Xg 227,

Choosingy = 1 and X, = —1, as in the above reference, leadsX¢z) = —=.
The potential (45) generated reads (after using (43)—(44)):

_ W v(2Qo\ — T) Yy (2>\+ )\21/2>

V(=) T 2 4

which coincides with the result i]] (Coulomb potential for the hydrogen atom).
In the same way we reconstruct the Morse potential (case 63}, [let
Y (x) = 1. Then we have from (37) that
X(z) = Xoexp(—yx).

Settingy = —candXy = —1, we obtain from (45) the Morse-potential:

2\ + )\21/2) N 2Q0\v + vT

V() = explex)Vh + exp(—cx) ( 12 %0

3.3.Case33 =0, X'(x) #0,andy =0

In casey = 0, Egs. (32) and (36) simplify. The whole set of constraints reads

~Y(x)X'(x) +2X(2)Y'(z) = 0, (46)
—\Y (2) + X(2)Q'(z) = 0, (47)
—aY (z) +2X (2)Z' () + X(2)Y"(x) = 0, (48)
—7 —vQ(x) — 2X\Z(x) + X (2)Q"(z) = 0, (49)
Qz) +aZ(x)+Y(x)V'(z) — X(2)Z"(x) = 0. (50)
Solving the first of these equations faryields
X(z) = XoY?(x). (51)
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Equation (47) gives

Y(x)
Q(x) X () dx
1
N XO Y(x (52)
The constraint (48) can be solved t6r
! _ 1 - "
Z'(x) = IX(2) (aY (z) — X (2)Y"(x))
o « _1 i
= Xy 2 @
where we made use of (51) in the last step. After integration we get
Z()——“//‘l de— V(@) + 2 (53)
VT axy ) Y@ T2 WA

To solve the fourth constraint (49), we ne€d in terms of X andY. Using the
result (40) fory = 0, we arrive at

AY'(x)

Q”(l‘) = - X(.%‘) .

Solving (49) forZ yields (41) fory = 0, that is

2@ =72 f(((g . %Y'(m). (54)

Equations (54) and (53) must coincide, therefore we set

a = —vXo, (55)
T
Zy = o (56)

Finally it remains to solve (50). We get

v [ Q) +aZ(x) - X(x)Z"(x) .
~Vp / : iz.

Inserting (51), (52), (54), (55), and (56) into the potential, we come to

vio=s ([ ) (5) (/Y ) (s )

b XY (@) — S X (@)Y (2) (57)
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There are no examples il] for the above potential, i.e. for the settifig= v = 0
andX’(z) # 0. ChoosingY (z) = 2* (k a constant ang # 1) yields for example
the following power law potential:

V(l’) :AQ+A1 $2k72+A2 x72k+2+A3 a?karl,
whereA; denote constants. Choosilidz) = x, we obtain a logarithmic potential:
V(z) = By + By log(x) + By log?(z),
where B; denote constants. Depending on these constants, this potential can
represent finite depth and a repulsive singularity at zero, set for exaBapie 0
and B2 > 0. Let us give another example: The choiEé¢r) = exp(kz) (k a
constant) leads to the following generalized Morse potential with an additional term
~ exp(—kx):
V(z) = Co + Cy exp(2kx) + Coy exp(—2kx) + Cs exp(—kx),

whereC; denote constants.

34.Case43 #0and X'(z) #0

The constraints are now given by (12)—(16). We solve the first and second of
these equations fap and obtain the following results:

_ 7 Y@)X'(z) | 2Y'(z)
R A (R A %
Qz) = A / )i,iz)) dz. (59)

Since (58) and (59) must coincide, the following interrelation betw&eandY
arises:

Y() . v Y(@)X'(x) 2Y'(z)
M xm s s

We can solve this equation fof:

X(z) = exp <—7 / Ygx) daz) Y2(z)
(0 fow (3 [ 5 0) s ) @
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Let us now determingZ from Egs. (14) and (15). Equation (14) yields after
integration

Y(x)
X (x) 2

Y'(x) + Zo. (61)

To solve (15), we nee®” in terms of X andY. We have from (59)

(/X )

oz
\Y'(x )\Y( ) X' ()
X(w) X2(x)

Q//(x)

Using this, we get from Eq. (15) the following result 8t

Since (61) and (62) must be the same, we get the following interrelation between
X andY:

V() . 1., v i Y@0X ()
X@) @3V @+ % __/Xa: 5 V@) = 5

Solving for X, we obtain
X(z) = exp ((—QZO - %) / Y(lx) dm) Y2(z) <X0 —(a+v)

X/exp((QZg—i—;)/Ygx) )f;;( ; dw). (63)

Equations (60) and (63) must be the same, which holds if we set

N = 2Zo+§, (64)

BA = a+vr (65)

Now we can obtain the potential from Eq. (16). Solving yields

0 = o[58 (o (82

Q) +aZ (;’)(;) X(@)2"(x) dx) . (66)
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The exponential function in the last expression becomes much simplified if we
insert@ as given in (58):

P <‘/ W“) - é(é))'

Thus we get for the potential (66)

V(iz) = o <V0 B / (@) +aZte) = X () 271) da:>.

Y2(z) X(z)

Inserting@ andZ as given in (59) and (61), we finally obtain the potential in terms
of X andY:

V(z) = % L ;(2((2)) (VO ~ Zya / f{ii; dar — ( ?;(g)) da:>2 (‘f n ;)

P07 @) - Y () Y”(x)).

We omit to insert the functiorlX as given in (63), because the above formula
for V is not simplified. As in the previous section, the structure of the potential
becomes much more obvious now than from the five constraints. HowevYeisif

a complicated function, the integrals in (63) and (67) are not solvable analytically.
We omit to give examples here, because even for relatively simple fundtidhe
potentials (67) generated become in general very long and involved expressions.

4. CONCLUSIONS

In this note we gave the complete, closed-form solution of a system of
constraints describing a class of potentials for which shift operators can be
computed by a method introduced ], Our main result was the explicit solutions
for these potentials given in (29), (45), (57), and (67). The explicit representation
of the potentials we obtained here can be used for a systematic search for new
exactly-solvable special cases.
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Tapselt lahenduvate potentsiaalide klassi modelleeriva
diferentsiaalvorrandisiisteemi tldlahend.
Il osa; laiendatud tulemused

Axel Schulze-Halberg

On uuritud artiklites [>'4] uldise fliisikalise susteemi nihke operaatorite

leidmiseks pakutud uut meetodit. Tahtsat osa selles meetodis mangivad seo-
sed kommutaatoriteH, Q| ja [H, P] vahel, kusH on sisteemi hamiltoniaaid)
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ja P on koordinaadi ja impulsi operaatorid. Seosed on maératud diferentsiaal-
vOrrandisusteemiga, mille tdpne lahend on leitud. L&htudes sellest lahendist on
tuletatud potentsiaalide klasside avaldised, mille puhul on v8imalik konstrueerida
vastavad nihke operaatorid. To66 on kasitluse] [atk, kusjuures praeguses
uurimuses on esitatud seoste pdhjalikum anallis ja eristatud rohkem juhtusid;
leitud lahenditel ja avaldistel on lihtsam kuju.
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