Some summability methods b-equivalent to the Cesàro methods

Olga Meronen and Anne Tali

Department of Mathematics, Tallinn Pedagogical University, Narva mnt. 25, 10120 Tallinn, Estonia; atali@tpu.ee

Received 3 January 2002, in revised form 8 May 2002

Abstract

The paper deals with summability methods which are equivalent for summing bounded sequences (b-equivalent). It is well known that the Cesàro methods $C_{\alpha}(\alpha>0)$ and the Abel method A are b-equivalent. More generally, different authors have proved that generalized Nörlund methods (N, a, b) and Abel-type power series methods J_{q} are b-equivalent under certain conditions on these methods. It turns out that quite often these conditions imply the b-equivalence of the methods (N, a, b) and J_{q} to $C_{\alpha}(\alpha>0)$ as well. The idea of this paper is to investigate the b-equivalence of the methods $(N, a, b), J_{q}$, and C_{α} ($\alpha>0$).

Key words: summability methods, generalized Nörlund methods, Cesàro methods, power series methods, b-equivalence of methods.

1. INTRODUCTION AND PRELIMINARIES

We begin with the definition of generalized Nörlund summability methods and power series methods of Abel type. Let $\left(\xi_{n}\right)$ denote throughout the paper a complex sequence and $q=\left(q_{n}\right)$ a non-negative sequence with $q_{0}>0(n \in \mathbf{N}=$ $\{0,1,2, \ldots\})$. For the definition of the power series method J_{q} (see $\left.\left[{ }^{1}\right]\right)$ we suppose that

$$
\begin{equation*}
\text { the power series } q(x)=\sum_{n=0}^{\infty} q_{n} x^{n} \text { has the radius of convergence } R=1 \tag{1}
\end{equation*}
$$

We say that $\left(\xi_{n}\right)$ is summable to ξ by the power series summability method J_{q} and write $\xi_{n} \rightarrow \xi\left(J_{q}\right)$ if

$$
q_{\xi}(x)=\sum_{n=0}^{\infty} \xi_{n} q_{n} x^{n} \text { converges for }|x|<1
$$

and

$$
\frac{q_{\xi}(x)}{q(x)} \rightarrow \xi \text { as } x \rightarrow 1-
$$

In particular, if $q_{n} \equiv 1$, then J_{q} is the Abel method, i.e. $J_{q}=A$. If $q=A^{\alpha}=\left(A_{n}^{\alpha}\right)=\left(\binom{n+\alpha}{n}\right), \alpha>-1$, then J_{q} is the generalized Abel method A_{α}. Therefore we say that the power series method J_{q} is an Abel-type method (in contrast to the case with $R=\infty$ where we speak of Borel-type methods).

In the sequel the following restrictions on $\left(q_{n}\right)$ will be important:

$$
\begin{gather*}
\sum_{k=0}^{n} q_{k} \rightarrow \infty \quad(n \rightarrow \infty) \tag{2}\\
n q_{n}=O\left(\sum_{k=0}^{n} q_{k}\right) \quad(n \rightarrow \infty), \tag{3}\\
\sum_{k=0}^{n} q_{k}=O\left(n q_{n}\right) \quad(n \rightarrow \infty) \tag{4}
\end{gather*}
$$

We note that (4) implies (2), and the conditions (2) and (3) imply (1) as $R \leq 1$ by (2) and $R \geq 1$ by (3). By Theorem 5 in [${ }^{2}$] the method J_{q} is regular, i.e. $\xi_{n} \rightarrow \xi \quad(n \rightarrow \infty)$ implies $\xi_{n} \rightarrow \xi\left(J_{q}\right)$, if and only if (2) holds. Notice that (3) is satisfied, for example, in case of a non-increasing and (4) in case of a nondecreasing sequence $\left(q_{n}\right)$. If, in particular, $q_{n}=A_{n}^{\gamma}(\gamma>-1)$, then (3) and (4) both are satisfied. The conditions (3) and (4) are satisfied also in case of $q_{n}=n^{\gamma} L(n)\left(n>n_{0}\right)$, where $\gamma>-1$ and $L($.$) is a slowly varying function$ (i.e., in case of regularly varying weights q_{n}, see $\left[{ }^{3}\right]$ for definitions) because of the relation

$$
\begin{equation*}
\sum_{k=0}^{n} A_{n-k}^{\alpha-1} k^{\gamma} L(k) \sim \frac{\Gamma(\gamma+1)}{\Gamma(\gamma+\alpha+1)} n^{\alpha+\gamma} L(n) \quad(n \rightarrow \infty, \alpha>0, \gamma>-1) \tag{5}
\end{equation*}
$$

(see $\left[{ }^{4}\right]$, Lemma A 1), where $\Gamma($.$) is the gamma function.$
The definition of a generalized Nörlund method (N, a, b) was given in $\left[{ }^{5}\right]$ and is as follows:

Let $a=\left(a_{n}\right)$ and $b=\left(b_{n}\right)$ be real sequences with the convoluted sequence

$$
(a * b)_{n}=\sum_{k=0}^{n} a_{n-k} b_{k} \neq 0 \quad(n \in \mathbf{N})
$$

We say that $\left(\xi_{n}\right)$ is summable by the generalized Nörlund method (N, a, b) to ξ and write $\xi_{n} \rightarrow \xi(N, a, b)$ if

$$
\eta_{n}=\frac{1}{(a * b)_{n}} \sum_{k=0}^{n} a_{n-k} b_{k} \xi_{k} \rightarrow \xi \quad(n \rightarrow \infty)
$$

The theorem of Toeplitz (see Theorem 2 in $\left[{ }^{2}\right]$) says that the method (N, a, b) is regular if and only if the following two conditions are satisfied:

$$
\begin{gather*}
\frac{a_{n-k} b_{k}}{(a * b)_{n}} \rightarrow 0 \quad(n \rightarrow \infty, \quad k \in \mathbf{N}) \\
\sum_{k=0}^{n}\left|a_{n-k} b_{k}\right|=O\left((a * b)_{n}\right) \quad(n \rightarrow \infty) \tag{6}
\end{gather*}
$$

In particular, if $b_{n} \equiv 1$, then we have the Nörlund method $(N, a)=(N, a, \mathbf{1})$, if also $a_{n}=A_{n}^{\alpha-1}$, then we have the Cesàro methods $\left(N, A^{\alpha-1}, \mathbf{1}\right)=(C, \alpha)=C_{\alpha}$. If $b_{n}=A_{n}^{\gamma}$ and $a_{n}=A_{n}^{\alpha-1}$, then we get the generalized Cesàro methods $\left(N, A^{\alpha-1}, A^{\gamma}\right)=(C, \alpha, \gamma)$. If $a_{n} \equiv 1$, then we have the Riesz methods $(N, \mathbf{1}, b)=(\bar{N}, b)$ (for more examples see $\left.\left[{ }^{6-13}\right]\right)$.

For any two summability methods A and B we say that B is not weaker than A and write $A \subset B$ if $\xi_{n} \rightarrow \xi(B)$ whenever $\xi_{n} \rightarrow \xi(A)$. We say that methods A and B are equivalent and write $A \sim B$ if both the relations $A \subset B$ and $B \subset A$ hold. If the relation

$$
\xi_{n} \rightarrow \xi(A) \Leftrightarrow \xi_{n} \rightarrow \xi(B)
$$

is true for all bounded sequences $\left(\xi_{n}\right)$, then we say that A and B are b-equivalent (or, A is b-equivalent to B).

Relations between the methods (N, a, q) and J_{q} were investigated in $\left[{ }^{14}\right]$ and $\left[{ }^{15}\right]$ in general and, in more or less general cases, also in all papers listed in References to our paper. In particular, some families of methods $\left(N, a^{\alpha}, q\right)$, where α is a discrete or continuous parameter and a^{α} is defined as convolution of sequences, have been constructed and relations between the methods $\left(N, a^{\alpha}, q\right)$ themselves, and between these methods and related power series methods J_{q} have been investigated (see $\left[{ }^{7-13}\right]$). Among other results the mentioned papers present sufficient conditions for the b-equivalence of the methods $\left(N, a^{\alpha}, q\right)$ to each other and to J_{q}. It turns out that quite often these conditions are sufficient (or almost sufficient) for the b-equivalence of the considered methods to the Cesàro methods $C_{\alpha}(\alpha>0)$ as well.

The idea of the present paper is to extend these investigations by studying the b-equivalence of the methods $(N, a, q), J_{q}$, and $C_{\alpha}(\alpha>0)$. Different sets of sufficient conditions for the b-equivalence of these methods will be found here.

The following inclusion relations are quite well known (see Theorem 43 in [${ }^{2}$] and Theorem 2 in $\left[{ }^{16}\right]$):

$$
\begin{gather*}
C_{\alpha} \subset C_{\beta} \subset A_{\gamma} \quad(\beta>\alpha>-1, \quad \gamma>-1) \tag{7}\\
A_{\gamma} \subset A_{\delta} \quad(\gamma>\delta>-1) \tag{8}
\end{gather*}
$$

Also (see [${ }^{17}$]),

$$
\begin{equation*}
(\bar{N}, q) \subset J_{q} \tag{9}
\end{equation*}
$$

provided that (1) holds.

Note that the inclusion relations (7), (8), and (9) are strict, i.e. the methods compared there are not equivalent.

We take for our starting-point the following three theorems (see Theorem 92 in $\left[{ }^{2}\right]$ and Theorem 4.3 in $\left[{ }^{18}\right]$ together with (7) and (9), respectively, and Lemma 2 in [$\left.{ }^{19}\right]$).

Theorem A. The Cesàro methods $C_{\alpha}(\alpha>0)$ and the Abel method A are b-equivalent.
Theorem B. If the conditions (2) and (3) are satisfied, then the methods (\bar{N}, q) and J_{q} are b-equivalent.
Theorem C. Let $\left(q_{n}\right)$ satisfy the conditions (1) and (2) and be positive for all large n. If $\left(g_{n}\right)$ is a non-negative sequence with $g_{0}>0$ such that $g_{n} / q_{n} \rightarrow 1(n \rightarrow \infty)$, then the method J_{g} is b-equivalent to J_{q}.

2. MAIN THEOREMS

We will present here two theorems.
Let $c=\left(c_{n}\right)$ and $p=\left(p_{n}\right)$ be two non-negative sequences such that $c_{0}, p_{0}>0$ and $(c * p) * q=\left(r_{n}\right)$ is a positive sequence. Consider the generalized Nörlund $\operatorname{method}(N, c * p, q)$ and the power series method J_{q}.

Theorem 1. Let us suppose that $\left(c_{n}\right)$ satisfies the condition

$$
\begin{equation*}
n c_{n}=O\left(\sum_{k=0}^{n} c_{k}\right) \quad(n \rightarrow \infty) \tag{10}
\end{equation*}
$$

and either
(i) $\left(q_{n}\right)$ is non-decreasing and satisfies (3)
or
(ii) $\left(q_{n}\right)$ is non-increasing and satisfies (4).

Suppose also that either
(iii) $\left(p_{n}\right)$ is non-decreasing and

$$
\begin{equation*}
n p_{n}=O\left(\sum_{k=0}^{n} p_{k}\right) \quad(n \rightarrow \infty) \tag{11}
\end{equation*}
$$

or
(iv) $\left(p_{n}\right)$ is non-increasing and

$$
\begin{equation*}
\sum_{k=0}^{n} q_{k}=O\left((p * q)_{n}\right) \quad(n \rightarrow \infty) \tag{12}
\end{equation*}
$$

Then the method $(N, c * p, q)$ is b-equivalent to J_{q} and to the Cesàro methods C_{α} $(\alpha>0)$ as well.

Remark 1. Notice that the method $(N, c * p, q)$ turns into the method (N, p, q) if $c_{n}=\delta_{0, n}$. Thus, Theorem 1 says that the method (N, p, q) is b-equivalent to the Cesàro methods $C_{\alpha}(\alpha>0)$ if conditions (i) or (ii) and (iii) or (iv) of Theorem 1 are satisfied. In particular, the method (\bar{N}, q) is b-equivalent to the Cesàro methods $C_{\alpha}(\alpha>0)$ if (i) or (ii) is satisfied.

In particular, if $c_{n}=A_{n}^{\alpha-1}$, then the restrictions on p_{n} and q_{n} in Theorem 1 can be weakened. Thus we get another theorem.

Denote $p_{n}^{\alpha}=\left(A^{\alpha-1} * p\right)_{n}$ and consider the methods

$$
\left(N, p^{\alpha}, q\right)=\left(N, A^{\alpha-1} * p, q\right)=(N, c * p, q)
$$

where α is a continuous parameter with values $\alpha>\alpha_{0}$ and α_{0} is such a number that $p^{\alpha} * q=\left(A^{\alpha-1} * p\right) * q=\left(r_{n}^{\alpha}\right)$ are positive sequences. Notice that the last condition is surely satisfied if $\alpha_{0}=0$, and the relation

$$
\begin{equation*}
p^{\beta}=A^{\beta-\alpha-1} * p^{\alpha} \quad\left(\beta>\alpha_{0}, \quad \alpha>\alpha_{0}\right) \tag{13}
\end{equation*}
$$

holds by the properties of convolutions and the Cesàro numbers A_{n}^{α}.
The structure of the family of methods $\left(N, p^{\alpha}, q\right)$ was observed in $\left[{ }^{10,12,13}\right]$ in the general case and in partial cases also in $\left[{ }^{6,8,11}\right]$. In this paper we will prove the following theorem.

Theorem 2. Let us consider the methods $\left(N, p^{\alpha}, q\right)=\left(N, A^{\alpha-1} * p, q\right)$ with $\alpha>0$. Suppose that $\left(q_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions (1), (3), and (11), respectively.
(i) Then the methods $\left(N, p^{\alpha}, q\right)(\alpha>0)$ are b-equivalent to J_{q}.
(ii) If, in addition, $\left(q_{n}\right)$ is non-decreasing or $\left(q_{n}\right)$ is non-increasing and satisfies (4), then the methods $\left(N, p^{\alpha}, q\right)(\alpha>0)$ are b-equivalent to the Cesàro methods $C_{\delta}(\delta>0)$.

To prove Theorems 1 and 2 we need some auxiliary results.

3. AUXILIARY PROPOSITIONS

Proposition 1. If $\left(q_{n}\right)$ satisfies conditions (i) or (ii) of Theorem 1 , then the methods J_{q} and $C_{\alpha}(\alpha>0)$ are b-equivalent. In particular, the generalized Abel methods $J_{q}=A_{\gamma}(\gamma>-1)$ and $C_{\alpha}(\alpha>0)$ are b-equivalent.

Proof. The methods J_{q} and (\bar{N}, q) are b-equivalent by Theorem B because the conditions (2) and (3) both are satisfied. Further, $(\bar{N}, q) \sim C_{1}$ by Theorem 14 in [${ }^{2}$] and C_{1} is b-equivalent to $C_{\alpha}(\alpha>0)$ by Theorem A. It remains to note that $q_{n}=A_{n}^{\gamma}$ satisfies condition (i) if $\gamma \geq 0$ and condition (ii) if $-1<\gamma \leq 0$.

Proposition 2. Suppose that $\left(g_{n}\right)$ is a non-negative sequence with $g_{0}>0$ and $g_{n} \sim n^{\gamma} L(n)(n \rightarrow \infty, \gamma>-1)$, where $L($.$) is a slowly varying function. If$ $\left(n^{\gamma} L(n)\right)$ is monotonic, then the methods J_{g} and $C_{\alpha}(\alpha>0)$ are b-equivalent.

Proof. Our proposition is a direct conclusion from the previous one and Theorem C. Denote $q_{n}=n^{\gamma} L(n)\left(n>n_{0}\right)$ and see from (5) that $\left(q_{n}\right)$ satisfies (3) and (4). Thus conditions (i) or (ii) of Theorem 1 are satisfied and J_{q} is b-equivalent to C_{α} $(\alpha>0)$. It follows now from Theorem C that J_{g} is b-equivalent to $C_{\alpha}(\alpha>0)$.

Remark 2. (i) Notice that if $\left(q_{n}\right)$ is monotonic and satisfies (2) and (3), then the relation $C_{1} \subset J_{q}$ holds (use (9) and Theorem 14 in [${ }^{2}$]).
(ii) If $q_{n}=\frac{1}{n+1}$, then J_{q} is not b-equivalent to $C_{\alpha}(\alpha>0)$ because there exists a bounded sequence $\left(\xi_{n}\right)$ summable by J_{q} but not by C_{1} (see [${ }^{2}$], Section 3.8 and Theorem 82).

The next proposition is proved in $\left[{ }^{12}\right]$ as Lemma 1.1(h).
Proposition 3. Let $\left(q_{n}\right)$ satisfy (1) and the power series $\sum_{n=0}^{\infty}(c * p)_{n} x^{n}$ have the radius of convergence $R \geq 1$. If

$$
\begin{equation*}
\sum_{k=0}^{n}((c * p) * q)_{k} \rightarrow \infty \quad(n \rightarrow \infty) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty}(c * p)_{n} z^{n} \neq 0 \tag{15}
\end{equation*}
$$

in the unit disc $|z|<1$ on the complex plane then ${ }^{1}$

$$
(N, c * p, q) \subset J_{q}
$$

Remark 3. In particular, if we consider the methods $\left(N, p^{\alpha}, q\right)\left(\alpha>\alpha_{0}\right)$, then we have by Proposition 3

$$
\left(N, p^{\alpha}, q\right) \subset J_{q}
$$

provided that $\left(q_{n}\right)$ satisfies (1),

$$
\begin{equation*}
\text { the power series } \sum_{n=0}^{\infty} p_{n} z^{n} \text { has } R \geq 1 \tag{16}
\end{equation*}
$$

and $\sum_{n=0}^{\infty} p_{n} z^{n} \neq 0$ in the unit disc on the complex plane (cf. $\left[{ }^{12}\right]$, Proposition 2.5). The last restriction is redundant if we apply our inclusion relation to bounded sequences $\left(\xi_{n}\right)$ only.

[^0]Proposition 4. If $\left(c_{n}\right)$ satisfies (10) and either
(i) $\left(q_{n}\right)$ is non-decreasing
or
(ii) $\left(q_{n}\right)$ is non-increasing and satisfies (4),
then the method $(N, c, p * q)$ is regular.
Proof. Since the matrix $(N, c, p * q)$ is non-negative, we have to verify only the first regularity condition (6). In case (i) we have:

$$
\frac{c_{n-k}}{r_{n}} \leq \frac{c_{n-k}}{p_{0} q_{0} \sum_{\nu=0}^{n} c_{\nu}} \leq \frac{M \sum_{\nu=0}^{n} c_{\nu}}{(n-k) \sum_{\nu=0}^{n} c_{\nu}}=O\left(\frac{1}{n-k}\right)=o_{k}(1) \quad(n \rightarrow \infty)
$$

In case (ii) we get analogously that

$$
\frac{c_{n-k}}{r_{n}} \leq \frac{c_{n-k}}{p_{0} q_{n} \sum_{k=0}^{n} c_{k}} \leq \frac{K n c_{n-k}}{Q_{n} \sum_{k=0}^{n} c_{k}}=O\left(\frac{n}{(n-k) Q_{n}}\right)=o_{k}(1) \quad(n \rightarrow \infty)
$$

Proposition 5. If the conditions of Proposition 4 are satisfied, then the relation

$$
(N, p, q) \subset(N, c * p, q)
$$

holds.
Proof. Let us verify the equality

$$
\begin{equation*}
(N, c * p, q)=(N, c, p * q) \circ(N, p, q) \tag{17}
\end{equation*}
$$

where the right side can be read as superposition of two transforms. Indeed, for a sequence $\left(\xi_{n}\right)$ we have:

$$
\begin{aligned}
\frac{1}{r_{n}} \sum_{k=0}^{n}(c * p)_{n-k} q_{k} \xi_{k} & =\frac{1}{r_{n}} \sum_{k=0}^{n} \sum_{\nu=0}^{n-k} c_{n-k-\nu} p_{\nu} q_{k} \xi_{k} \\
& =\frac{1}{r_{n}} \sum_{\nu=0}^{n} c_{n-\nu}(p * q)_{\nu} \frac{1}{(p * q)_{\nu}} \sum_{k=0}^{\nu} p_{\nu-k} q_{k} \xi_{k}
\end{aligned}
$$

As the method $(N, c, p * q)$ is regular by Proposition 4, our statement follows from (17).

Remark 4. It follows from (17) and (13) with the help of Proposition 4 that

$$
\left(N, p^{\alpha}, q\right) \subset\left(N, p^{\beta}, q\right) \quad\left(\beta>\alpha>\alpha_{0}\right)
$$

(cf. Proposition 2.2 in $\left[{ }^{12}\right]$). Indeed, it is sufficient to notice that the method

$$
\begin{gathered}
\left(N, A^{\beta-\alpha-1}, p^{\alpha} * q\right)=\left(N, A^{\beta-\alpha-1},\left(p^{\alpha^{\prime}} * q\right) * A^{\alpha-\alpha^{\prime}-1}\right) \\
\left(\beta>\alpha>\alpha_{0}, \alpha^{\prime}=\left(\alpha+\alpha_{0}\right) / 2\right)
\end{gathered}
$$

satisfies the conditions of Proposition 4 if we take $c_{n}=A_{n}^{\beta-\alpha-1}$ and replace q_{n} by $A_{n}^{\alpha-\alpha^{\prime}-1}$ and p_{n} by $\left(p^{\alpha^{\prime}} * q\right)_{n}$ in it.

The following result was proved in [${ }^{12}$] by Proposition 2.7.
Proposition 6. If the methods $\left(N, p^{\alpha}, q\right)=\left(a_{n k}^{\alpha}\right)\left(\alpha>\alpha_{0}\right)$ satisfy the conditions (1), (16),

$$
\begin{equation*}
\sum_{k=0}^{n}\left|a_{n k}^{\alpha}\right|=O(1) \quad(n \rightarrow \infty) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{1} n^{\beta-\alpha} \leq \frac{r_{n}^{\beta}}{r_{n}^{\alpha}} \leq M_{2} n^{\beta-\alpha} \quad(n=1,2, \ldots) \tag{19}
\end{equation*}
$$

for all $\beta>\alpha>\alpha_{0}$, then the implication

$$
\begin{equation*}
\xi_{n}=O(1), \quad \xi_{n} \rightarrow \xi\left(J_{q}\right) \Rightarrow \xi_{n} \rightarrow \xi\left(N, p^{\alpha}, q\right) \tag{20}
\end{equation*}
$$

is true for any $\alpha>\alpha_{0}$.
We need also the following proposition.
Proposition 7. If p_{n} and q_{n} satisfy the conditions (11) and (3), respectively, then $(p * q)_{n}$ satisfies the condition

$$
\begin{equation*}
n(p * q)_{n}=O\left(\sum_{k=0}^{n}(p * q)_{k}\right) \tag{21}
\end{equation*}
$$

Proof. With the help of (11) and (3) we get:

$$
\begin{aligned}
n \sum_{k=0}^{n} p_{n-k} q_{k} & =n \sum_{k=0}^{[n / 2]} p_{n-k} q_{k}+n \sum_{k=[n / 2]+1}^{n} p_{n-k} q_{k} \\
& \leq n \sum_{k=0}^{[n / 2]} p_{n-k} q_{k}+n \sum_{k=0}^{[n / 2]} q_{n-k} p_{k} \\
& =n \sum_{k=0}^{[n / 2]} p_{n-k} \frac{n-k}{n-k} q_{k}+n \sum_{k=0}^{[n / 2]} q_{n-k} \frac{n-k}{n-k} p_{k} \\
& \leq 2 M_{1} \sum_{k=0}^{n} P_{n-k} q_{k}+2 M_{2} \sum_{k=0}^{n} Q_{n-k} p_{k} \\
& =2 M_{1} \sum_{\nu=0}^{n}(p * q)_{\nu}+2 M_{2} \sum_{\nu=0}^{n}(p * q)_{\nu}=O\left(\sum_{\nu=0}^{n}(p * q)_{\nu}\right)
\end{aligned}
$$

Thus we have proved that (21) holds.

4. PROOFS OF MAIN THEOREMS

Let us prove now Theorems 1 and 2.
Proof of Theorem 1. The methods J_{q} and $C_{\alpha}(\alpha>0)$ are b-equivalent by Proposition 1. It remains to prove that $(N, c * p, q)$ and J_{q} are b-equivalent. Notice that the power series $\sum_{n=0}^{\infty}(c * p)_{n} x^{n}$ has the radius of convergence $R \geq 1$, because this series can be seen as the product of the power series $\sum_{n=0}^{\infty} c_{n} x^{n}$ and $\sum_{n=0}^{\infty} p_{n} x^{n}$ which both have $R \geq 1$ due to the restrictions (10) and (11). Also, the condition (14) holds as

$$
\sum_{k=0}^{n}((c * p) * q)_{k} \geq c_{0} p_{0} \sum_{k=0}^{n} q_{k} \quad(n \in \mathbf{N})
$$

and (2) is satisfied. Thus the conditions of Proposition 3 are satisfied and we have by this proposition that the implication

$$
\xi_{n} \rightarrow \xi(N, c * p, q) \Rightarrow \xi_{n} \rightarrow \xi\left(J_{q}\right)
$$

is true for any bounded sequence $\left(\xi_{n}\right)$. To complete the proof, we have to show that also the implication

$$
\xi_{n} \rightarrow \xi\left(J_{q}\right) \Rightarrow \xi_{n} \rightarrow \xi(N, c * p, q)
$$

is true for the bounded sequences $\left(\xi_{n}\right)$. Indeed,

$$
\xi_{n} \rightarrow \xi\left(J_{q}\right) \Rightarrow \xi_{n} \rightarrow \xi(\bar{N}, q)
$$

by Theorem B. As the method (N, p, q) is regular (use Proposition 4), the implication

$$
\xi_{n} \rightarrow \xi(\bar{N}, q) \Rightarrow \xi_{n} \rightarrow \xi(N, p, q)
$$

is true by Theorem 3 in [${ }^{15}$. Finally, we have:

$$
\xi_{n} \rightarrow \xi(N, p, q) \Rightarrow \xi_{n} \rightarrow \xi(N, c * p, q)
$$

by Proposition 5. Our theorem is proved.

Remark 5. (i) It can be seen from the proof of Theorem 1 that also the relations

$$
C_{1} \subset(N, p, q) \subset(N, c * p, q)
$$

hold under the conditions of Theorem 1.
(ii) Note that we needed Theorem 3 from [${ }^{15}$] and Theorem 14 from $\left[{ }^{2}\right]$ in the proof of Theorem 1. That is why we could not weaken the restrictions on $\left(p_{n}\right)$ and $\left(q_{n}\right)$ in this theorem. These restictions are weakened in Theorem 2, where the special sequences $\left(c_{n}\right)$ are considered.

Proof of Theorem 2. Let us show first that all the conditions of Proposition 6 are satisfied with $\alpha_{0}=0$. Notice that if $\alpha>0$, then $A_{n}^{\alpha-1}>0(n \in \mathbf{N})$, and thus (18) is satisfied by the definition of methods $\left(N, p^{\alpha}, q\right)$. Also, the conditions (3) and (11) imply the inequalities (19) for all $\beta>\alpha>\alpha_{0}$ by Lemma 2.1 in [$\left.{ }^{12}\right]$, and (16) is satisfied due to (11). Thus the implication (20) is true by Proposition 6, and our statement (i) follows now from Proposition 3 (see also Remark 3). Statement (ii) is a direct conclusion from (i) and Proposition 1.

Remark 6. Suppose that $\left(q_{n}\right)$ is as in Theorem 1 or 2 and $\left(g_{n}\right)$ is a non-negative sequence with $g_{0}>0$ such that $g_{n} / q_{n} \rightarrow 1(n \rightarrow \infty)$. It can be seen from proofs of Theorems 1 and 2 (with the help of Theorem C) that in the conditions of these theorems also the methods J_{g} and $(N, c * p, g)$ or $\left(N, p^{\alpha}, g\right)(\alpha>0)$, respectively, are b-equivalent to $C_{\delta}(\delta>0)$. For example, this case works if $g_{n} \sim q_{n}=n^{\gamma} L(n)$ $(\gamma>-1)$ and $\left(q_{n}\right)$ is monotonic.

5. SOME CONCLUSIONS

We derive now some corollaries from Theorems 1 and 2.
Denote $p^{* \alpha}=p * p^{*(\alpha-1)}$ and $p^{* 1}=p(\alpha=1,2, \ldots)$ supposing that $\left(p^{* 2}\right)_{n}=(p * p)_{n}>0(n \in \mathbf{N})$. Realize that

$$
p^{* \beta}=p^{*(\beta-\alpha)} * p^{* \alpha} \quad(\beta>\alpha, \quad \beta, \alpha=1,2, \ldots) .
$$

Consider the methods $\left(N, p^{* \alpha}, q\right)$. The following result can be obtained as a corollary from Theorem 1 .

Corollary 1. Let us consider the methods $\left(N, p^{* \alpha}, q\right)(\alpha=1,2, \ldots)$. If $\left(q_{n}\right)$ and $\left(p_{n}\right)$ satisfy the conditions of Theorem 1 , then the methods $\left(N, p^{* \alpha}, q\right)$ $(\alpha=1,2, \ldots)$ are b-equivalent to J_{q} and to the Cesàro methods $C_{\delta}(\delta>0)$ as well.

Proof. If $\alpha=1$, then our statement follows directly from Theorem 1 if we take $c_{n}=\delta_{0, n}$ in it. If $\alpha>1$, then our statement can be also derived immediately from Theorem 1 by taking $c_{n}=p_{n}^{*(\alpha-1)}$ in it and realizing that (11) implies here (10) by Proposition 7.

In particular, if $q=p^{* \gamma}$, then Corollary 1 says as follows.
Corollary 2. Let us consider the methods ($N, p^{* \alpha}, p^{* \gamma}$), where $\alpha, \gamma=1,2, \ldots$ If $\left(p_{n}\right)$ is non-decreasing and satisfies (11), then the methods $\left(N, p^{* \alpha}, p^{* \gamma}\right)$ and $J_{p^{* \gamma}}$ $(\alpha, \gamma=1,2, \ldots)$ are b-equivalent to the Cesàro methods $C_{\delta}(\delta>0)$.

Proof. Our statement can be derived from Corollary 1 as a direct conclusion, because the sequence $\left(q_{n}\right)=\left(p_{n}^{* \gamma}\right)(\gamma=1,2,3, \ldots)$ satisfies (3) due to (11) (see Proposition 7) and is also non-decreasing:

$$
p_{n+1}^{* \gamma}=\sum_{k=0}^{n+1} p_{n+1-k} p_{k}^{*(\gamma-1)} \geq \sum_{k=0}^{n} p_{n+1-k} p_{k}^{*(\gamma-1)} \geq \sum_{k=0}^{n} p_{n-k} p_{k}^{*(\gamma-1)}=p_{n}^{* \gamma}
$$

Remark 7. The methods $\left(N, p^{* \alpha}, p^{* \gamma}\right)(\alpha, \gamma=1,2, \ldots)$ obeying the conditions of Corollary 2 were considered in [7,9,12], where certain inclusion, convexity and Tauberian theorems implying the b-equivalence of the methods $\left(N, p^{* \alpha}, p^{* \gamma}\right)$ and $J_{p^{* \gamma}}$ were proved. The b-equivalence of these methods in the conditions of Corollary 2 was proved in [${ }^{12}$] by Theorem $3.5(\mathrm{~b})$ and Proposition 2.5. In papers [${ }^{7}$] and [${ }^{9}$] the restrictions on $\left(p_{n}\right)$ are presented in the form $p_{n}=n^{\delta} L(n)$ (more precisely, $p_{n} \sim n^{\delta} L(n), n \rightarrow \infty$), where $\delta \geq 0, L($.$) is a regularly varying$ function and $\left(n^{\delta} L(n)\right)$ is non-decreasing; in [${ }^{12}$] also the case $-1<\delta<0$ is included. The b-equivalence of the methods $\left(N, p^{* \alpha}, p^{* \gamma}\right)$ to the Cesàro methods was not noticed in these papers.

Finishing our paper we derive a corollary from Theorem 2.
Corollary 3. Consider the methods $\left(N, A^{\alpha-1}, q\right)$ with $\alpha>0$. Suppose that $\left(q_{n}\right)$ satisfies (1) and (3).
(i) Then the methods $\left(N, A^{\alpha-1}, q\right)(\alpha>0)$ and J_{q} are b-equivalent.
(ii) If, in addition, $\left(q_{n}\right)$ is non-decreasing or $\left(q_{n}\right)$ is non-increasing and satisfies (4), then the methods $\left(N, A^{\alpha-1}, q\right)(\alpha>0)$ are b-equivalent to the Cesàro methods $C_{\delta}(\delta>0)$.

This corollary is the immediate conclusion from Theorem 2 for the case $p_{n}=\delta_{0, n}$. Note that statement (i) was proved in $\left[{ }^{8}\right]$ in stronger conditions (2) and (3) (see Theorem 1 and Proposition 1 in $\left[{ }^{8}\right]$).

Remark 8. If $q_{n}=\frac{1}{n+1}$ and $\left(p_{n}\right)$ satisfies the condition (11), then $\left(N, p^{\alpha}, q\right)$ $(\alpha>0)$ and J_{q} are b-equivalent by Theorem 2. It should be mentioned that the methods $\left(N, p^{\alpha}, q\right)$ are not b-equivalent to $C_{\delta}(\delta>0)$ (see Remark 2). In particular, the method (\bar{N}, q) is b-equivalent to J_{q} but not to $C_{\delta}(\delta>0)$.

ACKNOWLEDGEMENT

This research was supported by the Estonian Science Foundation (grant No. 3620).

REFERENCES

1. Borwein, D. On summability methods based on power series. Proc. Roy. Soc. Edinburgh, 1957, 64, 342-349.
2. Hardy, G. H. Divergent Series. Oxford Univ. Press, London, 1949.
3. Bingham, N. H., Goldie, C. M. and Teugels, J. L. Regular Variation. Cambridge Univ. Press, 1987.
4. Kiesel, R. The law of the iterated logarithm for certain power series and generalized Nörlund methods. Math. Proc. Cambridge Phil. Soc., 1996, 120, 735-753.
5. Borwein, D. On products of sequences. J. London Math. Soc., 1958, 33, 352-357.
6. Das, G., Panda, K. and Sahoo, S. On two new methods of summability. Indian J. Pure Appl. Math., 1984, 15, 1340-1351.
7. Kiesel, R. General Nörlund transforms and power series methods. Math. Z., 1993, 214, 273-286.
8. Kiesel, R. On scales of summability methods. Math. Nachr., 1995, 176, 129-138.
9. Kiesel, R. and Stadtmüller, U. Tauberian- and convexity theorems for certain (N, p, q)-means. Can. J. Math., 1994, 46, 982-994.
10. Sinha, R. Convexity theorem for (N, p, q) summability. Kyungpook Math. J., 1973, 13, 37-40.
11. Cass, F. P. Convexity theorems for Nörlund and strong Nörlund summability. Math. Z., 1968, 112, 357-363.
12. Stadtmüller, U. and Tali, A. On certain families of generalized Nörlund methods and power series methods. J. Math. Anal. Appl., 1999, 238, 44-46.
13. Tali, A. Convexity conditions for families of summability methods. Acta Comment. Univ. Tartuensis, 1993, 960, 117-138.
14. Das, G. On some methods of summability. Quart. J. Math. Oxford, 1966, 17, 244-256.
15. Das, G. On some methods of summability II. Quart. J. Math. Oxford, 1968, 19, 417-438.
16. Borwein, D. On a scale of Abel-type summability methods. Proc. Cambridge Phil. Soc., 1957, 53, 318-322.
17. Ishiguro, K. A Tauberian theorem for $\left(J, p_{n}\right)$ summability. Proc. Japan Acad., 1964, 40, 807-812.
18. Tietz, H. and Trautner, R. Tauber-Sätze für Potenzreihenverfahren. Arch. Math., 1988, 50, 164-174.
19. Kratz, W. and Stadtmüller, U. O-Tauberian theorems for J_{q}-methods with rapidly increasing weights. J. London Math. Soc., 1990, 41, 489-502.

Cesàro menetlustega b-ekvivalentsetest summeerimismenetlustest

Olga Meronen ja Anne Tali

Artiklis on käsitletud summeerimismenetlusi, mis on tõkestatud jadade summeerimisel ekvivalentsed (b-ekvivalentsed). On hästi teada, et Cesàro menetlused $C_{\alpha}(\alpha>0)$ ja Abeli menetlus A on b-ekvivalentsed. Üldisemalt, mitmed autorid on tõestanud, et üldistatud Nörlundi menetlus (N, a, b) ja Abeli tüüpi astmerea menetlus J_{q} on teatavatel tingimustel b-ekvivalentsed. Osutub, et küllalt sageli on saadud tingimustel menetlused (N, a, b) ja $J_{q} b$-ekvivalentsed ühtlasi ka Cesàro menetlustega $C_{\alpha}(\alpha>0)$. Käesolevas töös on leitud erinevaid piisavaid tingimusi nimetatud menetluste b-ekvivalentsuseks.

[^0]: 1 If we consider the following inclusion relation only for bounded sequences $\left(\xi_{n}\right)$, then the condition (15) can be dropped. Note that c_{n} may be also negative for some n in this proposition.

