On the summability of Fourier expansions in Banach spaces

Ants Aasma
Department of Mathematics, Tallinn Pedagogical University, Narva mnt. 25, 10120 Tallinn, Estonia

Received 15 November 2001, in revised form 25 March 2002

Abstract

Let X be a Banach space with an orthogonal system of projections. Let Z^{r} $(r>0)$ be the method of Zygmund, $M^{\varphi}=(\varphi(k /(n+1)))$ the triangular method of summation, generated by the differentiable function φ, and $Z_{n}^{r} x, M_{n}^{\varphi} x$ be Z^{r} - and M^{φ} means of Fourier expansions of $x \in X$, respectively. The author of this paper has proved the theorem (see Facta Univ. Niš. Ser. Math. Inform., 1997, 12, 233-238) that gives sufficient conditions for $(n+1)^{\alpha+\gamma-1}\left\|M_{n}^{\varphi} x_{0}-x_{0}\right\|=O(1)\left(x_{0} \in X\right)$ if it is assumed that $(n+1)^{\alpha}\left\|Z_{n}^{r} x_{0}-x_{0}\right\|=O(1)$ for the same x_{0}, and $\left.\left.g(t)=t^{1-r} \varphi^{\prime}(t) \in \operatorname{Lip} \gamma(\gamma \in] 0,1\right]\right)$ on $] 0,1\left[\right.$. In the present paper this theorem is applied in the cases, where M^{φ} is either the method of Riesz, Jackson-de La Vallée Poussin, Bohman-Korovkin, Zhuk or Favard.

Key words: Fourier expansions, summability methods, approximation order.
Everywhere in this paper we suppose that X is a Banach space, where there exists a total sequence of mutually orthogonal continuous projections $\left(T_{k}\right)$ ($k=0,1, \ldots$) on X. It means that T_{k} is a bounded linear operator of X into itself, $T_{k} x=0$ for all k implies $x=0$, and $T_{j} T_{k}=\delta_{j k} T_{k}$, where $\delta_{j k}$ is the Kronecker symbol. Then, with each $x \in X$ one may associate its formal Fourier expansion

$$
x \sim \sum_{k} T_{k} x .
$$

It is known (cf. [${ }^{1}$], pp. 74-75, 85-86) that the sequence of projections $\left(T_{k}\right)$ exists in several Banach spaces. For example, if $X=C_{2 \pi}$ is the space of all 2π-periodic and continuous functions on $]-\infty, \infty\left[\right.$ or $X=L_{2 \pi}^{p}(1 \leq p<\infty)$ is the space of all 2π-periodic functions, Lebesgue integrable to the p th power over $]-\pi, \pi[$, then the projections are formed by the Fourier coefficients multiplied with associated trigonometric harmonics.

Let us consider now the sequence of projections $\left(T_{k}\right)$ in $L^{p}(-\infty, \infty)$ $(1 \leq p<\infty)$ - the space of all functions, Lebesgue integrable to the p th power over $]-\infty, \infty[$. For this purpose we consider the Hermite polynomials defined by

$$
H_{k}(t)=(-1)^{k} e^{t^{2}} \frac{d^{k}\left(e^{-t^{2}}\right)}{d t^{k}} \quad(k \geq 0)
$$

If we set

$$
\varphi_{k}(t)=\left(2^{k} k!\sqrt{\pi}\right)^{-1 / 2} e^{-t^{2} / 2} H_{k}(t)
$$

$\left(\varphi_{k}\right)$ is an orthonormal sequence of functions on $]-\infty, \infty\left[\right.$ (cf. $\left[^{1}\right]$, pp. 85-86). Thus the projections

$$
T_{k} x(t)=\left[\int_{-\infty}^{\infty} x(s) \varphi_{k}(s) d s\right] \varphi_{k}(t)
$$

are mutually orthogonal. One can define the sequence of projections $\left(T_{k}\right)$, for example, also with the help of Laguerre or Jacobi polynomials respectively in $L^{p}(0, \infty)(1 \leq p<\infty)$ - the space of all functions, Lebesgue integrable to the p th power over $] 0, \infty[$, and in $C[-1,1]$ - the space of all measurable functions, continuous on $[-1,1]$ (cf. [$\left.{ }^{1}\right]$, pp. 84, 87).

The summability method of Zygmund $Z^{r}(r>0)$ is defined by the equality

$$
\begin{equation*}
Z_{n}^{r} x=\sum_{k=0}^{n}\left[1-\left(\frac{k}{n+1}\right)^{r}\right] T_{k} x \tag{1}
\end{equation*}
$$

Let the summability method M^{φ} be defined by a function φ, continuous on $[0,1]$ and differentiable on $] 0,1[$, where $\varphi(0)=1$ and $\varphi(1)=0$, as follows:

$$
\begin{equation*}
M_{n}^{\varphi} x=\sum_{k=0}^{n} \varphi\left(\frac{k}{n+1}\right) T_{k} x \tag{2}
\end{equation*}
$$

If $X=C_{2 \pi}$ or $X=L_{2 \pi}^{p}(1 \leq p<\infty)$, then it is well known that for the classical trigonometric system $\left(T_{k}\right)$ and for $\left.\alpha \in\right] 0,1[$ the relation

$$
(n+1)^{\alpha}\left\|Z_{n}^{1} x-x\right\|=O_{x}(1)
$$

holds if and only if

$$
x \in \operatorname{Lip} \alpha=\left\{x \in X \mid\|x(t+h)-x(t)\|=O_{x}\left(h^{\alpha}\right)\right\}
$$

(cf. $\left[^{2}\right]$, p. 106). Several results, where the order of approximation can be characterized via Lipschitz conditions, are known (cf. [${ }^{2}$], pp. 67-88, 106-107). In $\left[{ }^{3}\right]$ the order of approximation of the element $x \in X$ by M^{φ}-means of Fourier
expansions was described via the order of approximation by Z^{r}-means of Fourier expansions, i.e. the following result (see [${ }^{3}$], pp. 236-237) holds
Theorem A. Let $Z_{n}^{r}(r>0)$ and M_{n}^{φ} be defined by (1) and (2), respectively. Assume that for $g(t)=t^{1-r} \varphi^{\prime}(t)$ on $] 0,1[$ we have $g \in \operatorname{Lip} \gamma$, where $\left.\gamma \in] 0,1\right]$. If for some $x_{0} \in X$ and for $\left.\alpha \in\right] 1-\gamma, r[$ the estimation

$$
\begin{equation*}
(n+1)^{\alpha}\left\|Z_{n}^{r} x_{0}-x_{0}\right\|=O(1) \tag{3}
\end{equation*}
$$

holds, then

$$
(n+1)^{\alpha+\gamma-1}\left\|M_{n}^{\varphi} x_{0}-x_{0}\right\|=O(1)
$$

The cases, where M^{φ} is the method of Zygmund or the method of Rogosinski, are studied in $\left[{ }^{4}\right]$ and $\left[{ }^{3}\right]$, respectively. Now we consider the functions φ_{i} $(i=1, \ldots, 5)$, defined on $[0,1]$ as follows:

$$
\begin{gather*}
\varphi_{1}(t)=\left(1-t^{\omega}\right)^{\sigma} \quad(\omega, \sigma>0) \tag{4}\\
\varphi_{2}(t)= \begin{cases}1-6 t^{2}+6 t^{3} & \left(t \in\left[0, \frac{1}{2}\right]\right) \\
2(1-t)^{3} & \left(t \in\left[\frac{1}{2}, 1\right]\right)\end{cases} \tag{5}\\
\varphi_{3}(t)=(1-t) \cos (\pi t)+\frac{1}{\pi} \sin (\pi t) \tag{6}\\
\varphi_{4}(t)=1-\tan ^{2}\left(\frac{\pi t}{4}\right) ; \tag{7}\\
\varphi_{5}(t)= \begin{cases}1 & (t=0) \\
\frac{\pi t}{2} \cot \left(\frac{\pi t}{2}\right) & (t \in] 0,1])\end{cases} \tag{8}
\end{gather*}
$$

In this paper we apply Theorem A in the case, where $M^{\varphi}=M^{\varphi_{i}}(i=1, \ldots, 5)$. The method $M^{\varphi_{1}}$ is called the method of Riesz (cf. [${ }^{2}$], pp. 265, 475), $M^{\varphi_{2}}$ the method of Jackson-de La Vallee Poussin (cf. [${ }^{2}$], p. 205), $M^{\varphi_{3}}$ the method of Bohman-Korovkin (cf. [${ }^{5}$], p. 305), $M^{\varphi_{4}}$ the method of Zhuk (cf. [${ }^{6}$], p. 319), and $M^{\varphi_{5}}$ the method of Favard (cf. [$\left.{ }^{7}\right]$, p. 161).

Theorem. Let $M^{\varphi_{i}}(i=1, \ldots, 5)$ be the summation methods defined by (4)-(8). Assume that for some $x_{0} \in X$ and for $\left.\alpha \in\right] 0, r[$ the estimation (3) is valid.
(I) The estimation

$$
(n+1)^{\alpha+\gamma-1}\left\|\sum_{k=0}^{n}\left[1-\left(\frac{k}{n+1}\right)^{\omega}\right]^{\sigma} T_{k} x_{0}-x_{0}\right\|=O(1)
$$

holds if at least one of the following conditions 1-6 is fulfilled:

1. $\gamma=1, \sigma \geq 2$ and $\omega \geq r+1$ or $\omega=r \geq 1$,
2. $\max \{0,1-\alpha\}<\gamma=\omega-r<1$ and $\sigma \geq 2$,
3. $\max \{0,1-\alpha\}<\gamma=\sigma-1<1$ and $\omega \geq r+1$ or $\omega=r \geq 1$,
4. $\max \{0,1-\alpha\}<\gamma=\min \{\omega-r, \sigma-1\}$ and $\max \{\omega-r, \sigma-1\}<1$,
5. $\max \{0,1-\alpha\}<\gamma=\omega=r<1$ and $\sigma \geq 2$,
6. $\max \{0,1-\alpha\}<\gamma=\min \{\omega, \sigma-1\}$, $\max \{\omega, \sigma-1\}<1$ and $\omega=r$.
(II) The estimation

$$
\begin{equation*}
(n+1)^{\alpha+\gamma-1}\left\|M_{n}^{\varphi_{i}} x_{0}-x_{0}\right\|=O_{i}(1) \tag{9}
\end{equation*}
$$

holds for $i=2,3,4$ if at least one of the following conditions 7-9 is fulfilled:
7. $\gamma=1$ and $r \leq 1$,
8. $\max \{0,1-\alpha\}<\gamma=2-r<1$,
9. $\gamma=1$ and $r=2$.
(III) The estimation (9) holds for $i=5$ if condition 7 or condition 8 is fulfilled.

Proof. Let the estimation (3) be fulfilled. It is sufficient to show that the validity of at least one of conditions $1-9$ implies the validity of the conditions of Theorem A for suitable $\varphi=\varphi_{i}$. As the method of proof for all conditions 1-9 is quite similar, we give the proof of this theorem only partly, for example, for conditions $1,3,6$, and for condition 8 if $i=2,3$.

First assume condition 1 is fulfilled and denote

$$
g_{i}(t)=t^{1-r} \varphi_{i}^{\prime}(t)(t \in] 0,1[, i=1, \ldots, 5)
$$

Then

$$
g_{1}(t)=-\sigma \omega\left(1-t^{\omega}\right)^{\sigma-1} t^{\omega-r}(t \in] 0,1[)
$$

As now

$$
g_{1}^{\prime}(t)=-\sigma \omega t^{\omega-r-1}\left(1-t^{\omega}\right)^{\sigma-2}\left[(\omega-r)(1-t \omega)-(\sigma-1) \omega t^{\omega}\right] \quad(t \in] 0,1[)
$$

g_{1}^{\prime} for $\omega \geq r+1$ is bounded on $] 0,1\left[\right.$. Also, g_{1}^{\prime} is bounded on $] 0,1[$ for $\omega=r$, because in this case

$$
g_{1}^{\prime}(t)=\sigma(\sigma-1) \omega^{2} t^{\omega-1}\left(1-t^{\omega}\right)^{\sigma-2} \quad(t \in] 0,1[)
$$

Therefore, $g_{1} \in \operatorname{Lip} 1$ on $] 0,1[$. Thus the conditions of Theorem A are fulfilled.
Suppose condition 3 is fulfilled and let $a \in] 0,1[$. Then due to $\omega \geq 1$, the derivative g_{1}^{\prime} is bounded on $\left.] 0, a\right]$. Hence, $g_{1} \in \operatorname{Lip} 1$ on $\left.] 0, a\right]$. Moreover, $g_{1} \in \operatorname{Lip}(\sigma-1)$ on $] a, 1\left[\right.$, because g_{1} is equivalent to $-\sigma \omega\left(1-t^{\omega}\right)^{\sigma-1}$ in the limit process $t \rightarrow 1-$ if $\omega>r+1$, and

$$
\begin{equation*}
g_{1}(t)=-\sigma \omega\left(1-t^{\omega}\right)^{\sigma-1} \quad(t \in] 0,1[) \tag{10}
\end{equation*}
$$

if $\omega=r$. Therefore, $g_{1} \in \operatorname{Lip}(\sigma-1)$ on $] 0,1[$. Consequently, the conditions of Theorem A are fulfilled.

Let condition 6 be fulfilled. Then by (10) we have $g_{1} \in \operatorname{Lip}(\sigma-1)$ on $] a, 1[$ for $a \in] 0,1\left[\right.$. Moreover, $g_{1} \in \operatorname{Lip} \omega$ on $\left.] 0, a\right]$, because $t^{\omega} \in \operatorname{Lip} \omega$ on $\left.] 0, a\right]$ for $\omega \in] 0,1\left[\right.$. Therefore $g_{1} \in \operatorname{Lip}(\min \{\omega, \sigma-1\})$ on $] 0,1[$. Thus the conditions of Theorem A are fulfilled.

Suppose condition 8 is fulfilled for $i=2$ and $i=3$. Then

$$
g_{2}(t)= \begin{cases}-6 t^{2-r}(2-3 t) & \left.\left.(t \in] 0, \frac{1}{2}\right]\right), \\ -6 t^{1-r}(1-t)^{2} & (t \in] \frac{1}{2}, 1[)\end{cases}
$$

and

$$
g_{3}(t)=\pi(t-1) t^{1-r} \sin (\pi t)(t \in] 0,1[)
$$

As we have now

$$
g_{2}^{\prime}(t)= \begin{cases}-6 t^{1-r}[(2-r)(2-3 t)-3 t] & \left.\left.(t \in] 0, \frac{1}{2}\right]\right) \\ -6 t^{-r}\left[(1-r)(1-t)^{2}-2(1-t) t\right] & (t \in] \frac{1}{2}, 1[)\end{cases}
$$

and

$$
g_{3}^{\prime}(t)=\pi t^{1-r}\left[\pi(t+(1-r)(t-1)) \frac{\sin (\pi t)}{\pi t}+\pi(t-1) \cos (\pi t)\right] \quad(t \in] 0,1[)
$$

the derivatives g_{2}^{\prime} and g_{3}^{\prime} are bounded on $[a, 1[$ for each $a \in] 0,1[$. Hence, $g_{2}, g_{3} \in \operatorname{Lip} 1$ on $[a, 1[$ for $a \in] 0,1[$. In addition, in the limit process $t \rightarrow 0+$ the function g_{2} is equivalent to $-12 t^{2-r}$ and g_{3} to $-\pi^{2} t^{2-r}$, because we can rewrite g_{3} as

$$
g_{3}(t)=\pi^{2}(t-1) t^{2-r} \frac{\sin (\pi t)}{\pi t}(t \in] 0,1[)
$$

Therefore, $g_{2}, g_{3} \in \operatorname{Lip}(2-r)$ on $] 0,1[$. Thus the conditions of Theorem A are fulfilled.

ACKNOWLEDGEMENTS

The author is grateful to Prof. A. Kivinukk for valuable advice. The investigation was supported by the Estonian Science Foundation (grant No. 5070).

REFERENCES

1. Trebels, W. Multipliers for (C, α)-bounded Fourier expansions in Banach spaces and approximation theory. Lecture Notes Math., 1973, 329.
2. Butzer, P. L. and Nessel, R. J. Fourier Analysis and Approximation. I. One-Dimensional Theory. Birkhäuser Verlag, Basel, 1971.
3. Aasma, A. Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Univ. Niš. Ser. Math. Inform., 1997, 12, 233-238.
4. Aasma, A. Matrix transformations of λ-boundedness fields of normal matrix methods. Studia Sci. Math. Hungar., 1999, 35, 53-64.
5. Higgins, J. R. Sampling Theory in Fourier and Signal Analysis: Foundations. Clarendon Press, Oxford, 1996.
6. Zhuk, V. V. Approximation of Periodic Functions. Leningrad Univ. Press, 1982 (in Russian).
7. Korneichuk, N. P. Exact Constants in Approximation Theory. Cambridge Univ. Press, 1991.

Fourier' arenduste summeeruvusest Banachi ruumides

Ants Aasma

Olgu X Banachi ruum, milles eksisteerib projektorite ortogonaalne süsteem. Olgu $Z^{r}(r>0)$ Zygmundi meetod, $M^{\varphi}=(\varphi(k /(n+1)))$ kolmnurkne maatriksmeetod, mis on defineeritud mingi diferentseeruva funktsiooni φ abil, kus $\varphi(0)=1$ ja $\varphi(1)=0$, ning $Z_{n}^{r} x, M_{n}^{\varphi} x$ olgu vastavalt elemendi $x \in X$ Zygmundi ja M^{φ} keskmised. Autori varasemas töös [${ }^{3}$] on tõestatud teoreem, mis annab piisavad tingimused selleks, et hinnangust $(n+1)^{\alpha}\left\|Z_{n}^{r} x_{0}-x_{0}\right\|=O(1)\left(x_{0} \in X\right)$ järelduks sama x_{0} jaoks hinnang $(n+1)^{\alpha+\gamma-1}\left\|M_{n}^{\varphi} x_{0}-x_{0}\right\|=O(1)$ eeldusel, et $g(t)=t^{1-r} \varphi^{\prime}(t) \in \operatorname{Lip} \gamma(0<\gamma \leq 1)$ vahemikus $] 0,1[$. Siinses artiklis rakendatakse seda teoreemi juhtudel, kui M^{φ} on kas Rieszi, Jacksoni-de La Vallée Poussini, Bohmani-Korovkini, Zhuki või Favardi menetlus.

