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Abstract. Wavelet transform techniques are applied to analysis of linear vibrations. It is shown
that in some simple cases wavelet transform can be accomplished analytically. Damped and
forced vibrations of single and two degrees of freedom are considered. The achieved results
can be used for interpreting more complicated cases.
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1. INTRODUCTION

The Fourier transform is a valuable tool for analysing time series. It transforms
the signalf = f(t) to a frequency diagramF = F (ω); if this diagram has only
sharp peaks, then the motion consists of harmonic components corresponding to
the peak frequencies. It should be mentioned that the Fourier transform has also
a serious disadvantage. To computeF = F (ω), we must integratex(t) over
all time and, therefore, the motion cannot be localized in time. To illustrate this
circumstance, let us consider the case of intermittent chaos. Here we have chaotic
motion which in short time intervals is interchanged with regular motion. The
Fourier transform gives us a global overview of the process: it allows us to establish
the chaotic character of the motion, but does not give any information about the
intervals of regular motion. To sum up: the Fourier transform completely localizes
the time series in frequency, but the results are completely delocalized in time.

One way to break out of this deadlock is to use the wavelet transform, which
was introduced in the works of J. Morlet in the early 1980s. At the outset the
wavelet method was considered as a mathematical curiosity, but due to extensive
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research in the 1990s it has turned to a well-grounded and powerful mathematical
tool with many practical applications. Further information about the wavelet
technique can be found in the corresponding literature (see, e.g., [1,2]).

The wavelet method has been applied in only few contributions in structural
mechanics. Here we shall recite the works about linear vibrations. In the textbook
by Newland [2] an example of damped vibrations is presented; the problem is
solved with the aid of the Daubechies wavelets. An example of forced single-
degree-of-freedom (SDoF) vibration is discussed by Kyprianou and Staszewski
[3]. Staszewski [4] has also analysed damping in SDoF and multi-degree-of-
freedom systems. Wong and Chen [5] considered time series consisting of two
different harmonic modes. In papers [3−5] the Morlet wavelet was used. Zheng
and McFadden [6], making use of the Gabor transform considered a signal which
is the sum of two complex sinusoids. This method is also applied to analysing
vibrations of a gearbox.

In most of these papers linear vibration problems are considered as examples
to illustrate theoretical results. The problems were solved by computer making use
of the discrete wavelet transform.

In this paper it is shown that in some simple cases the wavelet transform can
be carried out analytically. This circumstance, of course, significantly simplifies
numerical work. The obtained analytical solutions are also useful in interpreting
numerical results achieved for more complicated problems.

2. THEORETICAL BACKGROUND

Let us consider a functionf = f(t) satisfying the condition∫ +∞

−∞
|f(t)|2dt <∞. (1)

The Fourier transform off = f(t) and its inverse will be defined as

F (ω) =
∫ +∞

−∞
f(t)e−iωtdt, f(t) =

1
2π

∫ +∞

−∞
F (ω)eiωtdt. (2)

For analysing the functionf(t) we introduce a wavelet

g(t, a, b) =
1√
a
g
( t− b

a

)
, (3)

whereg = g(t) is the mother wavelet,a > 0 is the dilation parameter, andb is the
translation parameter.

The wavelet transform is

W (a, b) =
1√
a

∫ +∞

−∞
f(t)g

(
t− b
a

)
dt, (4)

where the symbolg denotes the conjugate form ofg.
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Making use of the Parceval identity

2π
∫ +∞

−∞
f(t)g(t, a, b)dt =

∫ +∞

−∞
F (ω)G(ω, a, b)dω, (5)

Eq. (4) can be put into the form

W (a, b) =
1

2π
√
a

∫ +∞

−∞
F (ω)G(ω, a, b)dω. (6)

HereG(ω, a, b) is the Fourier transform ofg(t, a, b).
For evaluatingG(ω, a, b) we start from the formula

G(ω, a, b) =
∫ +∞

−∞
g
( t− b

a

)
e−iωtdt. (7)

By substitutingt = aτ + b we find

G(ω, a, b) = ae−iωb

∫ +∞

−∞
g(τ)e−iaωτdτ = aG(aω)e−iωb, (8)

whereG(ω) is the Fourier transform of the mother waveletg(t):

G(ω) =
∫ +∞

−∞
g(t)e−iωtdt. (9)

Taking into account Eqs. (7) and (8), we get:

W (a, b) =
1
2π
√
a

∫ +∞

−∞
F (ω)G(aω)eiωbdω. (10)

This result can be interpreted as an inverse Fourier transform of the function√
aF (ω)G(aω). Equation (10) is presented in many textbooks about wavelet

transform (see, e.g., [1]).
The functionW (a, b) is usually complex:

W = Re(W ) + iIm(W ). (11)

For interpreting the results we shall introduce the functions [5]

|W (a, b)| = [Re2(W ) + Im2(W )]1/2, (12)

φ(a, b) = arctan
Im(W )
Re(W )

. (13)

In the following we shall fix the dilation parametera and put together the
diagrams(b, |W |) and (b, φ), where b stands for time. The diagram(b, |W |)

157



matches the behaviour of the amplitude of the signal and(b, φ) shows the phase
as a function of time.

We shall consider three wavelets, for which the Fourier transforms can be
carried out analytically.

(i) Morlet wavelet. Here the mother wavelet has the form

g(t) = eiω0te−0.5t2 . (14)

Its Fourier transform gives

G(ω) =
√

2π exp[−0.5(ω − ω0)2]. (15)

Reconstruction ofg fromG is possible only if the admissibility condition

C =
∫ +∞

−∞

|G(ω)|2

|ω|
dω <∞ (16)

is fulfilled. Since in the present caseG(0) 6= 0, it is not possible to satisfy the
condition (16) exactly. Therefore, following the papers [1,5], we shall satisfy Eq.
(16) approximately by takingω0 = 5.

(ii) Haar wavelet. This wavelet is defined as

g(t) =

 1 for 0 ≤ t < 0.5,
−1 for 0.5 ≤ t < 1,
0 elsewhere.

(17)

Carrying out the Fourier transform, we find

G(ω) = − i

ω
(1− e0.5iω)2. (18)

(iii) Mexican hat. Here we have

g(t) =
2√
3
π−1/4(1− t2)e−0.5t2 (19)

and

G(ω) =
2√
3
π−1/4ω2e−0.5ω2

. (20)

It is not difficult to check that the condition (16) is satisfied for Eqs. (18) and
(20).
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3. DAMPED VIBRATIONS OF A SDoF SYSTEM

In this section we shall consider linear vibrations with SDoF, which are
described by the equation

ẍ+ pẋ+ qx = rψ(t), (21)

wherep, q, r are real constants, the functionψ(t) describes forced vibrations.
By applying the Fourier transform to Eq. (21) and taking into account that

F (ẋ) = iωF (ω), F (ẍ) = −ω2F (ω),

we find
F (ω)(−ω2 + ipω + q) = rΨ(ω), (22)

where

Ψ(ω) =
∫ +∞

−∞
ψ(t)e−iωtdt.

In the case of free motionsr = 0. Let us denote the roots of the equation
ω2 − ipω − q = 0 by ω1 andω2. Then we find

ω1 = αi+ β, ω2 = αi− β, (23)

whereα = p/2, β =
√
q − p2/4. We shall consider here only the case of low

damping; thenq > p2/4 andβ is a real number.
Equation (22) takes the formF (ω)(ω − ω1)(ω − ω2) = 0. Consequently,

F (ω) = 0 if ω 6= ω1 or ω 6= ω2.
This fact can be rewritten in the form

F (ω) = C1δ(ω − ω1) + C2δ(ω − ω2),

where the symbolδ denotes the delta function. The complex constantsC1, C2 can
be calculated in the following way. By executing the inverse Fourier transform to
F (ω) we get

f(t) =
1
2π

∫ +∞

−∞
[C1δ(ω− ω1) +C2δ(ω− ω2)]eiωtdω =

1
2π

(C1e
iω1t +C2e

iω2t).

Let us chooseC1 = A−Bi, C2 = 0, whereA,B are real constants. Then

x(t) = Ref(t) =
1
2π
e−αt(A cosβt+B sinβt).

This is the general solution for damped vibrations. The constantsA, B can be
calculated from the initial conditions.
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Making use of these considerations the functionF (ω) can be put into the form

F (ω) = (A− iB)δ(ω − ω1). (24)

Since ∫ ∞

−∞
h(x)δ(x− ξ)dx = h(ξ),

it follows from Eq. (10) that

W (a, b) =
√
a

2π
(A− iB)G(aω1)eiω1b. (25)

Let us consider first the Morlet wavelet. Taking into account Eq. (15) and the
fact thatω1 = −αi+ β, we obtain

W (a, b) =
√
a√
2π

(A− iB) exp
[
− 1

2
(aβ − ω0)2 +

1
2
a2b2

]
× exp[2aα(ω0 − aβ)i] exp[b(−α+ iβ)]. (26)

The modulus ofW is

|W (a, b)| =
√
a√
2π

√
A2 +B2e−αb exp

[
− 1

2
(aβ − ω0)2 +

1
2
α2a2

]
. (27)

By calculating the phaseφ from Eq. (13) we find

tanφ =
tan(βb+ γ)−B/A

1 +B/A tan(βb+ γ)
, (28)

whereγ = aα(ω0 − aβ).
It is expedient to introduce a new variableµ = arctanB/A. Now Eq. (28) can

be presented in a simple form

φ = βb+ γ − µ± kπ, (29)

wherek = 0, 1, 2, ... and fork such a value for which−π ≤ φ ≤ π should be
taken.

Let us analyse these results. According to Eq. (27) the modulus ofW with
regard tob is an exponentially decaying function. The maximum of|W (a, 0)| is
realized for the dilation parameter

amax =
1

2(β2 − α2)

(
ω0β +

√
ω2

0β
2 + 2(β2 − α2)

)
. (30)

If α = 0 (undamped vibrations), the function|W (a, 0)| does not depend upon the
translation parameterb.
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The diagramφ = φ(b) is a “sawtooth” function with a period∆b = 2π/β. The
slope of the inclined lines in this diagram does not depend upon the parametera.

As an example the casep = 0.05, q = 0.15, r = 0, A = 0, B = 1 is
considered. According to Eq. (30) we findamax = 13.25. Time history, modulus,
and phase of the wavelet functionW for this value of the dilation parametera are
shown in Fig. 1.

The solutions to the Haar and Mexican hat wavelets can be found in a similar
way. It is easy to see that the diagram(b, φ) is also a sawtooth function with the
period∆b = 2π/β. In the(b, |W |)-diagram also the multiplierexp(−2b), which
causes exponential decay, appears. For the values of|W (a, 0)|we get the following
results:

(i) Haar wavelet

|W (a, 0)| = 1
2π
√
a

√
A2 +B2

1√
α2 + β2

(1+e−aα−2e−0.5aα cos 0.5aβ), (31)

(ii) Mexican hat

|W (a, 0)| = 1√
3
a5/2

π5/4

√
A2 +B2(β2 − α2) exp[−0.5(β2 − α2)a2]. (32)

Normalized quantities|W (a, 0)| versus the dilation parametera for the three
wavelets considered above are plotted in Fig. 2. It follows from this diagram that
the Mexican hat gives the best resolution in frequency domain.

Fig. 1. Damped vibrations forp = 0.05, q = 0.15, r = 0, a = 13.25. (a) Time history;
(b) modulus of the Morlet waveletW (a, b); (c) phaseφ(a, b).
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Fig. 2. Normalized modulus ofW (a, 0) as a function of the dilation parametera for (1) Morlet
wavelet, (2) Haar wavelet, and (3) Mexican hat.

4. FORCED SDoF VIBRATION

For this caser 6= 0 in Eq. (21), and we shall seek the solution in the form
x(t) = x1(t) + x2(t), wherex1(t) is the general solution of the homogeneous
equation

ẍ1 + pẋ1 + qx1 = 0 (33)

andx2(t) is some particular solution of Eq. (21).
The wavelet solution to Eq. (33) was discussed in Section 3. Now we shall turn

our attention to Eq. (21). It follows from Eq. (22) that

F (ω) =
rΨ(ω)

−ω2 + ipω + q
.

The following analysis is carried out forψ(t) = cos νt. We obtain

F (ω) =
r

2
δ(ω − ν) + δ(ω + ν)
−ω2 + ipω + q

. (34)

The functionF (ω) has atω = ω1 andω = ω2 indeterminancies in the form
0/0. By applying the Hospital rule and taking into account that

δ′(ω ± ν) = −δ(ω ± ν)
ω ± ν

we findF (ω1) = F (ω2) = 0.
In view of Eq. (34) we can put Eq. (10) into the form

W (a, b) =
r
√
a

(q − ν2)2 + p2ν2

{
(q − ν2 − ipν)G(aν)eiνb + (q − ν2 + ipν)G(−aν)e−iνb

}
.

(35)
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First we shall consider the Morlet wavelet. According to Eq. (15) we have

G(±aν) =
√

2π exp[−0.5(aν ∓ ω0)2].

Sincea > 0, ν > 0, ω0 = 5, we haveG(−aν) ≈ 0 and the second term in Eq.
(35) can be neglected. By calculating the modulus|W | and phaseφ from Eq. (35)
we find

|W (a, b)| = r

√
πa

2
exp[−0.5(aν − ω0)2], (36)

tanφ =
tan νb− s
s tan νb+ 1

, s =
pν

q − ν2
. (37)

By introducing a new variableµ = arctan s we can put Eq. (37) into the form

φ = νb− µ± kπ. (38)

So we see that|W (a, b)| does not depend uponb and its maximal value is
realized at

amax =
1
2ν

(
ω0 +

√
ω2

0 + 2
)
. (39)

The(b, φ)-diagram has again the sawtooth form with a period∆b = 2π/ν.
Solutions on the basis of the Haar and Mexican hat wavelets can be found in a

similar way. To be short, we shall present here only the final results. In both cases
the functionW (a, b) is real and consequentlyφ = 0. Besides, we get for the Haar
wavelet

W (a, b) =
r

2πν
√
a

1
(q − ν2)2 + p2ν2

[
E

(
1− 2 cos

aν

2
+ cos aν

)
+ F

(
2 sin

aν

2
− sin aν

)]
,

(40)

where

E = (q − ν2) sin νb− pν cos νb,

F = −(q − ν2) cos νb− pν sin νb.

For the Mexican hat we obtain

W (a, b) =
ra5/2π−5/4

√
3

ν2

(q − ν2)2 + p2ν2
exp(−0.5a2ν2)[(q−ν2) cos νb+sin νb].

(41)
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Now let us turn back to Eq. (21). Its general solution has the formx(t) =
x1(t) + x2(t). The Fourier transform gives

F (ω) = F1(ω) + F2(ω),

whereF1(ω) andF2(ω) are calculated according to Eqs. (24) and (34). The wavelet
function is

W (a, b) = W1(a, b) +W2(a, b) (42)

=
√
a

2π

∫ +∞

−∞
[F1(ω) + F2(ω)]G(aω)eiωbdω.

Next we have to separate the real and imaginary parts in Eq. (42) and
evaluate|W (a, b)|, φ(a, b). Since this procedure demands long and troublesome
calculations, it would better be performed by the computer.

Let us consider the following two examples.

Example 1. Here we shall superpose the results obtained in Sections 3 and 4 for
p = 0.05, q = 0.15, r = 1, ν = 2, a = 13.25. The outcome for the Morlet wavelet
is plotted in Fig. 3 (here and later on fora a value for which|W (a, b)| is close
to maxa,b |W (a, b)| is chosen). It can be seen from the time history diagram that
the motion is pulsatory. Since damped free vibrations dominate, the modulus and
phase diagrams correspond to this motion. The sawtooth diagram has the period
∆b = 2π/β = 16.26.

Fig. 3. Forced vibrations forp = 0.05, q = 0.15, r = 1, ν = 2, a = 13.25. (a) Time history;
(b) modulus of the Morlet waveletW (a, b); (c) phaseφ(a, b).
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Example 2. Let us takep = q = r = 0.1, ν = 0.5, a = 14, A = 0,
B = 1 (Fig. 4). The time history diagram shows the well-known fact that at
the beginning of the motion free vibrations dominate, but by increasing the time
these are overpowered by forced vibrations. This circumstance follows also from
the plots in Fig. 4b,c which correspond to the Morlet wavelet. Forb < 50 damped
vibrations dominate (this follows from the decay of the modulus|W | and from
the period of the sawtooth diagram∆b = 2π/β = 20.1). For forced vibrations
there must be|W (b)| = const and the phase diagram has forb ≥ 60 the period
∆b = 2π/ν = 12.6. In the transition zoneb ≈ 55 − 60 the phase diagram has an
irregularity.

5. FREE VIBRATIONS OF A 2DoF SYSTEM

In this section we shall consider a two-degree-of-freedom (2DoF) system. For
simplicity we shall neglect damping and take the equations of motion in the form

ẍ1 + q1x1 + q2x2 = 0, ẍ2 + r1x1 + r2x2 = 0, (43)

whereq1, q2, r1, r2 are real constants.
By applying the Fourier transform to Eqs. (43) we get

(−ω2 + q1)F1 + q2F2 = 0,

r1F1 + (−ω2 + r2)F2 = 0.
(44)

Fig. 4. Forced vibrations forp = q = r = 0.1, ν = 0.5, a = 14. (a) Time history;
(b) modulus of the Morlet waveletW (a, b); (c) phaseφ(a, b).
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This system has a nontrivial solution only if its determinant is zero:

(−ω2 + q1)(−ω2 + r2)− r1q2 = 0. (45)

We shall confine ourselves to the caseq1/r1 > q2/r2. Then all solutions of Eq.
(45) are real and have the form

ω1 = µ, ω2 = −µ, ω3 = ν, ω4 = −ν,

where {
µ
ν

=
[1
2
(q1 + r1)±

1
2

√
(q1 + r2)2 − q1r2 + r1q2

]1/2
. (46)

The circumstance that the system (44) has a nontrivial solution only forω = ωi

(i = 1, 2, 3, 4) can be expressed in the form

F1 =
4∑

j=1

Ajδ(ω − ωj), F2 =
4∑

j=1

Bjδ(ω − ωj) (j = 1, 2, 3, 4), (47)

where

Bj =
ω2

j − q1
q2

Aj . (48)

The constantsAj ,Bj can be evaluated from the initial conditions of the system
(43).

The wavelet function forx1(t) is

W (a, b) =
√

2πa
4∑

j=1

AjG(aωj)eiωjb. (49)

As a numerical example calculations were carried out forµ = 0.50, ν = 0.45,
A1 = A3 = 1, A2 = A4 = −0.5. The wavelet function was evaluated according
to Eq. (49). For calculating the modulus|W (a, b)| and phaseφ(a, b) computer
programs were used. The results are plotted in Figs. 5 and 6.

It follows from Fig. 5a that the motion is pulsating. The modulus and phase
diagrams are quite near to each other in the case of the Haar and Mexican hat
wavelets, but different for the Morlet wavelet. The(b, |W |) diagrams in Fig. 6
practically repeat the pulsating character of the time history diagram, but for the
Morlet wavelet the solution of|W | has no high-frequency components (Fig. 5b).
The phase diagram for the Morlet wavelet is again a regular sawtooth curve (as
in the case of SDoF vibrations), but in the phase diagrams for the Haar and
Mexican hat wavelets the inclined segments are crooked. It follows from Figs. 5
and 6 that irregularities of the phase diagram appear for the values ofb for which
|W (a, b)| ≈ 0.

A complete analysis of 2DoF vibrations is difficult since the solution depends
upon six parameters:µ, ν, A1, A2, A3, A4. Nevertheless, the example
presented above indicates that interpretation of the wavelet solutions is much more
complicated than in the case of SDoF vibrations.
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.

Fig. 5. 2DoF vibrations forµ = 0.50, ν = 0.45, A1 = A3 = 1, A2 = A4 = −0.5, a = 3.
(a) Time history forx1(t); (b) modulus of the Morlet waveletW (a, b); (c) phaseφ(a, b).

Fig. 6. ModulusW (a, b) and phaseφ(a, b) for the case shown in Fig. 5. (a) Haar wavelet for
a = 0.5; (b) Mexican hat fora = 3.

6. CONCLUSIONS

Linear vibrations were investigated with the aid of the Morlet, Haar, and
Mexican hat wavelet transforms. In the case of SDoF vibrations the outcome of
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all these three wavelet transforms was qualitatively the same, but for 2DoF motions
the Haar and Mexican hat transforms gave the results essentially differing from
those obtained by the Morlet wavelet.

In the case of SDoF motions the diagram(b, |W |) is either a horizontal line
(undamped motion) or a curve with exponential decay (damped motion). In the case
of the forced motion transition from damped vibrations to forced vibrations can be
observed in the modulus and phase diagrams. For 2DoF diagrams, interpretation
of the results obtained by the wavelet transforms is much more difficult.
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LAINIKUTE KASUTAMINE VÕNKUMISTE UURIMISEL

Ülo LEPIK

Ühe- ja kahedimensionaalsete võnkumiste uurimisel on rakendatud kolme tüüpi
lainikuid. Püstitatud probleem on lineaarsel juhul lahendatav analüütiliselt. Töö
tulemusi saab kasutada keerulisemate juhtude analüüsil ja interpreteerimisel.
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