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Abstract. Wavelet transform techniques are applied to analysis of linear vibrations. Itis sh
that in some simple cases wavelet transform can be accomplished analytically. Dampe
forced vibrations of single and two degrees of freedom are considered. The achieved r
can be used for interpreting more complicated cases.
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1. INTRODUCTION

The Fourier transform is a valuable tool for analysing time series. It transfol
the signalf = f(t¢) to a frequency diagram’ = F(w); if this diagram has only
sharp peaks, then the motion consists of harmonic components correspondi
the peak frequencies. It should be mentioned that the Fourier transform has
a serious disadvantage. To compufe= F(w), we must integrate:(¢) over
all time and, therefore, the motion cannot be localized in time. To illustrate 1
circumstance, let us consider the case of intermittent chaos. Here we have ct
motion which in short time intervals is interchanged with regular motion. T
Fourier transform gives us a global overview of the process: it allows us to estal
the chaotic character of the motion, but does not give any information about
intervals of regular motion. To sum up: the Fourier transform completely locali
the time series in frequency, but the results are completely delocalized in time.

One way to break out of this deadlock is to use the wavelet transform, wt
was introduced in the works of J. Morlet in the early 1980s. At the outset
wavelet method was considered as a mathematical curiosity, but due to exte
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research in the 1990s it has turned to a well-grounded and powerful mathem:s
tool with many practical applications. Further information about the wave
technigue can be found in the corresponding literature (see, €29., [

The wavelet method has been applied in only few contributions in structt
mechanics. Here we shall recite the works about linear vibrations. In the textt
by Newland ] an example of damped vibrations is presented; the problern
solved with the aid of the Daubechies wavelets. An example of forced sini
degree-of-freedom (SDoF) vibration is discussed by Kyprianou and Stasze
[]. Staszewskiq] has also analysed damping in SDoF and multi-degree-
freedom systems. Wong and Chét ¢onsidered time series consisting of tw
different harmonic modes. In papers{] the Morlet wavelet was used. Zhenc
and McFadden9], making use of the Gabor transform considered a signal wh
is the sum of two complex sinusoids. This method is also applied to analy:
vibrations of a gearbox.

In most of these papers linear vibration problems are considered as exan
to illustrate theoretical results. The problems were solved by computer making
of the discrete wavelet transform.

In this paper it is shown that in some simple cases the wavelet transform
be carried out analytically. This circumstance, of course, significantly simplil
numerical work. The obtained analytical solutions are also useful in interpre
numerical results achieved for more complicated problems.

2. THEORETICAL BACKGROUND

Let us consider a functiofi = f(¢) satisfying the condition

+oo
/ F(0)[2dt < oo, @)
The Fourier transform of = f(¢) and its inverse will be defined as
+oo ) 1 +oo )
F(w) :/ f(e ™tdt,  f(t) = 2/ F(w)e™tdt. 2
—00 T J-—x
For analysing the functiofi(¢) we introduce a wavelet
1 /t—b
g(taavb)_ﬁg< a )a (3)

whereg = ¢(t) is the mother wavelet; > 0 is the dilation parameter, arids the
translation parameter.
The wavelet transform is

W) == [ s (1) a @

where the symbaj denotes the conjugate form gf
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Making use of the Parceval identity

+oo +oo
or [ pgttaid = [ P@IG.a b (5)
Eqg. (4) can be put into the form
+oo
W (a,b) 277[/ F(w)G(w,a,b)dw. (6)

HereG(w, a, b) is the Fourier transform aof(t, a, b).
For evaluating~(w, a, b) we start from the formula

et —by
G(w,a,b) = / g( - )e*“"tdt. (7)
By substitutingt = at + b we find
G(w,a,b) = ae_“"b/ g(T)e" T dr = aG(aw)e P, (8)

whereG(w) is the Fourier transform of the mother wavejét):

+oo .
Glw) = / g(t)e“"dt. )

—0o0

Taking into account Egs. (7) and (8), we get:

f / +Oo Glaw)e™dw. (10)

This result can be interpreted as an inverse Fourier transform of the func
VaF(w)G(aw). Equation (10) is presented in many textbooks about wave
transform (see, e.g.}]).

The functionWW (a, b) is usually complex:

W = Re(W) + ilm(W). (11)

For interpreting the results we shall introduce the functichs [

(W(a,b)| = [Re*(W)+Im?*(W)]"/2, (12)
_ Im(W)
¢(a,b) = arctan Re(W)’ (13)

In the following we shall fix the dilation parameterand put together the
diagrams(b, |W|) and (b, ¢), whereb stands for time. The diagrarb, |IV])
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matches the behaviour of the amplitude of the signal @nd) shows the phase
as a function of time.

We shall consider three wavelets, for which the Fourier transforms can
carried out analytically.

(i) Morlet wavelet. Here the mother wavelet has the form

g(t) — €iw0t€_0'5t2. (14)
Its Fourier transform gives
G(w) = V2mexp[—0.5(w — wp)?). (15)

Reconstruction of from G is possible only if the admissibility condition

C= /+OO |G‘(:|)’2dw < 00 (16)

is fulfilled. Since in the present cag&0) # 0, it is not possible to satisfy the
condition (16) exactly. Therefore, following the papets][ we shall satisfy Eq.
(16) approximately by takingy = 5.

(i) Haar wavelet. This wavelet is defined as

—1 for 05<t<1, a7
0 elsewhere.

1 for 0<t<0.5,
g(t) =

Carrying out the Fourier transform, we find

Glw) = —5(1 _ 0By, (18)

(iii) Mexican hat. Here we have

2 2
g(t) = %W—w@ L (19)
and
Gw) = ;gﬂl/4w2eo'5“’2. (20)

It is not difficult to check that the condition (16) is satisfied for Eqs. (18) a
(20).
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3. DAMPED VIBRATIONS OF A SDoF SYSTEM

In this section we shall consider linear vibrations with SDoF, which a
described by the equation

I+ p& + qx = r(t), (22)

wherep, ¢, r are real constants, the functigrit) describes forced vibrations.
By applying the Fourier transform to Eq. (21) and taking into account that

F(i) = iwF(w), F(%)=—w?F(w),

we find
F(w)(—w® + ipw + q) = r¥(w), (22)
where
400 )
U(w) = @b(t)e_“"tdt.

In the case of free motions = 0. Let us denote the roots of the equatiol

w? —ipw — ¢ = 0 by w; andws,. Then we find

w) = i + B, wo = ai — [, (23)

wherea = p/2, 5 = \/q — p?/4. We shall consider here only the case of lo
damping; thery > p?/4 andg3 is a real number.

Equation (22) takes the formi'(w)(w — w1)(w — w2) = 0. Consequently,
F(w) =0if w # wy Orw # ws.

This fact can be rewritten in the form

F(w) = CuS(w — wl) + CQ(S(CU — w2>,

where the symbal denotes the delta function. The complex constéaihts’s can
be calculated in the following way. By executing the inverse Fourier transformr
F(w) we get

1 +00 A 1 . |
f(t) / [01(5(00 — wl) + CQ(S((U _ W2)]e'lUJtdw — 7(016150115 + CQ@ZWQt),

T on oo 27

Let us choos€’, = A — Bi, Cy = 0, whereA, B are real constants. Then

1
—e *(Acos ft + Bsin (3t).

z(t) = Ref(t) = 5

This is the general solution for damped vibrations. The constant8 can be
calculated from the initial conditions.
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Making use of these considerations the functifw) can be put into the form
F(w)=(A—iB)d(w —w1). (24)

Since

it follows from Eq. (10) that
W(a,b) = *2/5(/1 — iB)G(aw; )e™1?. (25)
s

Let us consider first the Morlet wavelet. Taking into account Eq. (15) and
fact thato; = —«i + 3, we obtain

W(a,b) = \/\;m —iB)exp [ - %(aﬁ —wo)? %a%ﬂ
x exp[2aa(wy — af)i] exp[b(—a + i3)]. (26)

The modulus of¥V is
W(a,b)| = Yo /A2 5 Breb exp [—
’ \ 2T

By calculating the phasg from Eq. (13) we find

(aB — wo)* + %oﬁaﬂ : (27)

N

fan & = tan(8b+ ) — B/A

- 1+ B/Atan(8b+7)’ (28)

wherey = aa(wg — af3).
It is expedient to introduce a new variable= arctan B/A. Now Eq. (28) can
be presented in a simple form

¢ =p0b+y—pEkn, (29)

wherek = 0,1,2,... and fork such a value for which-m < ¢ < 7 should be
taken.

Let us analyse these results. According to Eq. (27) the moduld® efith
regard tob is an exponentially decaying function. The maximum1éf(a,0)| is
realized for the dilation parameter

Amax — 2(ﬁ21—042) <w06 + \/w3ﬁ2 + 2(/82 _ 042)> . (30)

If & = 0 (undamped vibrations), the functidi (a, 0)| does not depend upon the
translation parameteét
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The diagramy = ¢(b) is a “sawtooth” function with a periodb = 27 /3. The
slope of the inclined lines in this diagram does not depend upon the paramete

As an example the cage = 0.05, ¢ = 0.15,r = 0, A =0, B = 1is
considered. According to Eq. (30) we fing,.x = 13.25. Time history, modulus,
and phase of the wavelet functid¥ for this value of the dilation parameterare
shown in Fig. 1.

The solutions to the Haar and Mexican hat wavelets can be found in a sin
way. It is easy to see that the diagrdm¢) is also a sawtooth function with the
periodAb = 27 /5. In the (b, |W|)-diagram also the multipliesxp(—2b), which
causes exponential decay, appears. For the valy&s @f, 0)| we get the following
results:

(i) Haar wavelet

1 1
W(a,0)] = ——=V A2+ B2———(1+e % —2e 5% ¢050.50(3), (31)
277\/6 R /a2 + 52

(i) Mexican hat

/
|W(a,0)| = \}giz/i\/ A2 + B2(? — a?) exp[—0.5(5 — a?)a?). (32)

Normalized quantitie$i? (a, 0)| versus the dilation parameterfor the three
wavelets considered above are plotted in Fig. 2. It follows from this diagram 1
the Mexican hat gives the best resolution in frequency domain.

L

1
80 90 b 100

Fig. 1. Damped vibrations fop = 0.05, ¢ = 0.15, r = 0, a = 13.25. (a) Time history;
(b) modulus of the Morlet wavelé¥ (a, b); (c) phasep(a, b).
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Fig. 2. Normalized modulus of’ (a, 0) as a function of the dilation parametefor (1) Morlet
wavelet, (2) Haar wavelet, and (3) Mexican hat.

4. FORCED SDoF VIBRATION

For this case: # 0 in Eq. (21), and we shall seek the solution in the for
x(t) = z1(t) + x2(t), wherex;(t) is the general solution of the homogeneot
equation

I +pi1 +qr1 =0 (33)

andz;(t) is some particular solution of Eq. (21).
The wavelet solution to Eq. (33) was discussed in Section 3. Now we shall:
our attention to Eq. (21). It follows from Eq. (22) that

r¥(w)

Flw)= — "7 |
() —w? +ipw + g

The following analysis is carried out fa¥(t) = cos vt. We obtain

2 —w?+ipw+q

ré(w—y)—i—é(w—i—l/).

P(w) = (34)

The functionF'(w) has atw = w; andw = w, indeterminancies in the form
0/0. By applying the Hospital rule and taking into account that

d(wEvr)

!
+) = —
0 (w=xv) L

we find F(wy) = F(w2) = 0.
In view of Eq. (34) we can put Eq. (10) into the form
W(CL, b) =
rva

(4= )7+ 2

{(q -2 ipy)a(ay)ei”b + (g —1* + ipv)@(—au)e_i”b}.
(35)
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First we shall consider the Morlet wavelet. According to Eq. (15) we have
G(*av) = V2 exp[—0.5(av F wp)?].
Sincea > 0, v > 0, wy = 5, we haveG(—avr) ~ 0 and the second term in Eq.

(35) can be neglected. By calculating the moduid§ and phase from Eq. (35)
we find

|[W(a,b)| = 14/ %a exp[—0.5(av — wp)?], (36)
tanvb — s pv

t = — = ) 37

ang stanvb+ 17 ° q— V2 (37)

By introducing a new variablg = arctan s we can put Eqg. (37) into the form
¢ =vb—p+km. (38)

So we see thafiV (a,b)| does not depend updnand its maximal value is

realized at
1 /
Amax — 5 <w0 + w% + 2) . (39)

The (b, ¢)-diagram has again the sawtooth form with a perddd= 27 /v.

Solutions on the basis of the Haar and Mexican hat wavelets can be found il
similar way. To be short, we shall present here only the final results. In both cas
the functioniV (a, b) is real and consequently = 0. Besides, we get for the Haar
wavelet

W(a,b) =
r 1
2rvy/a (q — v?)? + p2v?

[E <1 — QCosa—; + cosau) + F (251n%/ — sinau)} ,
(40)

where

E = (q¢—v*)sinvb — pvcosvb,

F = —(q—v*) cosvb— pvsinvb.

For the Mexican hat we obtain

rad/2m—5/4 2

N LY exp(—0.5a2v%)[(g—v?) cos vb+sin vb).

(41)

W(a,b) =
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Now let us turn back to Eg. (21). Its general solution has the fo(m =
x1(t) + x2(t). The Fourier transform gives

F(w) = Fi(w) + F2(w),

whereF) (w) andF,(w) are calculated according to Egs. (24) and (34). The wave
function is

W(a,b) = Wi(a,b) + Wa(a,b) (42)

Va [T

o [F1(w) + Fy(w)]G(aw)e™ dw.

— 00

Next we have to separate the real and imaginary parts in Eq. (42)
evaluate|W (a, b)|, ¢(a,b). Since this procedure demands long and troubleso
calculations, it would better be performed by the computer.

Let us consider the following two examples.

Example 1. Here we shall superpose the results obtained in Sections 3 and ¢
p=0.05,¢g=0.15,r = 1,v = 2, a = 13.25. The outcome for the Morlet wavelet
is plotted in Fig. 3 (here and later on fara value for which|WW (a, b)| is close
to max, ; |W (a,b)| is chosen). It can be seen from the time history diagram tl
the motion is pulsatory. Since damped free vibrations dominate, the modulus
phase diagrams correspond to this motion. The sawtooth diagram has the p
Ab=27/8 =16.26.

X
OWA/W\/V\/\MN\W\/\/\A/‘
2 I L L 1 I | L L L
0 10 20 30 40 50 60 70 8 90 7 100
(b) 10 T T T T T T T T T
|
5r i
0 1 1 1 1 L 1 1 L 1
0 10 20 30 40 50 60 70 80 90 5 100
(c) 5 T T T T T T T T T
¢ ‘
° /M .
5 I L I L 1 1 1 L I
0 10 20 30 40 50 60 70 80 9 & 100

Fig. 3. Forced vibrations fop = 0.05, ¢ = 0.15, 7 = 1, v = 2, a = 13.25. (a) Time history;
(b) modulus of the Morlet wavelé¥ (a, b); (c) phasep(a, b).
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Example 2. Letustakep = ¢ = r = 0.1, v = 0.5, a = 14, A = 0,
B = 1 (Fig. 4). The time history diagram shows the well-known fact that
the beginning of the motion free vibrations dominate, but by increasing the t
these are overpowered by forced vibrations. This circumstance follows also 1
the plots in Fig. 4b,c which correspond to the Morlet wavelet. #ar50 damped
vibrations dominate (this follows from the decay of the modylidg and from
the period of the sawtooth diagratb = 27/8 = 20.1). For forced vibrations
there must beWW (b)| = const and the phase diagram has#or 60 the period
Ab = 27 /v = 12.6. In the transition zoné ~ 55 — 60 the phase diagram has at
irregularity.

5. FREE VIBRATIONS OF A 2DoF SYSTEM

In this section we shall consider a two-degree-of-freedom (2DoF) system.
simplicity we shall neglect damping and take the equations of motion in the for

21+ qr1 +qere =0, Zo+ 7171 +1r2we =0, (43)

whereq, g2, 71, 75 are real constants.
By applying the Fourier transform to Eqgs. (43) we get

(—w? + q1)F1 + 2 F> = 0,
(44)

rF + (—w2 + TQ)FQ =0.

0 10 20 30 40 50 60 70 80 90 b 100
(© s ; ; ] : ; : ; - ;
¢ x
ol W / M
5L L ! 1 L L L L L 1
0 10 20 30 40 50 60 70 80 90 » 100

Fig. 4. Forced vibrations fop = ¢ = r = 0.1, v = 0.5, a = 14. (a) Time history;
(b) modulus of the Morlet wavelé¥ (a, b); (c) phasep(a, b).
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This system has a nontrivial solution only if its determinant is zero:
(—w? + q)(—w® + r2) —r1g2 = 0. (45)

We shall confine ourselves to the casér; > ¢2/r2. Then all solutions of Eq.
(45) are real and have the form

w1 =M, wW2=—l, W3=V, wq=—V,

where

v 2

The circumstance that the system (44) has a nontrivial solution only foetv;
(i =1,2,3,4) can be expressed in the form

1 1 1/2
{ o {*(‘h+7’1)ig\/(Q1+7’2)2—Q17’2+7’1Q2 - (46)

4 4
F1 = Z Ajé(w — wj), F2 = Z Bjé(w — w]’) (j = 1,2,3,4), (47)
7j=1 7=1

where 9
ws —
B =Ny (48)
q2
The constantsl;, B; can be evaluated from the initial conditions of the syste
(43).
The wavelet function fog (¢) is

4
W{(a,b) =V 277@2 A;G(awj)e™i®. (49)
j=1

As a numerical example calculations were carried oupfer 0.50, v = 0.45,
A = A3 =1, Ay = A4, = —0.5. The wavelet function was evaluated accordir
to Eq. (49). For calculating the moduly®/ (a, b)| and phases(a,b) computer
programs were used. The results are plotted in Figs. 5 and 6.

It follows from Fig. 5a that the motion is pulsating. The modulus and phe
diagrams are quite near to each other in the case of the Haar and Mexica
wavelets, but different for the Morlet wavelet. Tl |W|) diagrams in Fig. 6
practically repeat the pulsating character of the time history diagram, but for
Morlet wavelet the solution ofi¥’| has no high-frequency components (Fig. 5b
The phase diagram for the Morlet wavelet is again a regular sawtooth curve
in the case of SDoF vibrations), but in the phase diagrams for the Haar
Mexican hat wavelets the inclined segments are crooked. It follows from Fig:
and 6 that irregularities of the phase diagram appear for the value®pivhich
|W(a,b)| =~ 0.

A complete analysis of 2DoF vibrations is difficult since the solution deper
upon six parameters:u, v, A, As, Az, A4. Nevertheless, the example
presented above indicates that interpretation of the wavelet solutions is much
complicated than in the case of SDoF vibrations.
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@ /]
oFr
/ /| / / / /V W/M/VW
-5
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Fig. 5. 2DoF vibrations foru = 0.50, v = 0.45, A; = A3 =1, Ay = Ay = —0.5,a = 3.
(a) Time history forz;(¢); (b) modulus of the Morlet waveld¥ (a, b); (c) phasep(a, b).

(@) 40 . ; . . T : T . T
4
20F 4

80 100 120 140
0 100 120 140 160 180 b 200
lW\
° VV\AM
100 120 140

160 180 p 200

160 180 b 200

o*&ovo

- 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 b 200

Fig. 6. ModulusT (a, b) and phase(a, b) for the case shown in Fig. 5. (a) Haar wavelet fa
a = 0.5; (b) Mexican hat for = 3.

6. CONCLUSIONS

Linear vibrations were investigated with the aid of the Morlet, Haar, a
Mexican hat wavelet transforms. In the case of SDoF vibrations the outcom
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all these three wavelet transforms was qualitatively the same, but for 2DoF mot
the Haar and Mexican hat transforms gave the results essentially differing f
those obtained by the Morlet wavelet.

In the case of SDoF motions the diagrdm|WW|) is either a horizontal line
(undamped motion) or a curve with exponential decay (damped motion). In the
of the forced motion transition from damped vibrations to forced vibrations car
observed in the modulus and phase diagrams. For 2DoF diagrams, interpret
of the results obtained by the wavelet transforms is much more difficult.
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N

LAINIKUTE KASUTAMINE VONKUMISTE UURIMISEL

Ulo LEPIK
Uhe- ja kahedimensionaalsete vonkumiste uurimisel on rakendatud kolme t

lainikuid. Pustitatud probleem on lineaarsel juhul lahendatav analtittiliselt. -
tulemusi saab kasutada keerulisemate juhtude analliisil ja interpreteerimisel.
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