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Abstract. A submanifold generated by plane leaves of codimension two in a Euclidean space
is, in general, intrinsically a Riemannian manifold of conullity two. All such manifolds
have been classified into four classes: planar, hyperbolic, parabolic, and elliptic, i.e. having,
respectively, infinitely many, two, one, or no real intrinsically asymptotic distributions. It

is proved that if such a submanifold is semiparallel and intrinsically a manifold of conullity
two, then it must be planar. This verifies, for the case considered here, a conjecture that a
semiparallel submanifold, which is intrinsically of conullity two, must be planar. Validity

of this conjecture has been established previously by the author for the three-dimensional
semiparallel submanifolds.
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1. INTRODUCTION

Let E™ be ann-dimensional Euclidean space ahfi™ anm-dimensionalC'>®
submanifold inE™, generated bym — 2)-dimensional planes af™. Intrinsically
this M™ is a Riemannian manifold of conullity two (in the sense'df,[i.e. foliated
by Euclidean leaves of codimension two. (These leaves are, of course, the generator
(m — 2)-planes of the considered submanifold.) The Riemannian manifolds of
conullity two constitute a particular class of semisymmetric Riemannian manifolds
characterized by the conditioR(X,Y) o R = 0 and classified in7]; here R is
the curvature tensor of the manifold afd X, Y) is the corresponding curvature
operator for arbitrary two vector fields andY acting on this tensor.
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In the geometry of submanifolds iB™ there exists a class of semiparallel
submanifolds characterized by the conditi®X,Y) o h = 0, where R is
the curvature tensor of the van der Waerden—Bortolotti connedfidithe pair
consisting of the Levi—Civita connectidé and normal connectioR ) andh is
the second fundamental form. It is known that every semiparallel submanifold
is intrinsically a semisymmetric Riemannian manifold (sé¢]), but there exist
intrinsically semisymmetric not-semiparallel submanifolds.

The aim of the present paper is to investigate the submanifditisgenerated
by (m — 2)-dimensional planes o™, which are semiparallel at the same time.
In [®] the following conjecture is formulatedf a semiparallel submanifold/™
in E™ is intrinsically a Riemannian manifold of conullity two, then it can be only
planar (according to the classification given ih%7]). This conjecture arose in
the study of the three-dimensional semiparallel submanifdfdsin £” and was
confirmed for this case of. = 3 and arbitraryn in [°].

Below (Theorem 3) it will be shown that this conjecture is true also for the
semiparallel submanifoldd/™, generated bym — 2)-dimensional planes atf";
herem andn can be arbitrary (of course, > m).

2. SUBMANIFOLDS M™ WITH GENERATOR (m — 2)-PLANES

If an m-dimensional Riemannian manifold is immersed isometrically into a
Euclidean spac&™ as a submanifold/™ of E™, then the derivation formulae

dr = eIwI, de; = er‘I], w}]+w§ =0
and structure equations
dw! =’ /\wﬁ, dwi = wE A wi;

for the bundleO(E™) of orthonormal frameéz; ey, ..., e,) in E™ can be used for
the subbundl® (M™, E™) of frames adapted td/™, so that, ..., e, are tangent
ande, 1, ..., e, NOrmal toM™ atz € M™, and imply

w*=0, wj= h%wj, (1)

wherei, j, ... run over{l,...,m} anda, 3, ... run over{m + 1,...,n} (see, e.g.,

[*], Sections 1 and 2). Note that hesredenotes both the point and its radius
vector, andiz for this vector does not depend on the origin point, bjtare the
components of the second fundamental (mixed) tensor, symmetric with respect to
i,j. By means oh;?‘j the vector valued second fundamental terigpr= eah% can

be introduced. For two tangent vectoXs= ¢; X’ andY = e;Y7 in T, M™ the
second fundamental foriis determined by, : (X,Y) — h(X,Y) = h;; XY,
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Due to (1) de; = ejw! + hjjw’, wherew] are the connection 1-forms
of V. For a tangent vector field from heredY = ¢; VY7 + h;, YWk with
VY7 = dY7J + Yiw]. Fordz, collinear to a tangent vector field whenw” are
proportional toX*, this gives the Gauss formula (see, e.§), [

dxY =VxY + h(X,Y). (2)

In the extrinsic geometry of a submanifadd™ in £™ two tangent directions
atx € M™ determined byX andY are said to beonjugatef h(X,Y) = 0. Two
vector subspaced; and A, of T, M™ are said to be conjugate if each direction
of the first subspace is conjugate to each direction of the second subspace, i.e. if
h(X,Y) = 0foreveryX € A; andY € Ay. A vector subspacé in T,,M"™ is
said to beasymptotigextrinsically) if it is self-conjugate, i.e. (X,Y) = 0 for
every twoX,Y € A (see, e.g.,}'°)).

Let the submanifold/™ in E™ be generated b{n — 2)-planes. Let the frame
from O(M™, E™) be adapted further so thaf (u,v,... = 3,...,m) belong to the
(m — 2)-plane through: € M™. Then these planes are the leaves of the foliation
determined by the differential systent = 0 (a, b, ... = 1, 2). Therefore

de, = eqwi + eyw, + hyqw® + hypw?, (3)
considered by modu!, w?}, must be expressed only by, ..., e,,,, thus
W =A% Ry =0. (4)

Here the equalitied,,, = 0 show that every generatingn — 2)-plane has the
asymptotic direction.

Let G),—2(E™) be the Grassmann manifold of &h — 2)-dimensional planes
in E™. If a submanifoldM™ in E™ is generated bym — 2)-planes, then it
can be considered as an imagefifi of a two-dimensional submanifold)/? of
Gm—2(E™). Every curve (i.e. one-dimensional submanifold);ih/? determines a
“ruled” submanifoldA/™~! of M™, formed by(m — 2)-plane generators gf/™.
Among such “ruled’A/™~! there can be the “developable” ones, characterized by
the property that the tangefit. — 1)-plane of ™! at an arbitrary point of an
arbitrarily fixed generatofm — 2)-plane, spanned by andT, M™~!, is the same
for all these points..

Let us consider a “ruledM ™! and let its tangentm — 1)-planeT, M ™1
be spanned by the pointand the unit vectorss, ..., e,,, e = €1 cos @ + es sin .
Along this M™~ 1, dx = ejw! + eaw? + e, w™ Mmust be expressed only hy
and alle,, therefore the vectors,w® + esw?® ande must be collinear. Thus there
exists a non-vanishing 1-forfh, so thatw! = 6 cos ¢y, w? = fsinp, and hence
dx = ef + e w®. Let us introduce the other unit vector = —e; sin ¢ + e3 cos ¢,
orthogonal tee. For thisM ™!, due to (2) and (3),
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de, = eyw, + eBy,0 + etCL0 + 0(hy1 cos @ + hya sin @),

de = — Z euBul + eJ‘(w% +do)+ (h11 cos? 4+ 2h19 cos @ sin @ + hoy sin? )6
u

+ Z(h“1 cos @ + hya sin p)w",
u
where
B, = Al cos? o+ (ALy + A2%)) cos psin ¢ + A2, sin’ ¢
and

1
u

Cy = A%, cos® p 4 (A%, — ALy) cos psinp — AL, sin? .

Let us fix the pointz € M™~!. Thenf = w* = 0 for all values ofu, but
de,, andde must be then some linear combinations of ofjlyande. This leads to
w? +dp = v0 + ywt.

Let the “ruled” M™ ! be a “developable” one. Thef, ™! must be
invariant along every generatom — 2)-plane determined by the equatién= 0.
This equation yieldsle = ely,w* + >, (hyi cosp + hyasinp)w®, so the
invariance above is equivalent{g = 0 andh(ey, €) = hy1 cos o+ hyasine = 0.
Here the last relation shows that the — 2)-direction of the plane generator and
orthogonal to it 1-direction on this “developabl&?™ ! are conjugate with respect
to the considered/™ with generatofm — 2)-planes.

Intrinsically thisM™ with generatofm — 2)-planes is a Riemannian manifold
of conullity two and these generators are its locally Euclidean leaved/ limithe
Levi—Civita connection of this manifold. A “ruledM™ !, whoseT,M™ 1 is
parallel alongh/™~! with respect tdv, is said to beasymptotiqintr.) in the inner
geometry of such /™ (see [-%7]). Since

Ve, = eyw, + eB,0 + etCuh, Ve=— Z euBul + eL(WH + Yuw"),
u
due to the Gauss formula (2), a “ruled?™ ! is asymptotic (intr.) if and only if
C, = 0 andy = v, = 0. Here the first condition can be represented as
A2 cos® p + (A%, — Al cospsing — Al sin? 0 =0
or, equivalently, as
A2 (W12 + (A2, — Al w'w® — Ajp(w?)? =0, (5)

but the other conditions imply? + dy = 0.
Note that Egs. (4) and (5) differ from the corresponding equationy iorly
by denotations: in!] instead ofAl,, AL, A%, A2, there are used,, by, c,, €.

ul» ulr“tu

118



Moreover, the addition “(intr.)” is not used in]f here it is needed to avoid
confusing withasymptotiqextr.), explained above.

In [17] the Riemannian manifolds of conullity two are divided into three
classes according to the number of solutions of Eq. (5). If Eg. (5) has infinitely
many, two, one, or no real solutions : w?, this manifold is, respectively, of
the planar, hyperbolic parabolic or elliptic type. For instance, the planar type is
characterized by

Aul = A12 =0, Aqlu = Aiz (6)

3. ADDITION OF THE SEMIPARALLELITY CONDITION

For a general submanifolt/™ in E™ the curvature 2-forms 0¥ andV+ are
determined, respectively, b;; = —R;juw” A w! andQ*P = —Ro‘ﬂ kAW
whereR;; x1 = (R, hyjj) anngf = > .h% hﬁ are the curvature tensors of

ik
andV+, respectively.
For aM™ in E™ the semiparallelity conditioi?(X,Y) o h = 0 in a more
explicit form is

> (Quph + Qphs, Z Q°hy, (7)
p

which after substitutions reduces to

> (i phi + Hijgphip — Hij pichugp) = 0, (8)
p

whereH; ;; = (hix, hij) (see t]).
For the considered/™ with generatofm — 2)-planes inE™ the condition (8)
by (k,1) = (a, w) reduces to

> [(Hiaup = Hivap)hpj + (Hjaup — Hjuap) Pip — Hijipalup + Hijpuhap) = 0,
p

and this by {, j) = (v, w) gives, due to (4),

Z(Hva,ubhwb + Hwa,ubhvb) = 0.
b

Using the last condition by = v = w leads to the system of two equations
<hu17 hu1>hu1 + <hula hu2>hu2 = 07 (9)
<hu27 hu1>hu1 + <hu27 hu2>hu2 =0. (10)

Here the following lemma can be used.
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Lemma 1. If in a real Euclidean vector space some two vectorsnd ¢ satisfy
simultaneouslyp, p)p + (p, ¢)q = 0 and(p, ¢)p + (¢, ¢)g = 0, thenp = ¢ = 0.

Proof. Every two vectorg andgq lie in a two-dimensional vector subspace. The
orthonormal basis in this subspace can be chosen sp thdp1,0), ¢ = (q1, g2).
The two conditions above are

P3(p1,0) + p1gi(qr,@2) =0, p1gi(p1,0) + (& + ¢3)(q1,q2) = 0.

For the second coordinates this means thatg, = (¢7 + ¢3)g2 = 0 and leads to
q2 = 0, but for the first coordinates thép? + ¢3)p1 = (p? + ¢f)q1 = 0, therefore
p1=q =0.

Theorem 2. If a submanifoldM™ with generator(m — 2)-planes inE™ is
semiparalle] then its tangentn-planes along each of itsn — 2)-plane generators
coincide so that the tangent plane of thi&/”* depends on no more than two
parameters.

Proof. Indeed, then the system of Eqgs. (9) and (10) must be satisfied, but this due
to Lemma 1 leads th,, = 0. Now

deqg = — Z A% wbe, + wlep + hapw?, (11)
u

dey = eyw? + A% wleqy; (12)

the latter due to (3) and (4). This shows that both subspac&sMf™, spanned
one, (a,b, ... run over{1,2}) and one, (u, v, ... run over{3, ..., m}) are invariant
along each of the generatorn — 2)-planes, which are determined b¥ = 0.

Note. The equalityh,, = 0 shows that the last two subspaces, one tangent
to the generatofm — 2)-plane, the other orthogonal to it in the tangent vector

spacel, M™ of the submanifoldV/™ considered in Theorem 2, have conjugate

directions.

The main result of the present paper is the following statement.

Theorem 3. If a semiparallel submanifold/™ with generator(m — 2)-planes in
E™ is intrinsically a Riemannian manifold of conullity twien it is of the planar

type.
Proof. Let us use exterior differentiation in (1). This yields

k k j
(dh% — hgj ;= h%wj + h?ng) ANw! =0
and thus, due to Cartan’s lemma,
k k k
dh% - gjwi - %wj + hfng = h%kw )
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whereh%k are symmetric with respect 107, k. (The last statement is the famous

Peterson—Codazzi identity; seé-[2].)
Forh;; = eah% andh;j, = eah%k one obtains

dhiy == ep(hij, hp)w' + higwf + higw§ + hijpw®.
p

Since hy, = hy, = 0 for the considered here submanifold™, this gives
by (i,7) = (u,v) and by (i,j) = (u,a), respectively,hypw = huwe = 0 and
—haewS = hugpw®. ThuShu., = —heAS,, due to (4), and from here, due to
symmetry,hq.AS, = hy A, Wherea, b, c run{1,2}. Therefore

hllAqlﬁ + h12(A1%2 — A;}Ll) — hggAZl =0. (13)

Suppose that spdhii, hi2, heo} has the maximal possible dimension 3 at
every pointz € M™. Then (13) yields (6), and thu&/™ is of the planar type,
indeed. Therefore only the cases when this span has the dimendsidmeed
further analysis.

If this dimension is 0, the submanifoltf ™ is totally geodesic. Thus it is an
open part of amn-dimensional plane and not of conullity two.

Let this dimension be 1. Then each of the vectayshas only one coordinate
and the symmetric matrix of these coordinates can be diagonalized by a suitable
orthogonal transformation 4k, e2 }. (Note that the relations (4) are invariant with
respect to this transformation; this is seen also from the fact that these relations have
pure geometric meaning.) After that Egs. (1) are

w* =0, w{”“ = kw!, w;”'H = Kkow?, wg =wy, =0,
where¢ runs over{m + 2, ..., n}. By exterior differentiation from here
(diy + k1AL W) Aw! 4 (k1 — Ko)w? 4 K1 ALwY] Aw? =0,

[(k1 — K2)w? + Ko A2 W ] A w! + (dkg + Ko A2ow™) Aw? = 0.

The semiparallelity condition (8) reduces(to —k2)r1k2 = 0. Herek1 ko = 0
leads to2;o = 0; moreover, due té,, = hy, = 0 alsoQ,, = Q,, = 0, so that
;; = 0 and thusM™ is intrinsically locally Euclidean and not of conullity two.
Thereforex; = ko = k # 0, and the exterior equations reduce to

(dink + AL o) Aw! + Alyw® Aw? =0,

A2 W% A w! + (dink + AZw") A w? = 0.

From here
dink + AL jw* = Pwl, Al, =A%, =0, dink+ A%,0" = Qu.
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ThusAl, — A2, = P = @ = 0, and comparison with (6) shows that™ is
intrinsically of conullity two of the planar type.

Let the dimension of spdihi1, hi2, hoo} be 2. The orthonormal frame can be
further adapted td/™, takinge,, 1 ande,, .o as belonging to this span. After
thath$; = 0 for ¢ € {m + 3,...,n} and thus amon@*” only Qm+1m+2 —

> Wiyt A W' can be non-zero.

Summing in semiparallelity condition (7) by= j gives, due to symmetry of
hi; and antisymmetry ofY;;, >, Q*HP = 0, whereH® = i h? are the
components of the mean curvature vedtbof M™. For the considered case this,
due to antisymmetry aR®?, reduces to

Qm+1,m+2Hm+2 — 0’ Qm+1,m+2Hm+1 =0.

The semiparallel submanifold iB™ is minimal (i.e. hasd = 0) only if it is an
open part of a plane and thus is not of conullity two (s€& &nd ['], Section
8). Therefore here only the case wher+!+2 — ( is possible. This leads to
the consequence that the matri¢gg); ! || and || ?|| commute and therefore
can be diagonalized simultaneously by a suitable orthogonal transformation of
{e1,e2}. After thath,, = k., and the semiparallelity condition (8) reduces
to (k1 — k2)(k1, k2) = 0. Herek; — ko = 0 is impossible for the considered case
(because the dimension of sgamn, k2 } is 2), thereforgky, k2) = 0, S0Q12 = 0.
Moreover,,, = Qe = 0 due toh,, = h,, = 0, so that the submanifoldl/™ is
locally Euclidean and cannot be of conullity two.

Theorem 3 is proven.

This theorem confirms once more the conjecture formulated in the Introduction.
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2-KODIMENSIONAALSETE TASANDILISTE MOODUSTAJATEGA
SEMIPARALLEELSED ALAMMUUTKONNAD EUKLEIDILISES

RUUMIS

Ulo LUMISTE

On tbestatud, et kui 2-kodimensionaalsete tasandiliste moodustajatega alam-

muutkond eukleidilises ruumis on semiparalleelne ja sisegeomeetriliselt konulli-
lisusega 2, siis ta on planaarne, s.t. tal on I6pmata palju sisegeomeetriliselt
asumptootilisi foliatsioone.
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