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Abstract. Tauberian theorems (T-theorems) for different generalized summability methods

A = (Anx) and sequences of points in Banach spaces X are proved by a universal method.

The operators A, : X — X are continuous and linear on X. T-theorems with o-conditions

for generalized Riesz and Euler—Knopp methods of cx — cx type are presented (cx being
the space of convergent X-valued sequences). The applications of general results to scalar

matrix methods are discussed. Several classical T-theorems arise from the results of the study
as conclusions.
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1. INTRODUCTION AND PRELIMINARIES

The summability theory of divergent series involves an extensive branch known

as Tauberian theory. Generally, in a Tauberian theorem (shortly, T-theorem)
the summability of a series ), z; by a summability method A, together with

a restriction on (zy), implies the convergence of ), ). Our T-theorems are

given for X-valued sequences x = (zj), and the Tauberian conditions (shortly,
T-conditions) are o-conditions for the differences Az = = — Tp_l (k € N).
Here and below X will be a Banach space (shortly, B-space) over the field K,
where K = R or K = C. A comprehensive account of the classical Tauberian

theory can be found in ['].
In the present work some of the classical T-theorems, known for number

sequences and scalar matrix methods, are extended to point sequences in B-spaces
and generalized triangular summability methods (see [>~7]). Our main T-theorems
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for generalized Riesz and Euler—Knopp methods (see [>~7]) are given in Sections 4

and 6. The conclusions of theseresults for the corresponding scalar matrixmethods

and sequences in B-spaces are presented in Section 7, where also the respective
T-theorems in a classical form and content are considered. Section 2 describes, in

a sense, universal method that can be used to prove various T-theorems. Sections

3 and 5 include some auxiliary results for generalized Riesz and Euler—Knopp
methods (see Lemmas 1,2 and 3,4) considerably simplifying the proofs of our main

theorems.

We denote the most important sequence spaces by mx =

Har) 2ne Xzl < 00l cx = Ü(tk) : x € X; I limegl and

ncx C cx, where limg zp =6. Asis known, mx, cx, and ncx are B-spaces
with ||x|| = supg ||zk|| (cf. [>*]). Throughout the paper the convergence of

(zx) means the convergence in the norm of X. For any two spaces X and Y the

notation F : X — Y denotes that the operator F is of X — Y type. If X and Y are

B-spaces, then the set £(X,Y") of all continuous linear operators from X into Y is

a B-space [*]. Let further I and @ signify the identity and the zero operator on any

B-space. The operator norm of 7 € L(X,Y) is, as usual, || F|| = sup), <1 [lFx||-
In the sequel we deal with generalized triangular summability methods A =

(Ank), where A, € L(X, X) (k,n € N). More information about such methods

can be found, e.g., in [®7]. Recall that a sequence y = (z) is said to be summable

by a method A = (A,}), or A-summable if the sequence

n

o=AnkTk
k=o

is convergent. This definition is analogous to the well-known definition of scalar

matrix methods (cf., e.g., [®7]).
We shall use also the following notations, where sy and s’y are certain pairs of

cx and ncy. Let the operator A,, : sx — X be defined by
n

AnXZZAnkxk (XESX;T"EN)
k=o

and the special case A,, : X — X of it by

A„x=ZA„ka: (z € X;n € N).
k=o

The operator A : sx — s'v can be determined bp X y

0= A

where 7 = (yn) and yn = Anx are fixed by (1), (2). Hence,

n=Ax = (yn) = (Anx) = (šAnkxk) (x € 8x).

(1)

(2)

(3)

4)

(5)
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It is proved in [®] that the first operator A, € L(sx,X), the second operator
A, € L(X,X), and the third operator A € L(sx,s’y). In what follows

A:cx — cx and A : ncxy — ncy means that the method A is conservative

and null-regular, respectively.

Remark 1. We know [?7] that the method A = (A,;) with A, € L(X, X) is

of cx — cx type ifand only if

1° there exists lim A,z = Arx (z € X;k € N),
n

20 there exists lim >* Ankz =Az (z € X),
7

k=o

n

30 sup H z Ankka = 0(1)
Ilxi]<l " k=o

Furthermore, A is regular if and only if the conditions 1° — 3° with A = I and

Ar =6O (k € N) are satisfied.

2. THE PROOF METHOD EMPLOYED

In this section we describe the method which can be used to prove different

generalized T-theorems (see also ['°]).
Suppose that a sequence x = (Tk) (7x € X) is A-summable to y* € X.

Consequently, Ax = (y,) € cx, where Ay is given by (5), and

limy, = y°.
n

We shall give the T-condition in terms of

Tkzxk = 0(1)

with a fixed sequence (7). The T-condition (7) may have various forms. This

depends essentially, but not only, on the method .A. We shall see below that (7%)
can be a certain operator sequence (see Sections 3 and 4) or a fixed positive number

sequence (see Sections 5 and 6).

Note. In this work we consider only the little o T-conditions, but our method can

be employed to T-theorems with big O T-conditions too (see [l°]).
In accordance with our proof method, one has to give (y,) the shape which

makes it possible to use a Mercer’s theorem to reach the fundamental conclusion

of a T-theorem, i.e. (zx) € cx. To this end, let (y,), given by (1), be rewritten in

the form

1 i
1i[- qu„kxk] Lo e

k=o k=o

(6)

(7)

(8)
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forany a > 0, a # I,and ¢ = %=1 € R. Here (oy,) is a ® = (F,) transformation

of (1, Axzy) related to A = (A,y), and the summability method B = (By) can

be uniquely determined by (8) and the methods A, . The method ® can be taken

rather freely but certainly so that (o,) = ®(lyAzy) € cx or, even better, that

(0,) € mcx. Hence, the existence of lim,[z, — ¢B,x] follows from (8) by
Ax € cx and (0,) € cx. Then we use a Mercer’s theorem to complete the

proof.

3. SOME AUXILIARY RESULTS FOR RIESZ SUMMABILITY

METHODS

Let A be a generalized Riesz method R = (R, P,) = (R,x), given by (see
[>7]

—

]Rrx (k=0,1,...,n)
Fak=l

0 — (k>n)

with ®,,, P, € L£(X, X) such that

n

%nZkazx (z € X;n € N).
k=o

As we know (see [“], Theorem 4), the method (R, P,) isconservative ifand only if

lim Ryxz = R*z (2 )
n

and

sup H§Rn ZPka;k” = O(1).
Ilx[/<1 k=o

Furthermore, (R, P,,) is regular if and only if (11) with R* = 6 and (12) are valid.

Notes. 1. In what follows it is supposed that for (R, P,) methods there exist all

inverse operators P, ', ®! € £(X, X).
2. Let in the sequel all elements with negative indexes be null-elements.

Thereby ÄZBO = I 0 — ZT-1 = T0:-

Below, for (R, P,) ofcx — cx type, we shall reach the T-condition

(9)

(10)

(11)

(12)
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The method ® = (F},x), which specifies o, in (8), is fixed by

On = ZFnk(Pk—léß;;lÄZUk) (n =N)
k=]l

where

§RnPk (k= 1,2,... ,n),
Fnk =

0 (k=o;k >n).

So o, =R,(Rl —Pozpn_l—...— Poxy — §Rl_l:L‘O) (n € N), which follows

from (14), (15), R'zo = Pyzo+ Pizo, and (10). The last expression of o, yields

n

Onzxn_%nzpkgk (’I’LEN),
k=o

where C = (G with €0 = tO, k = TFkl (k=1,2,...).
Thereafter B = (Bnr) can be uniguely specified as a solution of the system

(8) for A = (R, P,), with the help of (9), (10), and (14)—(16). Thus we get for

B = (Byy) the representation

L-R,P, (k = 0),

Byy = B—„—i—lért,l„L(P,„rl SN Te

I — EéßnPn (k = n),
0 (k > n).

To prove the T-theorems for a (R, P,,) method, we shall need the following two

lemmas.

Lemma 1. The methods ® = (F,y) and B = (Byy), defined by (15) and (17),
respectively, are both regular or conservative if (R, P,,) is regular or conservative,
respectively.

The validity of these assertions follows easily from Remark 1, based on (15),
and

an =Tn — —a—Tl——l-žßn(z Pz — ZPkfk) (’I’L € N),
=0 k=o

derived from (8) with A = (R, P,) and in view of (16).
In accordance with the method that we use to prove T-theorems, let us start

from (8), rewritten for A = R and ¢ = %1 in the form

1.
C —

1

—P škak = (x„ — qu—Oß„kxk) -- > (nEN),

where oy, and B = (By) are fixed by {(14), (15)} and (17), respectively.

(14)

(15)

(16)

(17)

(18)

(19)
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An important part of the proof method is the application of a generalized
Mercer’s theorem to

n

. 14
hTIln (:cn — qkž—oB„kxk> = Ey .

For this purpose, we have to find such domains of a where

e —1

28l <1
A

(21)

is valid. Therefore we require the following lemma.

Lemma 2. Let the method (R, P,) = (Rux), given by (9) and (10), be regular or

conservative. Suppose the methodB = (B,) is defined by (17) or, more generally,
by (18), where a > 0 and o # 1.

Then |“L|||B|| < 1 ifa > 1.

Proof. To prove this assertion, we proceed as follows.

1) By applying (18) in the form By = x — ä(%x — R(), the well-

known two-sided inequalities or formulas for ||a + b|| or sup(a £ b), and the

sense of ||B||, we get for all mentioned « that ||B]| < 1+ l%“—_m—l%. To get the

opposite inequalities, we will start from||B|| > supy, <1 [l — fi”fl?x—?fi(”l
Here |B]] > sup<i(lxll — mglißx - RÕ) = lifo > 1 + [[R]], and

N .
181 > suppaisiat tIRxI| = IRG]]) — Ixll] = 2L ifl < & < 1+ RI

whereas llfšq—l > 1.

From the above two-sided inegualities we get

211
—> > .BSBIS (@R

2) By (22) it is possible that |B] = 1; then (21) holds for all x > 1.

Let now ||B|| > 1 in (22). Clearly, for « > 1 the condition (21) is valid if

a < %I—lfl_l—l =l+ š <00, wherep= ||B|| — 1 > 0. Here (21) holdsifx> 1 and

a < oo simultaneously, i.e., if @ > 1. This completes the proof.

4. TAUBERIAN THEOREMS FOR GENERALIZED RIESZ METHODS

By applying the auxiliary summability methods given in Section 3, we can

obtain two Tauberian theorems for generalizedRiesz summability methods.

Theorem 1. Let the method R = (R, P,), given by (9) and (10) with R,,, Py, €

L(X, X), be regular and let there exist all inverse operatorsP,L R! eEL(X, X).

(20)

(22)
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Ifx= (zx) is R-summable to y* andif (13), i.e. Pk—lšß,;l—Äa:k = o(1), holds,
then x = (xy) converges to y*.

Proof. Let x be R-summable to y* and let (13) hold. Then, in accordance with our

proof method described in Section 2, the sequence Ry = (R, >__, Pxzk) can be

written in the form (19). In this case the sequence (P, I§R,;l_A_xk) is ®-summable

to 6 because (13) is assumed and ¢ = (F},x) is regular by Lemma 1.

Thereafter the relation(2o); t'c.” lmy, (2. — ¢ko BnkZk) = žy* follows

from (19) if we take into account that y = (zr) is R-summable to y* by the

assumption. The method B = (Bnx) in (20) is regular in view of Lemma 1.

Then, by Lemma 2 there exist such domains of «, where the inequality (21), i.e.

lg|||B|l < 1, holds. Therefore, the existence of lim, z, = y* can be inferred

from (20) with the help of a generalized Mercer’s theorem (see [7], Theorem 1,
Lemma 1). This completes the proof.

The next theorem regarding the conservative summability method (R, P,,) can

be proved exactly in the same manner as Theorem 1.

Theorem 2. Let the method R = (R, P,), given by (9) and (10) with R,,, P, €

L(X,X), be conservative and let there exist all inverse operators P, t šR,;I €

L(X, X).
If x = (zx) is R-summable andif (13), i.e. P, "R,Azy, = o(1), holds, then

X = (zx) is convergent.

Remark 2. The relation between limy, 23, = z* and lim,, R, > ;_ Pezr = y* can

be determined by the general formula for conservative summability methods (see
[%], Satz 1; [®], Theorem 1).

5. SOME AUXILIARY PARTICULARS FOR EULER-KNOPP

SUMMABILITY METHODS

Let now A be a generalized Euler—Knopp method £ = (£, A) = (E,), given
by (see [>7])

MAH(I-A)”** (k=0,1,...,n),E"’f:{((f)( /
(k >n),

where A € £(X, X) and A° = I. As we know [>7],

o= (z € X;n€N),

where E,x = > 1o Enkzr (X € sx;n € N) is valid for every (€, A). We recall

[7] that (€, A) is conservative if and only if

(23)

(24)
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or regular if and only if (25) and

lII—AI <1

hold.

The purpose of Section 6 is to prove that

\/E ÄCB]C = 0(1)

is a T-condition for a (£,A) method of cx — cx type. For that we need two

auxiliary methods, ® = (F,;) and B = (By), like those in Section 3. Here ® is

fixed by

U= Fu(Vk Azp) (neN)
k=]l

with

Fnkz{ Enr B =l2O -,
0 (k=o;k >n).

We also notice that 0,, can be rewritten in the form

n

on =Y (Vk Enk-Vk+l Enksi)tk-Erizto (n€N).
k=]l

For convenience we use below the following notations: x* = (&) =

(Vn Azn), Prx* = >ki Fnktke Then, from (8) with A = (E,A) and in

view of (23), (28), and (29), we get for B = (Bnx) the following representation:

1
Bnrx = a_—l(azzn — EnX — Pnx*) (n € N),

where £, x and ®,,x* are fixed above. Thus, and owing to (23), (30), and (31), the

method B = (B,,;) is uniquely determined by

L Wk+lEy51— (1 +VE)Ey] (k=0,...,n—1),
Bnk = Eš—l[al — (1+ /n)Enn] (k=n),

0 (k > n).

We shall need for (31) also a different kind of expression, namely

(26)

(27)

(28)

(29)

(30)

31)

(32)
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because Py* = Ex* in view of Dyx* = > k lEnktk = Dko Enktk =

Enx* (nEN), Enofo =B, and €o =B.

Next we propose analogues to both lemmas of Section 3.

Lemma 3. The methods $ = (Fnr) and B = (Bnx), defined by (29) and (32), are

both regular or conservative if (E, N) is regular or conservative, respectively.

The validity of these assertions can be shown with the help of Remark 1 and

(28)—(33).
In order to employ our proof method in Section 6, let us rewrite (8) with

A = (€, A) in the following form:

1
= s

—

EE„X = (a:„ —qz B„kmk) -z F„k(x/lš Azy) (neN)
k=o k=]l

with & = (F,,x) and B = (8,,x) given by (29) and (32), respectively.

Lemma 4. Let the method (£,\) = (Eny), given by (23), be regular. Suppose the

method B = (Byy) is defined by (32) or, more generally, by (31) with o > 0 and

g 1
Then |22l|||B|| < Lifa > 1.

Proof. As in Lemma 2, we confine ourselves only to some essential notes needed

for the proof.
1) By applying (33), supjp,~jj<l I€xX*|| < supjy<l I€xN = ll€]l = 1 (see [°],

Corollary 3.2), the well-known inequalities or formulas about ||a=+b|| or sup(a=b),
we get |B|| < ä—fš for all mentioned a. For the opposite inegualities we first obtain

B > IQIT” supixii<i lallxl| — Ex + Ex*ll|; thereafter it is easy to check that

B > la—il—lsupHXHSl(allxll - Ex+Ex*) = 7 fora >l. Here 5>2
if 1 <a < 2and ;%5 > lif a > 2. Then, owing to the three last inegualities for

||B||, we can propose the following two-sided bonds:

a 2 >2, I<a<2, (T)a—lžHß”i>l, a >2. (TI)

Consequently, ||B|| > 1 for all fixed feasible values of . However, it is also

possible that || B|| = 1, since « is unlimited in (35), (II).
2) Now we are able to state such domains of a where (21), i.e. |2=L|||B]| < 1,

holds.

a) Let ||B|| = 1. Then (21) is obviously satisfied for all & > %, but owing to

(35), (1), for @ > 2. b) In the general case of (35), (II), where @ > 2 and|| B|| > 1,
the condition (21) holdsif& < 1+ rzi— < 00, thus, ifa > 2. .

For (35), ) withl < x < 2 and ||B|| >. 2, we get that (21) holds if

1 lIBIfi <2, hence if I<a < 2. The proof is complete.

(34)

(35)
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6. TAUBERIAN THEOREMS FOR GENERALIZED EULER-KNOPP

METHODS

Now we can prove two generalized Tauberian theorems for (£, A) methods.

Theorem 3. Let the method £ = (£, ), given by (23) with A € L(X,X), be

regular.
!

Ifx = (z) is E-summable to y* andif Vk Azxp = o(1), then x = (x)
converges to y*.

Proof. As in the proof of Theorem 1, we get for &,x the representation (34).
The methods ® = (Fy;) and B = (Byy) are now fixed by (29) and (32),
respectively. As (27), i.e. Vk Az, = o(1), is assumed and @ is regular by
Lemma 3, then (vVk Az}) is ®-summable to . Hence, by (34) and the assumption
lim, Erx = y*, We have

, a-ld 14
'nl—l—)l%o (-'Bn —

——Oé— /;)Bnkxk> —

Ey

with B = (B,) being regular because of Lemma 3. Then it follows in view of

Lemma4 that (21), i.e. |2=2|||B|| < 1, is valid for & > 1.

Our assertion, namely the existence of lim,, z,, = y*, follows now from (36)
by a generalized Mercer’s theorem (see [], Theorem 1 and Lemma 1). Hence the

result.

For the non-regular conservative (£, A) method, i.e. for (£, 8), we propose the

following analogue of Theorem 3.

Theorem 4. If x = (zkx) is (£,60)-summable and if Vk Az = o(1), then

x = (zr) isconvergent.

As the proof of this theorem is simple, we omit it.

7. CONCLUSIONS

The usefulness of scalar matrix summability methods in the Tauberian theory
for series in abstract spaces is well expressed by Maddox ([*], Section 5, p. 66).
For instance, the two well-known classical T-theorems, due to Littlewood and

Hardy, were considered in a B-space context by Northcott ['l] and Maddox [*],
respectively.

As we know [°~7], every scalar matrix method A = (a,y) can be treated also

in an operator matrix form. To this end, instead of A we can use the method

A = (Ank:) with

Ank = Onkl, AnXx = z AünklTk, AXx= ('AnX) (na k € N)7
k=o

(36)

(37)
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where x = (zx) and z;, € X. Here X is a B-space.
Let, further, R = (R,pn) = (rnz) With p,, € K be the classical Riesz

method and F = E) = (enr) with A € R be the classical Euler—Knopp method.

It is known [®°] that these triangular methods, given by sequence-to-sequence
transformations, are defined by

n

Tnk = %7 Pn — zpk and Enk = (Z)Äk(]“ — Ä)n—k7
n

k=o

respectively. Using these scalar summability methods in the form (37) for

X-valued sequences and applying the suitable ones of Theorems I—4, we get
T-theorems similar to those treated in [+ll].

For the method (R,pn), fixed by (37) and (38), there — exist

fk—l = (pk1 = - and R;' = (p1)7! = Pn. Conseguently, (13) takes the

orm

PrAzy = o(pg).

Thus, immediately from Theorems 1 and 2 we can infer the next result which

is somewhat more general than the one obtained in [l°].

Theorem 5. Let the method R = (R,pn), given by (38), be regular or

conservative.

Ifx = (z) with xz, € X (k € N) is R-summable to y* andif (39) holds,
then x = (zx) converges to y* if R is regular, or x = (xy) is convergent if R is

conservative.

Remark 3. We notice that if X = K, then Theorem 5 turns into its analogue in the

classical form.

The generally known [%°] special cases of (R,p,) are as follows: the

(C, 1) method, the logarithmic method (£), the Zygmund method (Z, p), and the

(R, a*) method. For these methods the T-conditions corresponding to (39) are

(k + I)Azy = o(1), (k+l) In(k+l)Azy = o(1), KAz, = o(1), and Az = o(1),
respectively.

Remark 4. Clearly, the T-theorems for all above methods with the mentioned

T-conditions and for different cases of the spaces X can be inferred from Theorem

5 as immediate corollaries.

All these results for X = K are known from [l%!2], but the most significant
T-theorems are proved by Hardy [*] for the (C, 1) method and Ishiguro [*3] for the

(£) method.

The method E¥ = F), is regular if and only if 0 < A < 1 or conservative if and

only if0 < X < 1 (see [%7]). In this case and in view of (37), (38), we get directly
from Theorem 3 the following result.

(38)

(39)
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Theorem 6. Let the method E = E), given by (38), be regular.
Ifx = (z) withzp € X (k € N) is E-summable to y* andif(27) holds, then

x = (zx) converges to y*.

Recall that the non-regular conservative method £ = FE) is this method with

A = 0, li.e. Ey. For this case the relevant T-theorem is Theorem 4 with Ej instead

of (£,O).

Remark 5. For X = K, Theorem 6 has also an analogue in the classical form.

Note that such T-theorem was proved by Knopp [**]. In [*°] the T-theorem for

regular Fy is proved with the T-condition vk Az = O(1).
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TAUBERI TEOREEMID ÜLDISTATUD

SUMMEERIMISMENETLUSTELE BANACHI RUUMIDES

Tamara SORMUS

On iildistatud klassikalisest summeeruvusteooriast tuntud mitu Tauberi

teoreemi (T-teoreemi) Banachi ruumi X jadade ja iildistatud summeerimis-

menetluste A = (A,x) jaoks. Menetluse A koik elemendid A, : X — X

on pidevad lineaarsed operaatorid. On esitatud iildistatud T-teoreemid Rieszi ja
Euleri-Knoppi menetluste kohta. To6s on kasutatud autori kiillaltki efektiivset

tildist tdestusmeetodit. Saadud tulemustest jiarelduvad erijuhtudena mitmed tuntud

klassikalised T-teoreemid.
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