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Abstract. Parallel and semiparallel symplectic submanifolds in the symplectic space are

considered. It is proved that in this space some results are analogical to the results in the

Euclidean space.
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1. INTRODUCTION

Parallel and semiparallel submanifolds in the Euclidean space and in the space
with a constant curvature have been studied by several authors (e.g. Vilms ['],
Ferus [?3], Lumiste [*]). It appears that the same problems can be considered

when a submanifold is located in a symplectic space. In Section 2 of this paper the

necessary results about the symplectic space are presented. Section 3 describes the

notion of a symplectic submanifold and Section 4 gives the concept of a parallel
symplectic submanifold. Section 5 is dedicated to the semiparallel symplectic
submanifold. Here we ought to consider significant the fact that a semiparallel
symplectic submanifold, which is not a parallel one, is a second-order envelope of
the family of parallel symplectic submanifolds.
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dgr; = gsjwi + grsws. (2.3)
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2. THE SYMPLECTIC SPACE

In order to understand the following discussion, let us introduce some notions.

Definition 1. An affine space A will be called symplectic if in its associated vector

space V the scalar product i V x V —s IR is given, satisfying the following
axioms:

1° (E°Za,)= E(Za,D
2° <ža žagCL) — €a<ža ?ja)a
3° (fa Zj) — —<ga ž)a
4° VžeEV, (Z,a)=o=ad=o

if each Z, 7], To, Yo € V and £* € IR, Here a € {l,2}.

Henceforth, we denote the symplectic space and its direction space respectively

A = Spand V= 5_5 In the following we shall assume the symplectic space finite-

dimensional. From axioms 3° and 4° we see that the dimension of the symplectic
space 12)an even number whichXše shall denote with 2n. In that case we write Sp*”
and Sp®" instead of Sp and Sp.

Let {z; &} be a moving frame of the symplectic space Sp?". Here and in what

follows the capital Latin indices will take the values in the set 7:= {1,2,...,2n}.
Further we use instead of the frame origin = € Sp?™ its position vector with respect
to some fixed point o € Sp?", denoting it by Z = o?. Thus, the notations {z; €7}
and (Z; €r) will become eguivalent for us. The motion of our frame is described

by the following differential equations (the so-called derivation equations)

dZ = w’és, dé; = wiés,

whereby 1-forms w® and wf must satisfy the conditions of the complete
integrability (so-called structural equations)

dw* —
w*AwXF K

40 Wi dwf =w)Aws.

The last equations will be derived from Eq. (2.1) by exterior differentiation. Let us

note that the differential d% of the position vector Zin (2.1) does not depend on the

choice of the point o.

What was said with regard to the moving frame holds also for the affine space,
because we have not used the scalar product of the direction space S_’Z)Q". The basis

{er} of the moving frame {z;é;} is linked with the 2n-order matrix G = ||grJ||,
where gr; = (€7, €5). According to the axioms 3° and 4° in Definition I, the given
matrix 1s skew-symmetric and regular. Differentiation of the elements g 7 in the

matrix G gives

(2.1)

(2.2)
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Because of its regularity the matrix G has the inverse matrix G~ = ||g!/||,
whereby s . o 3 -

grsg =g gŠgs; =65.

Differentiating the former equations we get

di = 44wl g wl),

3. THE SYMPLECTIC SUBMANIFOLD OF THE SYMPLECTIC

SPACE

In this section we consider the symplectic submanifold of the symplectic space

Sp®", i.e. such a submanifold whose tangential space is symplectic at each point.
This requirement is caused by the fact that every subspace in the symplectic space

5?))2" is not necessarily symplectic. Thus, the regarded submanifold is even-

dimensional. Let us denote it by M?™. According to the assumption, the tangential
space T,M?™ will be symplectic in case of any z € M?™. Let us denote

the directional space of the tangential space by _fiM 2m. Thus, T,M2” =

r + ’_Z—ZM2m, Due to CZ—“-;„M2m
being symplectic it has an orthogonal complement

'.Z—"šLM2m which is also symplectic, and which is called the normal vector space at

the point z. Thereby, the sum of these two spaces is a direct sum and is egual to the

direction space of the symplectic space:

—+ A —

TMLM S Vr € M?.

We shall proceed with the study by the rloving frames {z; Ei; Ea), adapted to

the submanifold, where x € M?™, & € T,M?", and &, € T;-M?™. Here and

furtherö,j... € 1 := (1,2,... ,2m) anda,B... € b := (2m+1,... ,2n).
Since gia = —Jai = 9, Egs. (2.3) and (2.4) reduce to

dgij — —(gSjwš + giswg), dga,Ü — „—(g'YÖwf;t +ga7wž)

and

g'yawz + giswä =O, gfyawfiy + gisw? =O.

Now the matrix G is a direct sum, G = Gl+G2, of the skew-symmetric matrices

Gli = ||gij|| and Gy = ||gag]|, therefore for the determinants there hold |G| =

|Gl]| - |G2|. Thus, the regularity of G and G is derived from the regularity of

G. Consequently, there exist inverse matrices G7' = ||g¥/|| and Gs* = ||g®|,
whereby

j j ; ; YB —5B ay —6%.Jisg? =Õj, 6955 =o}, 9" = 9*"gyp=B3

(2.4)

(3.1)

(3.2)

(3.3)
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Taking account of the last equations, we obtain from (3.3) one and the same result

i
—

»t 7
Wo =G GayWy.

_}
The fact that z € M?™ brings about dZ € T, M?™, i.e. dT = w*€,. Now, from the

first part of (2.1) we obtain

T =0 (OlEIg)

Hence, using the first of Egs. (2.2), we get

w*=o—>dw*=o—>wirw*=][o.

The last equations can be solved using Cartan’s lemma (see [°], Ch. III). For the

conditions of complete integrability the following relations are achieved:

A—AS A
—

A

w =hiw*, hi; = hg;

According to (3.4), now

NSyl g 7
.—

pt 7
Woy — Hasw

)
Has :— g ga’)'h’ts'

From the structure equations (2.2) we obtain

dat== wlif ol dwg:wf/\wg+flg, dwg:wg/\wg—l—flg,

where

=R _w*Awt, QF =RP
2 ISt W, Qa — Rastws Awt

are the curvature forms. If we construct the curvature tensors Rž 5
and Rž <t

from

their coefficients, then by applying (3.6) and (3.7), we get the following relations:

Rl = —gjuh%shrult]gavv Ržst = —guth[shfitlflga"'
Several bundles are connected with the symplectic submanifold, whereby the

last one appears to be the basic manifold for them. There arise the tangential bundle

B

and the tangential vector bundle

— —

TPI sB™

which induce a tangent principal frame bundle RM?™ with a structure group
GL(2m, IR), whose structure equations are

dwi— g : (,(). U) UWw /\wz d J l l
s) 5 1/\ 'š ',Z

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(39)

(3.10)
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Hence it can be seen that in this principal bundle a connection called the tangential
connection of the submanifold will be created which will be denoted by V.

Analogously there arise the bundles

M= UpeppomTEM2™, TLA™ 2

T 2
— iBE]V[Zm TiL’ Mm,

which induce a normal principal frame bundle R+M?™ with a structure group

GL(2(n —m), IR), whose structure equations are

dwi=wNwl, dw? =wlAw,€+Dž.

Of course, in addition the relations (3.2) hold.

The connection created in such a way is called the normal connection of the

symplectic submanifold and is denoted by V.. The connections V and V- will

determine a new connection V = V + V+ which will be called the van der

Waerden—Bortolotti connection (applying the denotation used in a similar case of a

submanifold in the Euclidean space).

— = —,
Definition 2. The map @b : T,M?>™ x T,M2”” —s T-M>™, given by

| (Z,7) — Ph(Z,9) = (h&z'y’)ea,

where T = z'€; and ij = y'€;, is called the second fundamental form of the

symplectic submanifold M*™.

As can be seen from the definition, the second fundamental form is a symmetric
bilinear form.

S

For the basis vectors 7 = €e; and 7 = €; the image vector (2)h(€s,€t) €

TEM2 is oftennoted by h;. Thus,

hot = h2E, = Õh(e;, )

— —
Definition 3. The map (I)Aš : TM?™ —s TM?™, given in case of the vector

> =

£ € TEM?*" by
Tr— AL = (ECH!.x°)&

is called the Weingarten map (analogously to a similar map in the Euclidean

space). Here& = 6%, and Z.—3°€;.

As seen from the definition, the Weingarten map is linear. The elements of its
matrix in case of a basis {¢;} will be

(VA))= eH =
D

Si |
§

f
ol

gjsga’yh‘:gyiga'

(3.11)
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Note that by exterior differentiation we get from (3.6)

(dhs; — hgjwf — hfw? + hlwS) Ao’ =0

or, by using the concept of the covariant differential,

Vhs Aw! = 0.

Hence due to Cartan’s lemma

Vh%- h* w. ht
= h

1) hzgsw ) h’ijs — hisj'

It can be seen that the tensor field h?j ; 18 symmetric with respect not only to the

subscripts 7 and s, but to all lower indices.

According to the covariant derivative, hz-aj s
= Vshgj. In addition to the tensor

fields h7';, and h?;;,,a seguence of tensor fields arises

a
— T7. I,a

—hilig...i„ — Vluh'ilig...i„—l (U =3,4,...),

which all are symmetric regarding to the first three subscripts 21, %9, and 3.

— — —
Definition 4. The map “Wh : TM?™ x

...
x TM?*™ —s TL-M?™, given by

(Zl, 82, ... ,Bu) — WR(Z),Ta,... ,Ty) =Boy LU,

is called the uth fundamental form of the symplectic submanifold M?*™. Here

Ty = t3E; Wherev=l,2,..., u.

From here we see that the map “Yh is a partly symmetric u-linear form. By
means of the tensor fields (3.12) we can construct vector fields

2 —

Roia ) € TEM?.

Starting from the tensor field (3.7), we can give yet another series of tensor

fields

HEe scbossVe B fonapits (4=2,3,...).

Taking (3.2) and (3.12) into account, we get

k
—

ks fY. o .Hailiz...iu = J ga')'h'szlzz...zu'

243 (u) =A 2
=

r2m TAALM 5Definition 5. The map
“ Ag: TMA 30 %TR — TMY, given by

(815F257 1»

1 Fu)e DDAT B 1 B0)BWiL 6BPO sB RG

will be called the uth Weingarten map. Here š =E%, and T; = zé;.

(3.12)

(3.13)

(3.14)
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With the help of Eq. (3.13) we find the differentials of the vectors fiiliz...iu- We

obtain

u

g b t 5952 ž:sq... . . sbi
dh'l,lzz...’l,u — (hili2...iuH,Bsw )et + withzlzz...zt—lszt+l...zu +(.t) h'Ll'Lz...Z„s

t=]l

Hence we see that the vector bundles

— +

W M sl T) — (4=1,2,...)

are completely determined by the symplectic submanifold M?™. Likewise there

originate the bundles (WTLM?™ (u=1,2,...), where

__>

TIM* :=z4+ TMB VreM*”

and

T.L 2m ——Y = oT P,

With the help of the last bundles the new vector bundles can be generated:

" r2m 2m ; (u) mMQm,
-

Las2m (u) M2m : rEM?= 2+ ž (v) 5 sil 1 =t 7(u) TM2 : TM

—

where

Wpp2m 1— x + 1) f;2m

=7 —
and ()T, M?™ isthefibreof (W) T'M2™,

é
Definition 6. The vector bundles ) TM?™ and YTM?*™

are called, respectively,
the uth osculating vector bundle and the osculating bundle of the symplectic
submanifold.

Here, in case v = 0, taking (O) TM?™ .= T'M?™ we get the tangential bundle

TM?™. Obviously

(0) Typ2m c 1) Trg2m c.. cb Try2m C S;Zn

and

OTM?" e(D o e OTMI" g,

Theorem 1. If in case of any u there holds “tVTM?™ = (TA2™ then also
(u+2)ppr2m

—
(W T27 holds.

(3.15)

(3.16)
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— —

Proof. From the assum—pšion it follows that (+1) 7L pr2m c (4) TM2. While in

addition R, 4,,, ¢ TM>™, then

u

E. . . — )\51:52..._5t ]_i
2122...0u41

°

W22y $lB2---st)

=2

or in the coordinates

U

h*. . —ž SlB2--St ja

1122...2u+1 A’il’iz...iu_i_lhslsz...st'
t=2

Taking this relation into account, we obtain

> —

M-.—a 7

—
3 A =

hlll2---lu+llu+2 — hiliz...iu+liu+26a — (Vzu+2hili2...iu+l)ea

u

5

7 S:liB9. 484
r

5152...85t
°

— ž : [(vzu+2Ail’i2...iu+l) h5152—-—st + Äiliz...iu+l h5152--—st]
t=2

— —

Keeping in mind (3.17), we get (*t2) T 2 (W) TM?. Conseguently,

(u+2) q—-n—)MQm —
(u) ?MZm o (u+2)TM2m — (u)TMQm_ o

From this theorem we see that if during some step the osculating space does

not “expand” any more, the creation of new osculating spaces may be finished.

Actually, this fact is taken into account in (3.15) and (3.16), where k£ means the last

step leading to expansion of the osculating space. The submanifold is located in

the kth osculating space (¥)T2.

Together with the osculating bundles (“)?M 2m and (ÖTM"
analogous

bundles are created in the tangential space. With the help of the tensor field

by H
1i1213 : — h*i , AL i

3

we can construct the tensor fields

k —T. pk
—biliz...iu — V'lubilig...i„-l (U —47 5) tttt )7

and, in turn, using them the vector fields

I ek
o

pk >
—bllzz...zu — blllzzu Ek ('LL =3,4, ee )

can be built. It can be seen from the expressions of these vector field differentials

U

-‘..._E ANA . , p $ tydbzlzz...zu = wz‘tbzlzz...zt_lvzt+l...zu T W bzlzz...zut + biliz„,i„w hst
=1

(3.17)

(3.18)

(3.19)

(3.20)

(3-21)
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that the subbundles

7

=34(w) B .= spanlib,.o- (U

and the sums of these subbundles

u

(u) E)MQ”” — z (5) E?Mm cC ?Mm
s=3

will appear as the subbundles of the tangential bundles —T+M2m which are

completely determined by the symplectic submanifold M?™ itself. This is seen

from Eq. (3.21). Analogously to the osculating bundle (WTM?™
|

the vector

bundles ()BM2™ and () BM2™ induce the bundles BM?™ and ")BM?™.There

will hold

(3)E>M2mg...g(“)l?Mng...g(l>B—>M2mg...g TM2m

and

OpMm c.. cBc.. c ÜÖBM”* c.. CTM*Y

[cf. (3.15) and (3.16)].

Theorem 2. If for any u there holds (“tUDBMZ™ = WBMZ™ then

(u+2) B1727 —
(u) BM2.

The proof is analogous to that of Theorem 1.

Remark. The fibres

e ULy2m, OBMMCT,] i T

— — .
of the bundles Ö TTI27 and () BM?™ cannot be symplectic vector spaces.

If, in some case, they are symplectic, then the moving frame (x; ;, e,) can

be additionally adapted, which simplifies technically the study of the symplectic
submanifold.

Let us note that in case we have a submanifold M? of the Euclidean space E",
the vector spaces (“)T:;CLMP and )BMP will always be Euclidean and, therefore,
an additional adaptation of the frame is possible.
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4. THE PARALLEL SYMPLECTIC SUBMANIFOLD OF THE

SYMPLECTIC SPACE

The concept of a parallel symplectic submanifold of the symplectic space

may be given in an analogous way to the submanifold of the Euclidean, pseudo-
Euclidean, or constant curvature spaces. As already said in the introduction,

parallel submanifolds in the spaces mentioned above have been studied by e.g.
Vilms [!], Ferus [>3], Lumiste [*]. Here the role of the space is to originate a

rigging at every point of a symplectic submanifold M2?™. For this reason, we have

also required a submanifold M?2™ to be symplectic. In this case the framing arises

with the help of the orthogonal complements fl—";iM2m,
In this section we use the conceptions known from the studies of parallel

submanifolds of the Euclidean space. Letus note that primarily the parallel
submanifolds were known as submanifolds with parallel second fundamental forms

oras locally symmetric submanifolds.

Definition 7. A symplectic submanifold M?™ of the symplectic space Sp*™
is called parallel (or locally symmetric) if its each point z° € M*™ has a

neighbourhood which is invariant at this point concerning the reflections taken

with regard to the normal space T:[:% e

In the first half of this section we call the observed surface class a locally
symmetric symplectic submanifold. While our study is local, the invariance in

respect to the reflections is not required for the entire symplectic submanifold but

only in case of a certain neighbourhood U/,0 C M?™ of the point z° € M?™.

Let us explain now how to use the definition of the locally symmetric
symplectic submanifold in practice. At every point z° € M?™ we shall check
all geodetic lines of the symplectic submanifold M?™ passing this point. Each

line may be represented by a vector equation & = Z(t¢), where ¢ is considered a

canonic parameter. Herewith, we can assume 7° = Z(0). The position vectors

Z(£t) — Z(0) of points z(=£t) on the geodetic curve, taken at point z(0), can be

due to (3.1) uniquely presented as a sum,

Z(+t) — Z(0) = [7(+%) — Z(0)]1 + [7(+%7) — Z(O0)]2,

where

[#(&t) — Z(O)]1 € TooM®™, [F(%t) — F(O)]2 € TosM?™.
Thus, for a locally symmetric symplectic submanifold the vectors [Z(¢) —Z(0)]; and

[#(—t) — Z(0)]; are vectors opposite to each other, and the vectors [Z(t) — Z(0)]-
and [Z(—t) — Z(0)], are equal, i.e.

[#(t) — Z(O)]i + [2(—%) - Z(0)1 = Õ,

[2(2) — F(o)]2 — [F(—t) — Z(O)]» = Õ.
(4.1)
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Using the Taylor expansion of the vector function Z(¢)

= -

1
u =(uZ(t) = Z(0) + z Üt 7(0),

u=l

we get

[F(2O -0] = Y 5920
u=l °

[F(2) - 20)) = » 59290
u=l °

Here

#(0) = 2 (0) + 25(0),
where

— =)

FO(0)E TM2, — Z(0) € TSM”
Now the conditions (4.1) may be expressed as

=Le S

—
1

(2u—-1) »2u-)yy
—

R

uzz:l —(2u)!t ži (0)=0, š——(Zu— 1)!75 5 (0) =O.

In these relations the terms of the same power regarding to £ must be equal to the

null vector. Consequently, the locally symmetric symplectic submanifold M?™ is

determined by the conditions

), =0 (u=1,3,...).#0)=0, & V0)=0 (

Theorem 3. A symplectic submanifold M*™ is parallel or locally symmetric iff its

secondfundamental form iscovariantly constant, i.e. parallel.

Proof. Let us consider the symplectic submanifold M?™ locally symmetric. Thus,

Egs. (4.2) hold true. To draw conclusions from these equations, we shall find

derivatives Z(*) (t) which will help us find the components of the tangential and

normal spaces of vectors Z(*)(0) that will be inserted into Eqs. (4.2). The

geodetic curves of the symplectic submanifold passing the point z° € M?™ can

be considered as integral curves Z = Z(t) of the parallel local vectorial fields X =

X%€ on the symplectic submanifold passing the point z°. Thus, Z'(t) = X*¢,.
However, the parallelism of the tangential vector field X of the curve means

that

VRGOS dX L XV =0 SdX° 2 X",
In addition, let us note that because of

dz = #'dt = Xdt = X*dte,

(4.2)
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in the equation dZ = w?’é, the 1-forms w® on the geodetic curve will be expressed
as w* = X*(t)dt.

Let us calculate now the derivative vector fields Z" (¢), " (¢), . . . starting from

the formula Z'(t) = X?®€;. At first glance it seems quite simple, yet actually it is

rather inconvenient. For instance,

Z"(t)dt = dFž'(t)

= dXs*e; + XYdõ, = (dX* + XYwS)E; + XYh%w“õ, = XY*X“hyudt,

so that

Z"(t) = X 1 X*2hy

Going on, we shall analogously find Z"(t)dt = dz"(t), ZUV)(t)dt =

dz"(t), zV)(t)dt = dzTV)(¢), ...,
and we get

ZU(t) = XK2XSs)5053 + A515253))

FW) = X 0 XXX{(hei HE 8bBLD
DY, dyae it ÜislsasaBa)]

AOIOED b eob ecd eoi(S-TR L -)e O

+ Bsisosssass + NL5755
Y SRy SR |

+ bÜ sosa
Rusass + Psisasasass)a

It is essential to notice that, in addition to what was found, the next derivative

vectorial fields will include tensor fields Ay, . ,
whereu = 4,5, ... Taking ¢ = 0

in these equations, we can make replacements in Eqgs. (4.2). We shall start from the

second series. The first of them, Z,(0) = 0, appears to be an identity because of

Z'(0) = X(0) € fl—"x)oM2m. The second condition, #"(0) = 0, taken at the point
z(0), by reason of Egs. (4.2), can be written as follows:

X31(0).X°2(0)X 2 (0)R, 5555(0) = Õ.

As X(0) is arbitrary, then it holds also in case X (0) + Y (0), e = =+l. Besides,

taking into account that Ay, g,s,
1S symmetric regarding to the lower indices, we

obtain

[eX°l(o)X°2(o)Y*3(o) + X°1(0)Y*2(0)Y*2(o)] s,555(0) = O.

Taking ¢ = 1 and € = —l, and then adding them up, we get

X51(0)Y°2(0)Y*3(0)Rs, 5,55(0) = 0.
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Writing Y (0) + Z(0) instead of ¥ (0), we obtain

2O02 (O)As,s2s3(0) =O.

Hence, because of X (0), Y(0), and Z(0) being arbitrary, hy,s,s,(o) = 0. This

result holds regarding to every point of the symplectic submanifold. Owing to this

bi@ 0 bB~ Bl G =NI eMO—

We obtained the second fundamental form as covariantly constant, or parallel

regarding to connection V. Due to this fact, we see from Eq. (3.12) that

h$
s,s,

=oincase u = 4,5,... Even more, Hslsz...su = 0 and 55132,_,5u = Õ.
Here we have also taken into account the eguations from above: (3.10), (3.14), and

(3.18)-(3.20). Due to Egs. (4.4), it is possible to specify Egs. (4.3). Thus, to the

equations
z'(t) =

X(¢), ZŽ"(t) =X X2h3

we may add the specified Egs. (4.3):

ž»l/l(t) — X51X32X8353132537 ž*(u) (t) = õ (u =4,5, o )

Thus, Egs. (4.2) add nothing complementary.
On the contrary, let us consider the second fundamental form of the symplectic

submanifold M?™ which is covariantly constant or, in other words, parallel, i.e.

h$
s,s,

= 0. From this we get A, = 0, where u = 4,5, ... Consequently,

h5132---3u —O, bSlSz...Su+l =O, u = 3,4,

Thus, by specifying Eqgs. (4.3), we get now Egs. (4.5) and (4.6). So we see that

the formulae (4.2) hold. Hence, the considered symplectic submanifold is locally
symmetric. DO

As the condition given in the last theorem is necessary and sufficient, the locally
symmetric symplectic submanifold can also be defined in the following way.

Definition 8. A symplectic manifold is called parallel, or locally symmetric, if its

secondfundamental form is parallel with respect to the connection V.

In fact, such interpretation of the problem turns Definition 7 into a theorem

which gives the condition of sufficiency and necessity of the parallelism.
Definition 8 may be generalized directly.

Definition 9. A symplectic submanifold will be called wu-parallel if its uth

fundamental form isparallel in regard to the connection V.

(44)

(4.5)

(4.6)
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5. THE SEMIPARALLEL SYMPLECTIC SUBMANIFOLD OF THE

SYMPLECTIC SPACE

In this section we shall consider semiparallel symplectic submanifolds.

Definition 10. A symplectic submanifold is called a semiparallel symplectic
submanifold if

ho + ha — hIQS = 0.

By reason of the relation (3.9) the condition given above is equivalent to the

condition

h*. RYvszst + hg)R;st — h;ijf(;st =O.

As we see, the conditions of a semiparallel submanifold determine the relationship
between the second fundamental form and the forms of the curvature Qf and Qg
(the tensors of the curvature R’, and Ržst). If we do not care about it, we can

replace the tensors of the curvature from Eg. (3.10). As a result the conditions of

the semiparallelism will be eguivalent to the system of algebraic eguations of the

third power in accordance with the coefficients of the second fundamental form.

Next we shall study the relation between the parallel and semiparallel symplectic
submanifolds.

Theorem 4. Every parallel symplectic submanifold is semiparallel.

Proof. A parallel symplectic submanifold may be given in terms of differential

equations
@ =

Qi
il

IO S SER oS V, ,
—dhz—j hsjwi hiswj + hi]-w„y =9

A — ,ahij = hji.
To get a solution, the conditions of the complete integrability must be satisfied.

Therefore, taking into account Egs. (5.1), the exterior differentials of the left parts
of Egs. (5.1) must be equal to zero (see [°], Ch. III). Consequently,

dw* = S S =w* =O6 W' AW =O4 hjw' Aw! =O,

which, because of h% = h;’i, will turn into identity. From the second equation we

obtain

d(Vh) =0 & h3QY + he,QY — hI.Q% = 0.

To get this result, we have used the relations (3.8) by replacing the forms dwž and

dwd. Thus, the obtained Eq. (5.2) proves that the theorem holds. []

This theorem shows that it is necessary to observe, in addition, such

semiparallel symplectic submanifolds which are not parallel. As shown in [°]

(5.1)

(5.2)
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submanifolds of this kind exist. For this reason the order of tangency at the common

point for the same-dimensional symplectic submanifolds must be cleared out.

Definition 11. The symplectic submanifolds M*™ and M have a v-order

osculating contact at the common point ° € M>*™ NM ifthe osculating spaces

(To M?>™ and (“)TxoMZm coincide in the case = 1,... ,v— 1:

(u)TxoMQm = (U)Tmol—W—Zm, u=0,... ,v-—l.

In the following we shall observe a special case where symplectic submanifolds

have a second-order tangency at the point 2°. In this case the tangent spaces — the

0-order osculating spaces — and the first-order osculating spaces will coincide:

T,oM = TMY, OTM —OM.

The last conditions can also be described using the order of tangency of

the curves which pass the point z° and are located on different symplectic

submanifolds M2” and M.

Definition 12. The curves 7 = #(t) and T = Z(t) ofan affine space have a second-

order osculating tangency at the common point z° = z(0) = z(0) iffor the power

series :

Z(t) = Z(0) + tz'(o) + 5tZ"(0) +
...,

Z(t) = #(0) + 7'(0) +lt (0) + ...

there exist the equalities

span {Z'(o)} = span {Z'(o)},

span{Z'(o),Z"(o)} = span{Z
'(O),Z "(0)}

Theorem 5. The symplectic submanifolds M*™ and M have a second-order

tangencyat the common point z° € M?>™ N M ifffor each curve that passes the

point z° and belongs to the submanifold M?"* there exists a curve on the second

submanifold M passing the same point z° and having therewith a second-order

tangency with the first curve.

Proof. Letus suppose that the symplectic submanifolds M?™ and M°™ have

a second-order tangency at the common tg them poini>x°. Thus, Egs. (5.3)

hold. Erom the firs_t) equation we obtain T,oM?™ = TzoM—Qm, from which, in

turn, TSM2” = T:;%MQm. From the second equation we get span{h;;(z°)} =

(5.3)
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span{h;;(z°)}. Here span{h;;} are the vectors of the second symplectic
e 2 > .

submanifold M~ analogously to the vectors h;;. Hence we can write

Rij(2%) = Althg(2°), hij(2%= Bžhs(29).

In order to simplify the discussion (without restricting the generality), let us assume

that the adapted moving frames ofthe both symplectic submanifolds {z; €;, €,} and

{%;&;, &,)} begin moving from any common fixed frame {z°; @;, @,} of a common

point z°:

@; = &(z°) = &(z), @, = E,(z") = &,(z").

Let us consider an arbitrary curve £ = Z(t) which passes the point z° and

is located on either of the two symplectic submanifolds, for instance, on the

symplectic submanifold M?™. It can be assumed that z° = Z(0) at the point z° is

true. As in case of a tangent vector field of a curve Z'(t) € fl—";(t) M?™ we have

Z'(t) = X*(t)e;, we may write

Z"(t) = XiX'*e, + XXŠhi,

where X := V;X*. We obtain from the last equation, if £ = 0, that

Z"(0) = X(o)Xt(o)a@s + X*(O)X7(0)hi; ().

Thus, for the power expansion of the curve Z(¢) we obtain

Z(t) = Z(0)+72'(0) + £52"(0) +... = Z(0) +1X*(0)õ;

+E[X5(O)XO)äs + XUOXO)his(2)] +...

, . : ) :
Letus now take the point z° of the symplectic submanifold M

™
to determine the

curve

Z(r)= £(0) + 7X°(o)a@s + 372[X;(0)Xt(0)a,

+X7(O) X 7 (0) AZt Rt (2°)] + ..
In this formula the constants X*(0) and X/ (0) are determined by the curve Z(t),
while A} is derived from the formula (5.4). For the curve Z = Z(7) we get

ž(0) = X(0)ä;=Z"(0),

£"(0) = X(o)X'(o)d@s+X*(o)X7(o)Afthst(ao)
= Xs(o)Xt(o)d@s +X*(0)X7(o)hij(z%) = £"(0).

Thus, the curve 7 = Z(7) has a second-order tangency with the curve & = Z(t).

(5.4)
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In order to carry out the proof in another direction, let us suppose that for

every curve ¥ = Z(t) in the symplectic submanifold M2m passing the point

20 there exists in the second symplectic submanifold 777 a curve 7 = Ž(7)
passing the point z° in such a way that these curves have a second-order tangency.
Consequently, in their power expansions

Z(t)= £(0)+t&'(0) +£Z"(0) +...,

Žž(r)= F0)+7Z(0)+ZZ"(0) +...,

there exist the equalities
z° = 2(0) = z(0)

and

£'(oy = kZ'(O), z"(0) =pZ (0) +iz"(0),

where k#£o, 120, #'(0) € ToM2™ and 3'(0) € TooM™.
Whereas all possible pairs of curves have been considered here, then

TN TxoMQm. On the basis of the first Eq. (5.5), we obtain X*(0) =

kX4(0) because of

7'(0) = X*(o)&,(2z°) = X°(o)d@s, Z'(0) = X°(0)&,(z°) = X*(o)a,.

By replacing other derivatives into the second Eq. (5.5) we get

X5(0)X (0) gt(2°) = ¢X°(O)X'(0)hs(20),

from which g (2°) = [k2hg(z°). Thus, (UTSMI" = (I)Ts—M—2m and we get

DToM2 = (UT M. D

Let us now explain the determination of the symplectic submanifold M?™ of

the symplectic space Sp?” by means of differential equations (cf. [2], Section 5).
Let us denote a set of frames taken at the point z € Sp?" of the tangent space

T, Sp*™ by R(T,Sp*"). Operating this way at each point, we obtain a new set

R(TSp*™) := {R(T,Sp*™)|z € Sp°™}

which is the principal bundle of the tangent frames in the symplectic space Sp?”

7 RATBSp )= S vilmyer} vs's

with a structural group GL(%T_)L, IR). If we wish to emphasize that the basis {€7} is

taken in the tangent space T, Sp?", then we may write &7(z) instead of €7. The

derivation formulae of the bundle R (T'Sp>") are |

w €eg, dejzw}geg

(5.5)
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while the 1-forms w® and w? satisfy the conditions of the complete integrability

Kdw® 2P Nk, dwF" =w)nwšb.

Whatever “point” of the principal frame bundle {z; é€7(z)} can always be

defined by means of the local coordinates. For every point z € Sp?" there exists

a neighbourhood I/ C Sp?™ which is diffeomorphic with a certain neighbourhood
of the space IR?". Therefore there exist coordinate functions =/ by means of which

we can find coordinates 2/() for the point z. These create a section of a basis field

{axis} into the neighbourhood 71 (I/). Every basis field &; can be expressed by it:

er — 37?52"5‘- At every point z a second-order matrix||z7 (z)| € GL(2m, IR) will

appear. Thus, every frame field {z; &/} € U x 7~ 1(U) is determined by the help
of coordinates 2! and z7. Here the 1-forms w! and w¥ are expressed linearly in

accordance with the differentials dz! and dz .
Every symplectic submanifold M?™ C Sp?" distinguishes a subbundle

adapted to it in a natural way from the principal bundle R(7'Sp?"). Let us recall

that in Section 2 of this paper the frames {z; €;, €,} are adapted to the symplectic

submanifold in such a way that z € M?™ and €& € fiM2m
as well as

ea € ž:iM2m Then there arises an adapted subbundle of frames of the principal
bundle 7 : R(TSp?”*) — Sp2”, with a basic manifold M2” and with a structural

group GL(2m, IR) + GL(2(n —m), IR). The last is a subgroup of the group

GL(2n, IR). Its elements appear in the form

A; 0

0 4A3|

where A; € GL(2m,R) and As € GL(2(n —m), IR). In case of the adapted

frame fields dZ € iM2m or w® = 0. The last has its differential equations
which determine the symplectic submanifold M?™. Actually, it is necessary to

give yet initial conditions in the form of an initial frame {z?; é§°), é(ao)} from

which, as a result of the motion of the frame, a principal bundle of adapted frames

arises. At the same time, the motion of the starting point z of the adapted frame,

beginning from the point z:°, describes the symplectic submanifoldM?™. So, as the

starting condition allows us to choose freely the point z°, the submanifold M?™

may describe any part of the symplectic space Sp?”. In order to have a solution

for the equation system w® = 0, there must hold the conditions of the complete
integrability w* = hfiw?®, where h{i = h;. Consequently, the submanifold M2m

may be considered a solution of the differential eguations

wh =oy wh=hiw’ =O.

More precisely, the first equation gives the symplectic submanifold M?™ and,

together with the others, the principal bundle of the adapted frames. In summary,
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in order to get a symplectic submanifold there needs to be given a 2m-dimen-

sional symplectic subspace T}, at each point 2 € Sp?". The symplectic vector space

_ij; determined tš/ that su—>bspace determines uniguely the orthogonal complement

T-+. The field T':= £ Tr]zx € Sp*”) “envelopes” a symplectic submanifold if

the conditions of the complete integrability are satisfied, i.e. if there is given a

symmetric bilinear mapping (the second fundamental form),

_fi
p; ’_Z—:)X I_")—> T‘L,

A e
9 : AAD : :

wt_l_e)re T_) := {T,"-|z € Sp™}. This construction will be determined by the triplet

(Sp*", T,h).

o . n ra . ,
Definition 13. The triplet (Sp*", T,hy is the fundamental triplet of the symplectic
vector space.

_)ln Elše following, at each point z € Sp?”* the fundamental triplet

b(_a;)} will be pr_o)vided with a freely chosen adapted frame {z; €;, €,}
where e; € T, and &, iT;-. There will appear triplets of the adapted frames; let

us denote their set by {Sp*", R(T%), h(z)}.

Definition 14. The set

(Sp?, R(T), h) == {(Sp™, R(T%), h(z))|z € Sp?™}

will be called the field of the framed fundamental triplets.

Summing up, in order to give a symplectic submanifold M?™, it is necessary
to present the field of triplets framed into it. The symplectic submanifold M2™

“envelopes” the principal bundle of the adapted frames which is derived from the

differential equations
wY ==0 wz hõsw* =0

The free choice of the initial conditions {zY; é’i(o), é’a(o)} allows a symplectic
submanifold M?™ to be placed in the symplectic space anywhere.

If the second fundamental form (2 h satisfies the condition

h3;RY: + hERYy — Wi RS, =0

where szst and Ržst are given by Egs. (3.10), then the system (5.6) determines a

semiparallel symplectic submanifold.

Theorem 6. Eachpoint z° € M?™ ofa semiparallel symplectic submanifoldM*™

passes a parallel symplectic manifold M having at that point a second-order

tangency with a semiparallel symplectic submanifold.

(5.6)

(5.7)
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Proof. Let us consider a semiparallel symplectic submanifold M?™. Thus, we

shall have a field of framed fundamental triplets {S?Q”,R(T), h}, whereby the

second fundamental form satisfies the relation (5.7). Let the initial condition

(7; é’i(o), é’ofo)}, determining the symplectic submanifold M?™, be taken at the

point 20 € M?™. Let us clarify whether, by using the same framed fundamental

triplet and the same initial condition, there exists a parallel symplectic submanifold.

For this purpose we have to construct a system type (5.5), and add to it the condition

of the parallelism th?‘j = (). Then,

wr =O, w+hZw’ =2O,

dhg; — hw? — h&ws + hw§ = 0.

The system of equations has a solution if the conditions of the complete
integrability are satisfied. For this purpose, we pass the exterior differentiation

of the left sides of Egs. (5.8), and also use them as a whole. We obtain

dw® = w' Awf = hfw' Aw? =O,

d(w2* — h&w®) = —(dhs; — h%wf — h¥w? + Rws) Aw! =O,

d(VhE) = h3,QY + hQY — h 1.0% = 0.

Here we also took account of the relations hf‘j = h;",i, Q{ = RfsthAwt, Dž =

Rž44° Aw*, and (3.8). Thus, there exists a parallel symplectic submanifold passing
the point z° and satisfying the initial condition {z°; é’i(o), é'CSO)}.

Because of the common initial condition {z°; é’i(o), é’ofo)} of the submanifolds

M?™ and MT°™ the second principal forms also coincide at the point 2°. Thus we

get

T oM M

(1)

10
2m

TJ_

Z—-

xoM2m

°

-

S

=z -+
sppan{ém)}an{h

|

n[h„—(zo);
o

.

— (1) |
Ta;%MZm

From the last equation we have

— —
(UToM27 = z9+ (Tr,o M2" + Ü TSM2)

> — —— ——

=39+ (TM + O TEM™) = OTLI™,
Thus, the submanifolds M?™ and M°™ have the second-order tangency at the

point z°. O

Theorem 7. Every semiparallel symplectic submanifold M?™, which is not

parallel, is a second-order envelope to an assemblage of 2m-dimensional parallel
symplectic submanifolds.

Proof. We apply the concluding theorem to a semiparallel submanifold in case of

each point z°. O

S
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SÜMPLEKTILISE RUUMI PARALLEELSED JA
POOLPARALLEELSED SÜMPLEKTILISED ALAMMUUTKONNAD

Aivo PARRING

Paralleelseid ja poolparalleelseid alammuutkondi eukleidilises ja konstantse

koverusega ruumis on uurinud mitmed autorid (J. Vilms [!], D. Ferus [?3],
U. Lumiste [*] jt.). Osutub, et samasuguseid probleeme vdib kisitleda siimp-
lektilises ruumis asuva alammuutkonna puhul. Selles artiklis on dra toodud

vajalikud tulemused stimplektilise ruumi enda kohta, kirjeldatud siimplektilist
alammuutkonda, antud paralleelse siimplektilise alammuutkonna mdiste ja ise-

loomustatud poolparalleelset stimplektilist alammuutkonda. Oluliseks tuleb pidada
artiklis tOestatud tulemust, et poolparalleelne siimplektiline alammuutkond, mis

ei ole paralleelne siimplektiline alammuutkond, on paralleelsete siimplektiliste
alammuutkondade parve teist jairku mahkija.
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