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1. Two particular cases
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Abstract. 2-Semiparallel surfaces are introduced as surfaces satisfying the integrability
condition of the differential system, which characterizes the 2-parallel surfaces, i.e. such

surfaces whose third fundamental form VA is parallel. The latter have been classified by the

second author. Now our aim is to classify the 2-semiparallel surfaces in space forms. As the

first step this is done for two particular cases. It is shown that for these cases, in addition to

surfaces with flat V, only those surfaces can occur which are either parallel (i.e. with Vh = 0),
or have vanishing Gaussian curvature (i.e. flat V) with some additional condition.

Key words: parallel surfaces, semiparallel surfaces, 2-semiparallelsurfaces.

1. INTRODUCTION

In the last 15 years the submanifolds, whose fundamental forms are parallel
with respect to the van der Waerden—Bortolotti connection V, have been studied

intensively in space forms N"(c) of curvature c (in particular, in Euclidean spaces,

by ¢ = 0). They are characterized by Vh = 0, Ü(Üh) = 0, etc., where h is the

second fundamental form, Vh is the third fundamental form, etc. (see, e.o ).
In this study also more general submanifolds are investigated, which satisfy the

integrability conditions Roh = 0, Ro(Vh) = 0, etc. of these differential systems.
They are called semiparallel, 2-semiparallel, etc. submanifolds (cf. [l74]).

The semiparallel surfaces (i.e. two-dimensional submanifolds) in Euclidean

spaces are classified in [°] (see also ['], where a generalization is given for surfaces

in space forms).
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Theorem 1 (see ['°]). A semiparallel surface M? in a space form N™(c) is either

(1) a totally geodesic or totally umbilical surface,
(i) a surface withflat V, or

(iil) a surface with isotropic points only, whose mean curvature vector H and

Gaussian curvature K are connected by H> = 3K — c (here H> = (H, H)).

The parallel submanifolds (i.e. satisfying Vh = 0) in Euclidean spaces are

classified in terms of symmetric R-spaces and their standard immersions in [°].
For surfaces in space forms this can be specified as follows.

Theorem 2 (see [']). A parallel M? in N™(c) is either

(1’) a totally geodesic or totally umbilical surface,
(11”) a product of two parallel curves, or

(111°) a Veronese surface or its open part.

According to [7], every semiparallel submanifold in a space form is a second-

order envelope of the parallel ones. The semiparallel surfaces M? in N"(c) of

the classes (i), (ii), and (iii) of Theorem 1 are the second-order envelopes of

parallel surfaces of the classes, correspondingly (i’), (ii’), (iii’) of Theorem 2.

Here the parallel curves are plane curves of constant curvature, but a Veronese

surface is a second standard immersion of a sphere 5%(a?) = N?(a?) into a sphere
5%(3a%) = N°(3a?), where 3a® > c.

The 2-parallel surfaces in Euclidean spaces are classified in [®] (see also [!],
where a generalization is given for surfaces in space forms).

Theorem 3 (see [''B]). The 2-parallel surface M? in N"(c) has flat V and is either

(i*) a product of 2-parallel or parallel curves, at least one of them is

2-parallel, or

(ii*) a surface in a 3-dimensional totally umbilical N3(c*), generated by the

geodesic lines ofN3(c*) going in directions ofbinormals ofa curve in N3(c*) with

geodesic curvature kg = as and with constant geodesic torsion K, = ++/c*.

Here the last surface is often called the B-scroll of this curve, following [°].
The 2-parallel curves are classified in ['] and [3]: such a curve is either a parallel
one, or a Cornu spiral (clothoid) on a totally geodesic or totally umbilical surface

of N™(c). Note that for the case ¢ = 0 these curves reveal again as the curves

with harmonic mean curvature vector in [l°]. (Note also that the last sentence of

Theorem 3 corrects a misprint concerning the value of «, in the corresponding
theorem of [l].) ;

In the present paper a classification of non-totally geodesic and non-totally
umbilical 2-semiparallel surfaces is given in a space form for two particular cases:

for surfaces with a flat normal connection V- and for pointwise isotropic surfaces.

The results are formulated below in Theorem 5.
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2. SEMIPARALLEL AND 2-SEMIPARALLEL SUBMANIFOLDS

Let M™ be an m-dimensional submanifold in an n-dimensional space form

N™(c) of constant curvature c. For the element of the orthonormal frame bundle

O(N™(c)), i.e. for a moving frame {z,er} € O(N"(c)), there hold

dz=eqw!, der = ejwi —zew!, w‘l]—l—w;-] =O,

de —w7 A I J
w dwy =

K 7
73 T W] AwK+cmAwl,

where I, J, K run {1,...,n} and a point z € N"(c) is identified with its radius

vector in N°(0) = E”, or in E""L. D N"(chif ¢ > 0, or in ,E”**! 5 NU) if

c < 0 (see, e.g., [l]).
For the element of the subbundle O(M™,N"(c)) adapted to M™ frames

{z,e;,eq} (see [11]) there hold

so e,ET>MY; i€(1,...,m),

a€{m+l,..,n},

thus w® = 0. This implies w* A w® = 0, and due to Cartan’s lemma

A
—

LA,i A
—

LA

Now exterior differentiation and the same lemma give

VhE
=

B, ok

where V is the covariant differential operator of the van der Waerden—Bortolotti
connection (see [1?]), so that

Vhe = dhg — hijwf — hgwk + hiws.
In the same manner (2) yields

V

hb k
—

k
Vhip A =ho -Aot +KO

where

O = dw! —wf Aw == h%" Aw' = RLwF AW,
A

OL = dw" - wYA wš =- z hf‘[khfiiwk Awt = Ržklwk A Wt
i

are the curvature 2-forms of V. It is obvious that Q; + Dž = 0, O% + nž = 0.

(1)

(2)

(3)

(4)

(5)

(6)
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The second and the third fundamental forms of M™ are respectively symmetric
T+ M™-valued forms

h : (X,Y) > h X'Y!eO,
Vh:(X,Y,Z) r hõ, X'Y'Z*ea,

where X = X'e;, ¥ =¥lej 7 = 77¢).
In view of (4)—(6), due to Cartan’s lemma

Vht, =hijk
— h'ijklwla (7)

where, denoting hy, = Whgj, .h?jkl = ÜlÜkhfš, the latter is not symmetric with

respect of k and [, because (4) gives

vÄÄv

a k [ViVihgwk Aw! = h0?+ho — KÄO
shortly

—
>

ViVighi; = (R ij,kl'

A submanifoldM™ in N"(c) is called parallel (or extrinsically symmetric) if

Ükh?j = 0, 2-parallel if Vl@khf‘j = 0, semiparallel if (R o h)ij,kl = 0, and

2-semiparallel if (R o Üh)fjk,pq = 0.
Note that here the first two conditions are differential systems, but the last

two ones are their integrability conditions and are purely algebraic systems on

the components of h and Vh. Here the condition R oh = 0 involves only the

components of h and guarantees the full symmetry of the components of hiski O

the fourth fundamental form V2h = V(Vh) with respect to their lower indices.

The 2-semiparallelity condition R o VA = ( in a more detailed form is

a l lR+hiA+FA — h G=o
and guarantees the symmetry of the components hijkpq Of the fifth fundamental

form V3h = V(V?2h) with respect to p, g (see [l:34]).

Proposition 4. Every parallel submanifold M™ and every submanifold M™ with

flat V in N™(c) are both 2-semiparallel.

Proof. Parallelity of M™ means that h%’k = thg;. = 0; Alatness of V means that

Qf = Dž = 0. In both these cases (8) 1s trivially satisfied.

Remark 1. The formulae (1)-(3) and (7) show that at a fixed point x € M™,

where all w? turn into zero and thus de, = egwž,
for the vectors h;; = h%ea and

hijr = h%kea there hold

dhij = hkjwf + hiku);-c,

dhijk = hyjrws + hizkwg- + hijttok.

(8)
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Hence span{h;;} and span{h;;j} are both invariant subspaces of T-MPat a

fixed point z € M™. Here span{h;;} coincides with the so-called first normal

subspace Na(;l)M7 atx, and span{h;;;}complements the first osculating subspace

Oš;l)M7-T.MY S N„„gl)M" to the second osculating subspace (95;2)M.

3. SUBMANIFOLDS OF DIMENSION TWO (SURFACES)

For a surface M? in N"(c) the formulae (2) and (3) give

A
—dh%% = (hsy — h§)wi — hfzwžš + hyw' +hi

dth — —2]7[?2(.0% — hšng + h:?22ü)l + h%22ü)2.

It is seen that span{3(hll —ha2), hl2}, where, recall, h;; = hiieq, is at each

point z € M? an invariant subspace I, ]2 of N\"M? = span{hi;}, and that

H = š(hu + h22) is an invariant vector — the mean curvature vector. Here H,

applied from z, ends at the centre of the normal curvature indicatrix (ellipse or

its degenerated form), whose plane (possibly degenerated) is determined by I,M2,
but the tangent frame part {e;, e 5 } can be at each z chosen so that š(hu — h 22) and

hl2 go in the directions of the symmetry axes of the indicatrix. Then the normal

frame part {es, ..., e,} can be adapted further, according to E. Cartan, so that

%(hll — h22) = aes, hl2 = b64, H = e 3 + ,864 + YES,

a2>b2o, y2O
(12)

(see, e.g., [']), and implies

h’élll =P, h%z =b, hšz =B,

hii=vy, h=o, hd=7,

hfj = 0, for p € {6,...,n}, if n > 6. The only essential curvature 2-forms are

% = --Kw Aw? and Qf = —2abw! A w?, where K = ¢ + H?
— a? — b?

is the Gaussian curvature; all other Qg ,
Qg are zero except, perhaps, Q% = —D%,

O) = —Dš.

The system (9)—(11) gives for this Cartan’s frame

(9)

(10)

(11)



d(a + a) — fws — yw§ = hijw' + hjHw?, (13)
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BRI ISGESS w1! + hdnst?
awi — bws= hjjyw + hijz9w",

d(a —a) — Bws — Yw3 = higw' + hixpw?,

dpß — 2bw? + (@ + a)ws — ywi = iy w' + hijpw?,
db =

hi
b= hijw'+hijpw?,

dB + 2bw% +(a — a)wš — 'Ywž = h%szl + hš22w2,

dy + (a + a)wj + fwi = hiw' + hijaw*,
5. 15 1

bwy = hijow™ + h?szZ,

d’)’ + (Of — G)Wš + ,Bwž = hšg:zwl + hš22w2.
Here relations (16) and (18) with d 3 imply

Zb‘*}% — awš = %(%22 = h%n)wl + %(h%m — h%m)wl-

For w? and wj there is a linear system with the determinant 2(a? —b?). Therefore

two principal cases are to be considered:

()a>b>o and (I]))a=b2>o.

4. SEMIPARALLEL SURFACES OF TWO PARTICULAR CASES

The present paper deals with semiparallel surfaces M? in N™(c) of the

following two particular cases:

(I*)b=o, and (IN)a=b>o,a=fB=o.

Geometrically (I*) is the case of flat normal connection, characterized by 92 = 0,
but (II*) is the case of pointwise isotropic surface, according to O'*Neill [3],
characterized by the property that the normal curvature ellipse is a circle at each

point z € M?, which in orthogonal projection on the plane of this circle maps into

the centre of the latter.

4.1. The particular case (I*). In this case, when the indicatrix is a line

segment, the frame vector e 4 remains undefined, together with e5, but they can

be taken now so that v = 0. After that the index 5 must be joined to {6,...,n}; let

further¢ € {5, ..., n}, so there holds hžj =

Like in the principal case (I), here da, w?, and w 3 can be expressed as some

linear combinations of w! and w?. Let there be

da = Ajw', w% = [ w§ =

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)



145

From (14) (where, recall, now b = 0) it follows that h:{’m = 2al'l, hš22 = 2al'9;

further (13) and (15) yield 2da = (h3;; — hioo)w!' + (hil2 — hžoo)w*, so that

Similarly, from (17) now ht = htyy = 0, thus from (22) hjj, = aßi,

Due toi, = b = 0 from (2) and (3) hf;y = higy = 0, thus

(e a)ws + Bwi = hinw'

(a — a)wš + Bwž = hš22w2
The 2-semiparallelity condition (8) gives due to Qg = 0 that

BRIe Ly (2h%,-hh) =O, (RS IR £ 0 3h%,%=0.

These relations for &« = 4 reduce to aBIK = aB3sK = 0, but fora = 3 to

6aFIK = (4aF2 — 2AI — 2aF2)K = (2aFl — 2A2 — 4aFI)K = GGFQK = 0.

Here are three subcases:

M) K =O, -
)a =|o,

(Iš)aK;éO,Bl———Bg':Pl=F2=Al=A2=o.
In subcase (I}) also Q 2 = 0, so that V is flat. In subcase (I5 whena = b = 0,

the surface is totally umbilical (in particular, geodesic), thus parallel.
In subcase (I3 hžj = hžjk =O, but from (23) due to hšm = hž22 = 0 also

hžll = hšzz- As a result h7;, = 0 and the surface is a parallel one. But, according
to Theorem 2, there are no parallel surfaces with a > 0, b = 0. Therefore subcase

(I3 is impossible.

4.2. The particular case (IT*). For this case from (13)—(22)

da = 5(h3;; — hdp)w! + 3(h315 — hd)w? = hijpw! + hipw?,

—ywi = ž (hihlly + htza)w' + 3(hil2 + hžoa)w*,

aw 3 = š(hšu — higa)w' + š(hšlz — hiaa)w*,

a(2w] — w3) = hijpw' + hipw? = š(hlllm — hin)we' + %(h%fzz — hip)w?,

—ywi = s(hly + higg)w! + s(hlp + hogo)w?, awf = hjpw! 4+ Aipw?,

dy = s(h3y; + hig)w! + s(h 15 + h3pp)w?,

butin Q 2 = —Kw! Aw? now K = ¢+ v — 2a?, and Q 3 = —2a%w! A w2.

(23)
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Denoting here

da = A;w', wš = Biw', 2w- wš =Cw, w=Dw', dy=Gw',

one can €xpress

hilp = aCi = —yßl — Al, hi =aCy = —vßs + Ay,

hin = —yßi+ Al, hjy = —7Bs —A,

hijp =AI = —yDy — aCy, hisy =Ay = —yDl + aCy,

hiy = —yDl — aCI, hi = —yD3 + aCy,

K 312 = aD; = Ga+aßa, hi =aDy =Gy —abßy,

h3l = Gl+aßi, hiy =Ga —aßs.

The semiparallelity condition (8) gives due to Dž = —Dš = Dž = —Dž = Qg = 0,

where £ and 7 run (5,...,n) ifn > 5, that

hoN+hii%3=o, —3h%y»% + hj993 =lO,

(2hion —B3) T hills =O, (hips ~25 )0 + hitl —0'

ShilliR=0" 80TLTy

(2h%22 — hšn)“% — hšlZDš =O, (hš22 — 2h£1112)9% — hš229š =O,

3h§129% =O, 3h§229% =O, (Zhšzz — hšu)nš =O, (hš22 — 2hžl2)9š =O.

If here Q 2 # 0, i.e. K # 0, then from (28) hfjk = 0; in particular, for£ = 5

this gives Dj = D> = G 1 = Gy3 = By =By = Bise

hii2 = aC1 S —A 1 ho2 2D aC»
=

=
A2 h 111 — A

1
h3

222 —A 2,

i g
=

= 1 — —aC1
h 4

122
BU 5

= aC1 hi 1
iy —aC'1 h 4

22 2
= aC2.

Now (26) yield A; (3K +2a?) = 0, A3(3K +2a?) = 0. Ifhere 3K +2a? # 0,
then A; = 0, but from (29), (30) also C; = 0; thus hf’jk = hžjk = 0. If here

3K + 2a% = 0, then a? = ž(c + v2) = const, and again A; = 0 together with

Ci = 0.

Hence 2 # 0 leads here to a parallel surface. Here only the case (iii’) of

Theorem 2 can occur when v + ¢ = 3a? (see [!]). The surface is a Veronese

surface or its open part.

(24)

L)

(26)

(27)

(28)

29)

(30)
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Let now 02 = 0, ie. K =g+ 52 =2¢° = 0. This yields G; = 24;,
but (25) gives A; = 0, thus G; = 0 and therefore a = const and v = const.

Further, (26) lead to vB; = 0, and (27) to C; = 0, but (24) to yD; = 0. Therefore

hi;y, = hiy, = 0 and thus 207 — w 3 = 0, yw§ = ywi = 0.

If v # 0, then also hžjk = 0; hence spanfh;j> (see Remark 1) reduces to

span—[hfjkep], and therefore is orthogonal to NDM = span{h;;}, which now

coincides with span{es,e4,es}. Moreover, wy = wj = 0. Butif y = 0 (then

c = 202 > 0), there must be D; = By, Dy = —B;. Here span{h;;;} reduces

to span{hfjkeg}, and therefore is orthogonal to NPM 2 = span{h;;} which

coincides now with I,M?
= span{es, e4}. Moreover, da = dy = 2w} — w 3 = 0

are complemented with

wš = Biw' + ngz, wž = Bow' — Byw?.

In both cases the 2-semiparallelity condition (28) does not give any restrictions for

hii (0 € {6,...,n} ifn > 6).
As a result the following theorem can be formulated.

Theorem 5. A surface M? with a flat normal connection V+ in N™(c) is

2-semiparallel ifand only if it either

(i) has flat V (i.e. also vanishing Gaussian curvature), or

(i1 is a parallel one (except the Veronese surface).
If a 2-semiparallel surface M? in N™(c) ispointwise isotropic and has non-flat

V, then it is constant isotropic and is either

(i*) a parallel one, which coincides with a Veronese surface (or with its open

part), or

(ii*) locally Euclidean (i.e. with vanishing Gaussian curvature), and its

span{h;;i} is orthogonal to the first normal subspace Nél)M 2
= spanfhi;)at

every point z € M?.

Here only the case (ii*) gives a 2-semiparallel surface M? which is nontrivial

in the sense that it differs from the surfaces characterized by Proposition 4. Its

existence and properties need complementary investigation. This will be done in a

forthcoming paper under the same title, as part 2 of the present paper.
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2-SEMIPARALLEELSED PINNAD RUUMIVORMIDES

1. Kaks erijuhtu

Kadri ARSLAN, Ulo LUMISTE, Cengizhan MURATHAN ja Cihan OZGUR

2-semiparalleelsed pinnad on defineeritud kui sellised, mis rahuldavad

2-paralleelseid pindu iseloomustavate diferentsiaalvorrandisiisteemide integree-
ruvustingimusi. Nende klassifitseerimine on Idbi viidud kahel erijuhul, mis on

midratud lisatingimustega: 1) normaalseostus V- peab olema kdverusvaba voi

2) pind peab olema isotroopne ja seostus V mitte-kdverusvaba. On niidatud, et

esimesel erijuhul saadakse kas (i) pinnad kdverusvaba seostusega V v&i (ii) paral-
leelsed pinnad, teisel erijuhul aga kas (i*) paralleelsed pinnad (tdpsemalt Veronese

pinnad) vdi (ii*) lokaalselt eukleidilised pinnad iihe lisatingimusega span{h;;}
kohta.
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