
Proc. Estonian Acad. Sci. Phys. Math., 1998, 47, 3, 229-242

229

DIVERSORS AND HIGHER-ORDER FUNDAMENTAL

SOLUTIONS OF COVARIANT WAVE EQUATIONS

Tõnu LAAS and Romi MANKIN

Department of Theoretical Physics, Tallinn Pedagogical University, Narva mnt. 25, EE-0001

Tallinn, Estonia; e-mail: tony@lin2.tpu.ee

Received 26 November 1997, in revised form 2 March 1998

Abstract. A connection of higher-order fundamental solutions with the concept of diversors

is discussed. Starting from the Hadamard solution, the construction of the local higher-order
fundamental solutions of the covariant scalar wave equation on a causal domain is considered.

A simple recurrent algorithm for calculating such solutions is found.
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1. INTRODUCTION

It has been shown that if wave equations satisfy the Huygens principle [}?],
then the solutions include wave families of arbitrary order (Giinther ['], Mankin

[3]). There is a deep analogy between the wave families of different orders and

the multipole solutions widely applied in the Minkowski space. For example,
the dipole radiation corresponds to the wave family of the first order. As the

multipole expansion of the fields in the Minkowski space greatly simplifies their

analysis (especially in the wave zone), a similar expansion could be applied in

the covariant form on a curved space-time, appropriately extending the concept of

the wave families to the case of a violation of Huygens’ principle. Here it would

be useful to know the so-called higher-order fundamental solutions. These are

the distributions that satisfy the wave equation which has the corresponding order

covariant derivatives of the Dirac delta function on theright-hand side. The higher-
order fundamental solutions in the particular case where the Huygens principle is

valid are closely connected with the concept of diversors (Asgeirsson [*], Giinther

['], Mankin [3]) which can be obtained from the fundamental solution by a simple

https://doi.org/10.3176/phys.math.1998.3.07

https://doi.org/10.3176/phys.math.1998.3.07


230

recurrent algorithm (Mankin [°]). The elaboration of a corresponding general

algorithm for higher-order fundamental solutions would considerably reduce the

extent of calculations.

The theory of the classical fundamental solutions on a curved space-time is

given in [%7]. However, the problem of finding the higher-order fundamental

solutions is still open; our paper is designed as the first step in this direction.

We deal with the scalar wave equation which is a general second-order linear

hyperbolic differential equation of n = 2s + 2 (even) independent variables. Such

an equation can be written in a coordinate invariant form as

Lu :=
g :"ViViu+a'Viu+cu = f

where ¢%* are the contravariant components of the metric tensor of a pseudo-
Riemannian space M of the signature (+, —,...,—) and V denotes the covariant

derivative with respect to theLevi-Civita (metric) connection, the Latin indices will

run from 1 to n. The coefficients g**, a*, ¢ are assumed to be of class C™°.

In order to carry out the construction of u, we have to restrict to a causal domain

Q C M (see [l'"]). The inhomogeneous term f in general is a distribution, i.e.

f € D'(2). Theclassical (i.e. zero-orderin terms of our terminology) fundamental

solution G(+,y) of Eq. (1) satisfies

LG('ay) — õ('7y)7

where (-, y) is the Dirac delta distribution, defined by (4(-,y), #(-)) := ¢(y) for

all ¢ € CF°(Q).
We shall also consider the surface distributions ögf) (o~ ), wee B L 3. o

defined by

() 2
O

LOO9O = tim (~50)" [o) lot

forall p € CP(Q) ifp < s—l,and ¢ € CF(Q\{y}) ifu > s, where o(z,y) is

the square of the geodesic distance between the points z and y, u,(z) is the Leray
form, for which

do(xz,y) A uo(z) = p(z),

11() being an invariant volume element, and C£(y) = {z;z € D*(y),o(z,y) = ¢,

e > o}. The sets D*(y) denote the respective interiors of the future- and past-
directed characteristic conoids C*(y). |

The Heaviside O+(0(-,y)) distributions are defined by

O900 = [Houa)

(1)

(2)

3)

4)

(5)
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where J*(y) := D¥(y) U CE(y).
The relevant properties of the distributions õ(f) (0) and O4(0) are given in [°].

In particular, if supp ¢ C Q\{y}, then the distributions õ(i”) (o) and © (o) have

the following properties:

o(+y) 04(a() = —u 0¥ V(a(y)),
(o( ) 6P(0(y)) = (~1)Pu 6D (0(y), n=0,1,2,...;

and for every vector field A with components A* € C*(Q):

Ai() Vi 0x(0(,1)) = (ATC)Vio()5E (o(-,)),

A Vi S (a(,) = (Ai() Vio (1)) 68V (a(-y)).

It can be shown that the fundamental solutions G* are of the form [l7]

50,53

670)+Vo) Ol )]1
Uu('ay =

Thebiscalars U, € C*°(22xQ),v =0,1,2, ..., s—l, satisfy the transport equations

Via('7y) v'LUO(ay) + M(ay) UO('7y) —O7 UO(y’ y) = 1)

; 1
VzO'(-,y) V’LUV(ay) + (M(,y) + 21/) Ul/(ay) — —'žLUI/—l('ay)a

where

Loi()Vso(sy) - n
SViVio(,y) +3a()Vio(y) -mM(-,y) := žV Via(-,y)

5

and the conditions that each U,(z,y) remains bounded when z —y. The

biscalar V' € C*®°(Q x ), called the tail term, is determined by the characteristic

Cauchy problem. In the regions D*(y) the function V satisfies the homogeneous
differential equation

LV(7 y) — 07

which is completed by characteristic initial conditions

Vio(z,y) ViV (z,9) + (M(z,3) +25) V(2,y) = ~5LU 1(z,9), Vz € C*(y)

Here all differential operators act with respect to z.

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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We shall discuss only G, as the corresponding results deduced for G~ can then

be derived by reversing the time orientation on 2.

A set Qg C is called past-compact if J~ (z) N Q is compact (or empty) for

all z € Q. We shall denote the class of distributions in D’(2) with past-compact

supports by ’D'+(Q). The following theorem [] is of intrinsic importance.

Theorem 1. If f € D't (Q), then the wave equation (1) has a unique solution

u € D'T(Q), given by

(u, ) = (f,(GT, 2))

and supp u C JT(supp f)

We define a diversor of L as a distribution

H

TÖ) =3"B,() 647 (o5y)) € DN(3))
v=o

with B,(-,y) € C®(Q\{y}) such that LT® = 0 (see [l*°]). If By # 0 on

C*(y), then the distribution 7(*) is called a diversor of the order L.

The propagator of geodetic parallel displacement is defined as a bivector field

g = g(z, y) with components gž, = gžl (z,y), which satisfies, in local coordinates,
the differential equations and initial conditions

Viovi A
=

”

9y >O, gž (z,2) = õžl

where V; act with respect to = and indices 5 relate to a point y.

2. A SPECIAL TYPE OF SOLUTIONS

In this section we shall consider a special type of solutions

GW(~y) = _L[EH:W W o
278

;

v=

v
('ay)s(“—")

4

+ (0('7?/))
|.

(u+l 5¥) B 4U(ay))]+

which satisfy

LGM(.,y) =0 on Q\{y},

and will play an important role in the theory of the higher-order fundamental

solutions. First we shall derive some auxiliary resuits.

(14)

(15)

(16)

(17)

(18)
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Let £ = €(0) C 2, 0 € [a,b], be a smooth curve and 9 := ;,%, II :=

do(z,£(0)). We define a sequence of functions

KE(-,£(0)) == o(-,&(0)) ME(-,£(0)) + (p+l —v)M,_,(-,£(8), p=>s,

where the functions M’ € C*°(Q x Q) admit the recursive representations

MoUMPAME p>s, v=s-1,...,4

M=oforv<s-11, . v>pnor p<s—L

Proposition 1. The functions K% (-,£(0)) obey the recursion system

b WK LI g v=a= b,

together with

Ks-—l — Ms 1

s—l
— g

2

Si, Ki=OKY)p—l

and Kl = Oforv < s —l, v > poru < s — 1. Furthermore, the following
relations hold:

u

» KÜ(sE(0)) S Õ(o(E(0))) =O.

v=s—l

Proof. The proof of the relations (21), (22) follows immediately from (19) and

from (20). Inserting (19) into (23) and using (6) we obtain identity. This proves

the assertion (23).

Proposition 2. Let G (-, £(0)) € D'(Q\{£(o)}) be a distribution of the form
(17) with W(-,£(0)) € C®(Q\{&(o)}). If the functions W[(-,£(0)) obey the

recursion system

VioViWy+(M+n—4—2u)Wh=O,

. 1
VieViWh + (M +n—4—-2u+2O)WH = —§[LWs_l -Ki

' v=1,..,u+1,

and the additional condition

(20) 20

(25)

(19)

(21)

(22)

(23)

(24)
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then G is a solution of the equation

LGM(.,£(O)) =0 on Q\{¢(6)}.

Proof. In order to prove (27) we use the relations V:o'V;0 = 40, (6), (7), and (11).
A simple computation shows that

o LGW =
2" 1[ |ž Vi
2

WEh+(M+n—-4-2

-

u + 2v) WYF

- s—l] õgfl.+l—u)( )

v

+- o)+ (LW W =(L Z 1)@+(0), with FLW 1 =O.

According to (24)—(26) we have

H

LG = N KLSL(0)
v=s—l

and so it follows from (23) that LG(*) = 0. The proof is complete.

Corollary 1. Ifu = s—l, then the coefficients U, andV' of thefundamental solution

G satisfy Egs. (24)—(26), where W5l =U,, v =0,....,s —1, and W 1 = V.

Moreover,thefunctions K*~1(-,£(0)) and M3~(-,£(0)) are given by

K5l = oM} =2V'oV,;V + 2(M + 25)V + LU,_;.

Proof. Ifu= s—landv = 0,...,s —1, then Egs. (9), (10) and Egs. (24), (25)
coincide. Obviously, Egs. (12) and (26) for V = Wž—l also coincide. To prove

(25) for v = s, we note that the function V can be expressed as

V=V+dV,

where V, Vy € C®(Q x Q) and the function Vp(-, £(8)) satisfies the equation [l]

; 1
VioViWa + (M + 25)W = -SLUs-1.

Substituting (29) into (25) with v = s, we obtain

K7l = 2[VioV,V + (M + 25)V] + LU,_l = 02[V'aV;V + (M + 2s + 4)V]

Hence Ms~l = 2[ViaV,;V + (M + 25 + 4)V] € C®(Q x Q), which completes
the proof. .

(27)

(28)

(29)
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Definition 1. Let a solution G of (18) be given in the form (17). If W 5 £0 on

C*+(y), then GW is called a solution of the order j of(18).

Proposition 3. Let a solution of the order A of (18) be given. [f the coefficients
W) € C®(Q x O) satisfy (24)426) for u = ), then GOt € D'(Q\{£(o)}) of
the form (17) with

W,),‘+l=H ÄW)+ow,v-l» V=o,. AX ag WA
AL =O, W 3

is the solution of the order X\ + 1 of (18). Moreover, thefunctions W)T1(-, £(0)) €

C(7 x Q) and satisfy (24)—(26) for p = X + 1.

Proof. Proposition 2 shows that GOt is the solution of (18) of the previously
considered type if W)*! satisfy (24)—~(26) for u = A + 1. First, we consider Egs.
(24) and (25) for u = A + 1. It follows from (30) and (11) that

LWL = TILW)| 4+ B[LW)_,] + 2W2_,OM + 2VlI)V;W2_,.

Now (Vo) V;II = 38[(V'o)V,0] = 211. In view of this, identity (30) therefore

becomes

(Vio)ViW2X*! + (M+n-4-2(l+l)+2v/)W2M!
= ll[(Vio)V;WX*+(M+n—-4—2X4+2v)W2]

+ 'AV1+(M+n-4-2X+2(v - 1))W)2]
~ (V'IDV;W)_, — W)_,OM.

Taking into account that Wf) and Wž—l satisfy (24)—(26) for u = A, one obtains

the identity

VioviWX! + (M+n-4-2(l+l)+2v)W2+!
1 1

=~ GULW-K]-WIa -KD

- IV WM.

Comparison with (31) and (21) shows that W)L, v = 0,..., A + 2, satisfy
(24), (25) for p = A + 1. We must finally consider Eq. (26) for 4 = X + 1. But

W3t = W},~ Hence LW3T; = B[LW},,] = 0. As we have just seen, this

implies that (26) holds for Wšiš By (30) it is obvious that WAt € C®(Q x Q),
and so the proposition is proved.

Theorem 2. Let {{;};>l be a sequence ofsmooth curves § = £(0) € , 0 € (a,b),
with £,(0) =y € Q, 0 € (a,b). Suppose that the distributions G® € D'(Q\{y})

(31)
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are given in the form (17), and that thefunctions W 4 (-,y) are recursively defined
by

WE(,y) = ILWET() + [OWH 16, €4(0))] o=o, V=o,.-,4+1;

Wiia(hy) :=0; W 2 (,y):=0; Wil(-,y) = V(,y);

W,s,_l(-,y) =l V=l 0% — ]

where U,V are the coefficients of the fundamental solutions (8) and 0 := %,
I1,(-,y) := [00(:,€.(0))] 6=o. Then the distributions GW for each p > s —1,
are solutions of(18) on Q\{y}. Moreover, there holds for v = 0

Wä = H„...HSU(), P 2 8.

Proof. lt follows from Corollary 1 that the fundamental solution Gt is such

a distribution for u= s —l. Now the assertion of the theorem follows from

Proposition 3 by mathematical induction with respect to .

Remark 1. Theorem 2 which has developed for the scalar case on a causal domain

(2 can be easily extended to tensor-valued distributions. Let y be a point of 2; a

tensor-valued distribution G is then a continuous linearmap ¢ — (G, ¢) of Cs°(€2)
into the (finite-dimensional) vector space of tensors of rank m at y. If (w,7) is a

coordinate chart at y, then each component of (G, ¢) is a(scalar-valued) distribution

(see [] for more details). The notation will be simplified by introducing tensor

multi-indices I(m) = (i1,...,%mn). The covariant differentiation will be denoted

by a semicolon for the point y only, e.g., Vy;f(z,y) = f.i(z,y).

Corollary 2. The tensor-valued distribution

(@)1 =

= [ž"j W
278

(W
2

)1(k) s() + V.;T(k) @+ (0)]

where k = p+ 1 — s and (W 5 (-,y)) I(k) are recursively determined by

(W)k) = 035, (WED)k1) + (Wffj)f(k—n;ik, v=_o,..,u

(W rk-1) = Vk)i Wra =0

(WZ_I)I(O) = Uy, VvV = 0, eSS TR 1,

is a solution of (18) on Q\{y}.

Proof. Since the sequence {£;};>l of smooth curves was arbitrary, the validity of

the assertion follows at once from Theorem 2.

(32)

(33)

(34)

(35)
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3. THE HIGHER-ORDER FUNDAMENTAL SOLUTIONS

Definition 2. A tensor-valued distribution (G(-,y)) )y € D(O) is called a kth-

orderfundamental solution of L with respect to (y,2) if on 2

LGy = WViV 5 (6(sy)-(L 9)é().

By Theorem 1, the differential operator L has a unique kth-order fundamental

solution with past-compact support. There is a forward kth-order fundamental

solution (G*(-,4))k) with supp (G*(-,))r(x) C JT (y), and

((G+('7 y))I(k)v d)()) — (G+(', y)7 Ö()),I(k)

for all ¢ € C§°(Q2).
Differentiation with respect to y can be performed in brackets (['], Ch. 11, §2).

Hence, there exist differential operators Dg(,”), v =0,...,5, of the general shape

v
ale!

DYWI(=) = > dyh(v, 2) 559(2)
|p|<k

with coefficients dg’g,)c’)’ € C®(Q x ), so that

((G+)l(k)a¢) — (G+7¢);I(k:)
s—l

= Z—;wš"“”)(a(-,y)),Dg")[qb]) + (04+(o(-)),DL4],

where p denotes multi-indices.

According to (6), (7), we have in the set Q\{y}

=

A(G)1 =

55 |2 (UL C)rwdt™ () +(V)iO (o()]
v=o

wherey=k+s —l.
We can complete the formula (39) by the computation of the tail term (V) )

and the term (Ug)rx).

Proposition 4. The tail term (V)() of the kth-orderfundamental solution of L is

given by

(36)

(37)

(38)

(39)
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Proof. Take y fixed, and suppose that supp ¢ C D™(y). Then

(G+(sy),0)) = / V(z,y) s(z) u(®),

and so it follows from (37) and (39) that

[V= V(@ 9)09] 8(0) sa) =0

for all $ € C3°(D*(y)). As (V)yk) and V,z(x) are continuous, this implies that

identity (40) is valid when z € D™ (y). It follows by continuity that (40) also holds

when z € J*(y). ;

Proposition 5. Let (Uä)1(k) be the coefficient of formula (39). Then

(U 9 1y = 0595 - - - 0 (5 9);i, Uo (- 9)-

Proof. If supp ¢ C Q\{y}, then it follows from (38) and (7) that

p—l

((G*)rk;9) = ž;lr—s [(Uoõf—l)(ff), b):10k) + Z((Üu)l(k)õ(u) (0), Y)
v=o

+ (V)r9Oo),),I=s-I+k, «
with smooth coefficients (U,(k) on Q\{y}.

In order to prove our proposition, we choose ¢ in the form

¢ =o"(-,y) ¥(-), ¥ € CP(RQ)

with y £ supp Y. Then we obtain from (42) and (6) that

(G) = 5 (V)@(0),0"9)
+[T()88 (0 %)), (- 2D ())sr k) )=o)

As #1687(0) = (=1)°~1(s —1)! 6% (0) and o*6¢™ (0) = O forI > s—l, it

follows that

(U 6 (0), o™(, 2)%) .1 (h) o=y
|

= (—l)kZšž—.l)?(UOÕgf—l) (0‘), Gs_ld;il eee O';ik'(,b)

= (-l)“u! (UO, - . - 04,60 (0), Y).

(41)

(42)

(43)
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On the other hand, we easily get from (39) and (43) that

(G Iwy, 8) = 2—7lr;[((V)l(k)@+(U),U“¢) + (-1)"u! ((Uff)z(k)õg?) (0), Y)].

By the uniqueness theorem we then obtain (41). The proof is complete.

Theorem 3. If the differential operator L does not have any diversor of the order

1 —1, then theforward fundamental solution of the order k = p— s +1 G (-, y)
of L can be calculated by means of Corollary 2, i.e.,

G = on(' y, )
-~

(’y) }.

Proof. 1t follows from (34), (35) and (39)—(41) that

G+ ('7y) =G(- y) + T® on MUk

where T®) is a diversor of the order I < p — 1 defined by (15). By Proposition 2

in [*], T® = oif ! < p — 1 and L admits no diversors of the order — 1. Hence

T® =0 for! < p —1, which completes the proof.

Remark 2. Let () be a linear differential operator of the order [ with the principal
symbol g and with the properties: () acts with respect to y € {2 C M, a null vector

§ € M, exists so that g(y, ) # 0. Itis a well-known fact that diversors of the order

[ ofL exist if and only if the tail term V (z, y) fulfills the condition

QV(z,y) =O, Vz € J*(y)

with Q of the type we have just considered [']. Hence, the existence of a diversor

of L is an exceptional case.

4. DISCUSSION AND APPLICATIONS

1) It has been shown that if the wave equation (1) satisfies the Huygens principle,
i.e. V = 0, then the tensor-valued distributions (34) are diversors of L of the order

u > s — 1. The problem of finding the higher-order 1 > s — 1 diversors in case

of a violation of the Huygens principle is open. However, in some special cases,

diversors of the higher order >s — 1 can be derived by means of the tensor-

valued distributions (34).

Example. In [°] the fundamental solutions for a scalar wave equation on

Robertson—Walker background space-times, with the metric

ds* = B°(2°)*"((d=")? — (dz!)? — (dz*)? — (dz3)?),

(44)
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where [ and y are constants, are evaluated explicitly. The tail term V of the

fundamental solution for a scalar field u satisfying the covariant wave equation

Lu =
¢**V;

I

9" V;Viu+ (6+§>Ru=f,
1

where R is the scalar curvature and ¢ = ————, takes the form
3y(l —y)

V(z,y) = -[R@ROI
From (45) it follows that

A¥(y)Vis = 2A(y) (0 Rw).V
for every vector A (y). Hence, the distribution

7O = 4(y)(&); - 7A') (nR()).G
is a first-order diversor of L. Moreover, the higher-order (1 > 1) diversors can be

obtained by means of the relations (30).

il) According to Theorem 3 we pose the conjecture the proof of which will be

published in a future paper.

Conjecture. The kth-order fundamental solution G™(-,y) can be calculated by
means of (34) and (35) ifp€ CP(Q\{y}).

Also, starting from the Hadamard coefficients U, and V, we can find a simple
recurrent algorithm (35) for the calculation of the kth-order fundamental solutions.

Example. Friedlander [7] established that the wave equation with L = g*ViV
on a space-time (n = 4) of the constant curvature X = const has the fundamental

solution

G*(3) = o= |s+(o) ~ 5-64(0)
with Uy (-, y) = [(Ko)'/?/ sin(Ko)'/2]3/2. Application of (35) shows that

(G (y)i = 51;0;1‘ [5(+1)(0) — %õ(f) (a)].
Remarkably, the fundamental solutions of the order £ > 1 are tail-free, i.e.,

(V)I(k):Oiszl. TR

(45)

(46)
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iii) If y is a point on the space-time (n = 4) and {2 is a neighbourhood of y that

is a causal domain, then the kth-order fundamental solution G*(-,) in € can be

considered as the field radiated by an instantaneous point source, i.e., a 2k_pole at

y. In any causal neighbourhood of y it is determined uniquely by the condition that

its support is to be past-compact. We shall consider the scalar field due to a o

pole” of varying strength which is travelling along a future-directed time-like curve

£. Such a curve can be given as a C* imbedding ¢ — y(t) € & of an open interval

I C Rinto Q. We set v*(t) = dy*/dt; this vector is assumed to be time-like and

future-directed, and it is convenient to normalize the parametrization so that ¢ is the

proper time, which means that (v, v) := ;0" = 1.

Let F(t) be a C tensor field of the rank k at y(t) € ¢ with supp F compact.
We consider the distribution f(¥) € £(Q) which assigns to any ¢ € C°(Q) the

number

(19,9) = [FDttt

Here the tensor field F(t) is called 2%-pole moment of the scalar field source with

respect to &.

Proposition 6. Suppose that there is a ty € I such that F(t) = 0for t < to. Then

the unique solution ofLu = %) with past-compact support can be taken into the

form

>

1 UGGyI Pidglo P onaM) = rllsy)m)rtast OT

7(2)

o/t FI(t)V (z, y());r) dt on (UITW))MEL (47)
o yEE

where 7(z) is defined by o(z,y(7(z))) = 0, y(r) € C(z); (U’g(:v,y))f(k) is

given by (41) and the dots standfor the terms containing derivatives of F of the

order less than k.

Proof. The proof is similar to the proof of Theorem 1 in [®] and is therefore omitted.

Remark 3. To finish, we note that the higher-order fundamental solutions of the

scalar field can be readily generalized to vector and tensor fields by means of

essentially the same procedures used by Friedlander [7] for getting the fundamental

solutions of vector and tensor fields from the classical scalar field fundamental

solution. |
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KOVARIANTSE LAINEVÕRRANDIKORGEMAT JÄRKU
FUNDAMENTAALLAHENDID JA DIVERSORID

Tõnu LAAS jaRomi MANKIN

Léahtudes Hadamardi elementaarlahendist on késitletud skalaarse kovariantse

lainevorrandi korgemat jarku fundamentaallahendite konstrueerimist pdhjuslikus
piirkonnas ning saadud lihtne rekurrentne algoritm selliste lahendite leidmiseks. On

vaadeldud ka diversorite ja korgemat jarku fundamentaallahendite vahelist seost.
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