
Proc. Estonian Acad. Sci. Phys. Math., 1998, 47, 3, 216-228

216

CONTEXT-DEPENDENTMINIMIZATION OF

STATE/EVENT SYSTEMS

Gerd BEHRMANN Kare KRISTOFFERSEN and Kim LARSEN

Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7 El, DK-9220

Aalborg @st, Denmark; e-mail: kgl @iesd.auc.dk

Received 19 January 1998, in revised form 23 February 1998

Abstract. This paper presents a technique for efficient checking of reachability properties
of concurrent state/event systems. The technique improves the traditional algorithm for the

forwards exploration of the global state space by the incremental construction of subsystems
kept small using a context-dependent minimization. A tool has been implemented to verify
state/event systems. Experimental results report on a feasible automatic verification of the

correctness of Milner’s scheduler — an often used benchmark — with 100 cells. This result

dramatically improves the previous best results for this benchmark. Moreover, our technique
has proved well applicable to industrial designs of sizes up to 400 concurrent state machines.

Key words: state/event systems, reachability analysis, compositionality, subsystems, context-

dependent minimization.

1. INTRODUCTION

Model checking of finite—state concurrent systems suffers from the potential
combinatorial explosion of the state space arising from parallel composition. This

phenomenon is also known as the state—explosion problem. During the last decade,
various techniques have been developed to avoid the state—explosion problem in

verifying finite—state systems, either by symbolic representation of the state space

using Binary Decision Diagrams (BDDs) ['], by the application of partial order

methods [>3], which suppresses unnecessary interleavings of transitions, or by the

application of abstractions and symmetries [*~6].
Our approach is to use a compositional technique in model checking embedded

reactive systems using a state/event model. Our technique initially considers only
a few components in determining the satisfaction of the verification task and if

necessary, increases the number of the considered components. After each addition

https://doi.org/10.3176/phys.math.1998.3.06

https://doi.org/10.3176/phys.math.1998.3.06

217

of a component, the resulting intermediate subsystem is kept small by a suitable

context-dependent minimization.

In our setting, a state/event model is a fixed number of finite state component
transition systems that have input events associated with the transitions. The model

is synchronous: each input is reacted upon by all machines in the lock—step. Firing
of a transition in an one-component transition system can be made conditional on

the local states of other machines using guards. Themodel is complete with respect
to the inputs: In any state and no matter what input event is received, a component
can fire some transition labelled with this event, regardless of the state of the other

components.
The state/event model is convenient for describing the control portion of

embedded reactive systems, including smaller systems, such as cellular phones,
hi—fi equipment, and cruise controls for cars, and large systems, such as train

simulators, flight control systems, telephone and communication protocols. The

model is used in the commercial tool visuaISTATET™ [7]. This tool assists in

developing embedded reactive software by allowing the designer to construct a

state/event model and analyze it by either simulating it or by running a consistency
checker. The tool automatically generates the code for the hardware of the

embedded system. In fact, the consistency checker is a verification tool that checks

for a range of properties that any state/event model should have. Some of the checks

must be passed for the generated code to be correct, for instance, it is crucial that the

model is deterministic. Other checks are issued as warnings that might be design
errors, such as transitions that can never fire. A benchmark test in the last section of

the paper reports on a feasible automatic verification of the correctness ofMilner’s

scheduler — an often used benchmark — with 100 cells. The best result published
earlier on this benchmark is that a scheduler with 50 cells could be handled [2].

Closely related work. A recent paper by Nielsen et al. [?] presents a very
efficient BDD-based technique to the verification of state/event systems. In their

approach, minimization is based on a promising propagation technique that makes

the verification of industrial designs possible with more than 1400 state machines.

Outline. In the following section, we define the notion of a state/event system
and in Section 3, we present the types of consistency checks we consider in this

paper. In Section 4, we define the composition of components and introduce the

notion of a well-behaved subsystem. Then in Section 5, we define the forwards

reachability properties in a global state graph and in a subsystem. In Section 6, we

describe how to minimize a subsystem with respect to its context and illustrate it by
an example. Finally, in Section 7, we report on strong experimental results obtained

in the verification of the scheduler.

2. STATE/EVENT SYSTEMS

A state/event system consists of a fixed number of component transition systems
that synchronize upon thereception of input events. A component transition system

218

is afinite state transition system, where eachtransition is labelled with an input event

and a guard expressing the legal states of the other component transition systems
for this transition to be executable. The component transition systems constituting
a state/event system are built over a set of disjoint state—groups as described in the

following preliminaries.

Preliminaries. Assume n pairwise disjoint state—groups 5ti,...,5t,. The

global state space is then given by ST = St; X - - - X St,. Assume also a fixed set of

events £ = ej,...,e,. We have two operators for generalization and projection
on the sets of states. Thenotation for these is as follows:

Notation 1. Le: I = fi1,...,%=x) € (1,... ,nh,g £ STandh LC Sti, x

s

X Sti,. Then ht = ((81,..-,Bn) | (BSil,---+Bi,) € h) and Tls(g) =

{(3i,)2 lopsg} A tn) € 9.ti, = 8i N---Ati, = 3i).Wen Tisa

singleton {l}, we write TI;(9) for U 3 (9).

A component transition system over the state—group St; is a labelled transition

system where each transition is labelled with an event e € F and a guard g € S7T'.

Furthermore, there is a designated initial state sg € St;. For reasons of simplicity,
we impose three conditions of consistency, completeness and monolithicity on the

component transition systems. These do not form any restriction; in fact, any
transition system over S%;, £ and ST can be transformed to the form used here.

Definition 1(Componenttransitionsystem). A component transition system over

the state—group St; is a labelled transition system T; = (St;, 39, —;), where sg is

the initial state and —;C St; X E X 25T x St; such that

i) Whenever s =2 s' then T1;(g) = St;.

ii) Lete € E, let s € Stj and letsl,. ..

, si be all e-derivatives of s; i.e., all s;

st. s 23s, for some di. Then J; gi = ST.

) h
iii) Lete € E and let s,s' € St;. Whenever s 29 o' and s =2 &' then g = h.

For the transition s —% s in a component transition system over the state—-

group St;, the guard g C ST denotes the set of global states in which this transition

is enabled. Guards cannot be arbitrary, in fact, the three conditions above express
which component transition systems are allowed.

ad 1) Guards are consistent, i.e., the guard g on the transition s 29 ¢ does not put
any restrictions on the current state of 7;. However, the transition as a whole,

naturally requires 77 to be in the state s in order to be enabled.

ad i1) The behaviour of a component transition system is complete wrt. all events

in all states, i.e., a component transition system can respond to any event e in

219

any of its states s, regardless of the current state of the remaining component
transition systems.

When all components in a state/event system have this property, the semantics

of the concurrent behaviour upon thereception of an event will be that of pure

synchronization. The completeness condition is not a restriction, however.

Suppose that a state s is incomplete with respect to event e, we can safely
s 9° »1

add to T the transition s 29 s, where g = U{h|3h,s’.s = s'}.

ad iii) Component transition systems are monolithic, i.e., for all pairs of states s, s’
in a component transition system over the state—group St; and for all events

e, there will be at most one transition. This property can be obtained by
ADD . e , h A »JUh

substituting all pairs of transitions s 2% o' and s = s" withs 25 ',

Now in all the following, assume component transition systems over ST, i.e.,

let Ty = (5t1,8),—1),...,Tn = (Stn,s2,—>n). The state/event system
described by a set of component transition systems 77,... ,7, will be denoted

(Th] ... |Tn). The semantic interpretation of parallel composition will be that of

full synchronization upon the reception of events. The global transition system of a

state/event system is then given as follows:

Definition 2 (Global transition system). The global transition system induced by
.

- —
jtt

B il = (5T,5% —>), where 3° = (59,... ,s0 and (51,...- ,8n) 25

(51,. s) fssi 2 o with (51,... ,sy) €gi foralli.

The size of the global transition system is potentially exponential in the number

of its components, and hence, it is infeasible as an object of verification as

mentioned in the Introduction. Instead, we will be considering the reduced versions

of the global transition system in the form of subsystems. A subsystem is the

composition of a subset of the components in a state/event system.

3. CONSISTENCY CHECKS

The consistency checker in visualSTATE?™ performs five predefined types
of checks each of which can be reduced to verifying reachability properties.
Additionally, visuaISTATET™ is able to check for the absence of local deadlocks.

The focus in this paper is on the checking of reachability properties only. Checking
reachability properties means to determine for a set of global states g if a state in g

can be reached from the initial state.

The ability of a state/event to execute all transitions is one of the checks

performed by visuaISTATETM| For each transition, it is checked if there

exists a global state such that the guard g on the transition is satisfied. Also,
visuaISTATETM performs a check for “conflicting transitions”, i.e., it checks

whether two or more transitions can become enabled in the same local state, leading

220

to non-determinism. This can be reduced to questions of reachability by considering
all pairs of guards g; and g, of transitions with the same source state s € St; and

input event e. These transitions must have different targets due to the monolithicity
condition. A conflict can occur if a global state ¢ is reachable such that 2; = s and

t € glNgo.
In order to reduce the number of checks to be carried out, we perform an

implicational analysis between the properties to be checked. If aproperty g; implies
another property go, then clearly, if g; is reachable, so is go. Initially, we sort the

guards in the ascending order of the size of their satisfying state space. Hence, the

most specific guards are checked first, and for each new guard to be checked, we

compare it to the already checked (and reachable) guards. If the new guard includes

one of them, then we know that it is satisfiable. In our experiments, the reduction in

the number of checks obtained using implicational analysis is between 40 and 90%.

4. COMPOSITION AND WELL-BEHAVED SUBSYSTEMS

Subsystems. In our compositional method, we will consider subsystems,
i.e., the transition systems representing the concurrent behaviour of a subset of

the components constituting a state/event system. In a subsystem, the guards
on transitions will only concern the components in the context, as the internal

constraints are already resolved during composition.

Definition 3 (Subsystem). Let T7,... ,T, be component transition systems. Let

I = {il,...,ix} C {1,...,n}. Then we say that T; = (Str,s%, —>), where

s(} = (sgl, o ,s?k) is the initial state and St; C X;clSti and —C Sty X E X

25T % Sty is a subsystem with respect to I.

Now, the composition of the two subsystems is defined in the following way.

Definition 4 (Composition). Ler I,J C {1,... ,n} withl NJ = 0 and let

Ty = (Str, 8%, —1) and Ty = (St;, sg, —j) be subsystems wrt. I and J. Then

the transition system 11 e Ty = (Strj7, 597> —>lJ) is the subsystem wrt. I U J,
where sY7

s the initial state obtainedfrom s(} and sg and Str; = Üry;(Bt'; Nst—J'“)
and whenever 5 =2l 5 andt i”—l)J t', where 5,5 € Sty,t,t' € Styst. t€ I1;(g)

and 5 € T1;(h) then § o 't_'ffi)lJ 5 o t', where

k = [Tayn-(9)"laune(h)]*

and e is defined as follows: sot=M I1;,;(5T NT). Note that the righthandside
is a singleton, and hence 5 o tis a well-defined element.

Well-behaved subsystems. If a subsystem enjoys the three properties of

consistency, completeness and monolithicity, we say that it is well-behaved. In

fact, well-behaved subsystems can be seen as the generalization of component

221

transitionsystems, and as we will see in the following, composition of well-behaved

subsystems preserves well-behavedness.

Definition 5 (Well-behaved subsystem). Let T ... ,T,, be component transition

systems and let I = fi1,...,%) CS (1,... ,n). Then U subsystem wrt. 1,

T; = (Stl, 8%, —1) is said to be a well-behaved subsystem if the following holds:

i) Whenever (5;,... ,Si,) .A Car ,s;k), then I;(g9) = Sti.

ii) Let e€ E, let (8i,,.--,8i,) € Stzp and > let (s}l, i s}k), eea

e ,sžk) be all e-derivatives of (Sir,--- ,Si);e. (Bil,+--+Six) A
; l

(5}1,... ,sžk),... »(Sil3+++sSix) 29 (5ž1,... ,sšk),then U:-1%i = ST.

iii) Let e€ E and let (Biy,-.. ,Si)»(Si++B) € Sti. Whenever

; ;h
e(sl .82 s hand feni .. ,5,) — (Bi,>+++ »Si,)»then
g =h.

The composition of two well-behaved subsystems is also a well-behaved

subsystem as stated in the following theorem:

Theorem 1. Let I,J C {1,... ,n} st. INJ = 0 and let T; and T; be well-

behaved subsystems wrt. I and J, then Tt e Ty isalso a well-behaved subsystem
(wrt. 1U J).

Theorem 2. LetT; be a component transition system with respect to the state group

St;. Then T; is also a well-behavedsubsystem with respect to {3}.

Theorem 3. Let T1,... ,Tn be component transition systems and let T be the

global transition system inducedby these. ThenT is a well-behavedsubsystem with

respect to 11,... ,n).

We see that well-behaved subsystems preserve the three properties of

consistency, completeness and monolithicity from the component transitionsystems
they are composed from. This leaves us with well-behaved subsystems as the basic

building blocks in our compositional verification procedure. In the rest ofthe paper,
we will be using the term subsystem for a well-behavedsubsystem, i.e., a subsystem
is well-behaved unless something else is mentioned directly.

Obviously, given a subsystem 77 wrt. some I C {1,... ,n}, it will only be

possible to determine reachability of local states in the components {7} |7 € I}.
Fortunately, almost all properties we need to check are this kind of local properties,
and hence, by a careful selection of component transition systems, it will suffice

to consider a subsystem instead of the global transition system. Moreover, as the

intermediate subsystems can bekept small by the use of asuitable context dependent
minimization and propagation and pruning, state—explosion can be avoided. The

results displayed in the last section of the paper justify this claim.

222

5. REACHABILITY ANALYSIS

The sets of reachable states in a state event/system are those states that can be

reached by following the transition relation starting from the initial state. This is

formalized in the following definition:

Definition 6 (Reachability). Let Tl, ... ,T,, be component transition systems and

let T = (ST,3° —) be the global transition system induced by these. Further,
let g C ST'. We say that g is reachable in T if there existsa sequence of transitions

S 0 % Byl Šn-1 M5, such that 30 =3% and $,, €g.

Lemmal. Let I,J C {1,... ,n} suchthatIN J = 0 and let Ty,T be well-

behaved subsystems with respect to I and J. Further, let g C ST and let s’ € St;
and s’ € Stj. Then 51 € TI;(g) and 57 € 11;(g)if and onlyif 57 @ 57 € I;(g).

The composition preserves reachability properties as stated in the following
theorem.

Theorem 4. Let Tt and T’y be subsystems and let g € ST'. Then g is reachable in

(Tr | Ty | IgrosT;)ifand onlyif g isreachable in (Tt @ Ty | ILigru T5) -

Mostly we will be checking reachability of the property that at most depends on

a subset of the total set of component transition systems constituting a state/event

system.

Definition 7. Let g C ST be a guardand let I C {1,... ,n}. We say that gis a

property at most depending on I if [II1(g)]" = g.

5.1. Sub-Reachability

It is possible to reason about reachability properties by considering only a

subsystem. Let 77 be a subsystem and let g C ST be a guard at most depending on

I. Let Ry(g) = g and let

I?/L(g) — {,§ € Stfhlašla' .38k € Ri—l(g)?gl)' -0k € ST,CI,.. kEE
sts 2% 5,i=1,... ,k, and [U_ g;]* = ST} U Ri_l(g).

We compute the minimum set of states containing g and closed under the

application ofR;(g). This set of states has the property that regardless of the state

of the context there exists a sequence of transitions leading to a g-state. Consider

the following definition of sub-reachability.

Definition 8 (Sub-reachability). LetT},... ,T, be component transition systems,
let I = {il,...,ix} C {1,...,n} and let Tt be a subsystem wrt. I. Further, let

gCST be a property at most depending on I. Then if (3?1, 4 ,s?k) € Ri(g) we

say that g is sub-reachable in T7. ,

223

In other words, a set of states g is sub-reachable in a subsystem77 if one of the

states in g can be reached in 77 regardless of the component transition systems not

being part of 77. The following theorems state when exactly we may infer answers

to reachability questions from considering only subsystems:

Theorem 5. Let T4, ... ,T, be component transition systems and let T be the

global transition system inducedby these. LetI = {i1,... it} C {1,... ,n} and

let Tt be a subsystem wrt. I. Further, let g C ST be a property at most depending
on I. Then g is reachable in T if g is sub-reachable in T 7.

Theorem 6. Let T1,... ,T,, be component transition systems and let T be the

global transition system inducedby these. Let T{y.n) be a subsystem obtainedby

composing Ty, ... ,T,. Let I C {1,... ,n} and let g C ST be a property at most

depending on I. Then g is not reachable in T if g is not sub-reachable in T[1,... n}-

5.2. Transformation

When used directly as presented above, the notion of sub-reachability does not

make reachability checking as efficient as possible in the sense that the state space is

not kept small in all steps of the model checking procedure. More precisely, model

checking is only improved ifafter a series of compositions it happens that the check

for sub-reachability has a positive answer. In all those steps of the algorithm where

the check for sub-reachability has a negative answer, the intermediate state space is

left unchanged before the next composition takes place. To obtain an efficient model

checking tool, it is vital that after each composition step we make a compression
of the intermediate state space. This can be done, based on the notion of sub-

reachability as follows: | |
Let T be a subsystem, let g be a guard at most depending on I and let 5 € St;.

We will say that g is sub-reachable from 5 or that g propagates to s if 5 € R;(g).
After each composition step, the efficient model checker will compute the set of

states that g propagates to and store only one single state as a representative for them

all.

We will attempt to answer the reachability problem of a property g by checking
for sub-reachability in a subsystem 77. In case the reachability question cannot be

answered, we provide extra information by extending 77 to a subsystem 7'y with
I C J. The extension will be done in a clever way by letting a dependency analysis
determine which component to add next. Hence, in the worst case situation we

end up constructing Ty,.). However, as our experiments show, it almost always
suffices to consider rather small subsets of the total number of component transition

systems, and thus we succeed inkeeping model checking feasible.

6. CONTEXT DEPENDENT MINIMIZATION

In the previous sections, we have presented a method for analyzing reachability
properties based on a compositional approach. That means the component transition

224

systems constituting the state/event system under investigation are gradually
composed in the order that a dependency analysis finds most appropriate. After

each addition of a machine, the resulting intermediate subsystem is examined for

forwards reachability.
The idea behind context-dependent minimization is to keep these intermediate

systems small by suitable minimizations. More specifically, the technique is based

on minimization with respect to a bisimulation [l%!!]. Obviously, to ensure

correctness of the method, it is important that the states of the subsystem, which

are distinguished by some guard occurring in the components not yet included, are

kept distinct. Hence, the relevant bisimulation is context-dependent in the sense of

[l2-14],

6.1. Context-Dependent Bisimulation

In the following, we provide a sketch of the minimization technique: Let

Ti,...,T, be the machines constituting the considered system. Now assume that

we have composed the components 7; for ¢ € I, where I C {1,... , N}, and let

Ty = (Str,sY%, Tr) be the subsystem representing this composition. Now assume

further that G is the set of guards on 77 occurring in the remaining machines. Then

two states s, t of 77 are said to be the bisimilar modulo G, s =g ¢, iff s and ¢ satisfy
the same guards of G and

, h
1. Whenever s — s', then t 25 8 forsome h, t st. ¢ C hand s’ =¢ ¢'.

3 ,h
2. Whenever t —% ¢/, then s — s’ for some h,s' st. g C handt' =¢ '

Using a variant of the partition algorithm in ['°] (alternatively ['®]), one

may obtain a minimized version of the subsystem Ty, T;s.. In the minimized

version, the set of states consists of exactly one representative from each of the

=g-equivalence classes of St;, and transitions are obtained in the following way:

For each pair of =g-equivalence classes b and b’ and each event e, the transitions

s 1 O 1,0 73 s, Where 51,... ,5x € bandsi,...,y € V

are substituted by one transition from b to b’ labelled with e and the union of g;

for 2 =1,... ,k. The correctness of this minimization effort follows from the

following theorem stating that the appropriate context-dependent minimization of

a subsystem preserves reachability properties:

Theorem 7. Let T, ... ,T,, be component transition systems and let g € ST.

Let I C {1,...,N} and let Tr be the subsystem obtained by composing
the components {T;|i € I}. Further, let G = {l;(h)|3j € I3s,s' €

Stjs.t.s = s'}Ullf(g). Then g is reachable in (Tt | Il;¢rT}) iffg is reachable in

(Tr&an | erT5) . |

225

6.2. Minimization Example

Assume a state/event system with three components; 77 builds over the state

group {pl,p2}, T builds over {qil, g2} and T 3 builds over {U;,Us,Us}. T 7 and
T 5 are displayed in Fig. 1. T 3 is not presented. In this figure, an alternative and

more compact notation for guards on transitions is used. It means that a transition

s 2% s'ina component transition system over the state—group St; is enabled in

all global states (51,... ,S,), where s; = s. Similarly, a transition s U o ina

component transition system over the state—group St; is enabled in all global states

(51,... ,8n), where s; = sand s; = Uj if U; belongs to the state—group St;.
Assuming the current verification task demands us to compose all three systems,
we chose to initially compose 77 and 75 and get the subsystem 7’9, which is a four

state transition system (Fig. 1). Before composing 77, with 73, we will attempt to

minimize 779 with respect to its context, 73. Now assume that the only guard on a

transition in 73 different from¢ is on the formp;. We will then have to initially split
the state space of T 2 into two parts {(pl, q1), (p1,92)} and {(p2, ¢1), (P2 ¢2)}- By

Fig. 1. Two-component transition systems 73 and 7% (left) are composed into the subsystem
Tlo(right). T74 is then minimized with respect to the guard p;. The resulting transition system

is Tlgž,lj,f ! (bottom).

226

a furtherexamination of the transitions of T2, we find that (pl, ¢1) and (pl, ¢2) can

match each other’s transitions. The same applies to the pairs (p2 ¢1) and (p2 ¢2).
Hence, we get the minimized version Tys"}.|which is a two-state transition system

(Fig. 1).

7. EXPERIMENTAL RESULTS

A successful application of our tool on Milner’s scheduler ['°], which is a

scalable benchmark, has been carried out. Milner’s scheduler consists of a ring of n

cells and a tokencirculating in this ring. When the :th cell receives the token, it can

start its job and then terminate or pass on the token to cell the numbered2+1 in either

order. The specification is that the jobs are started in sequence: 1,2,... ,n,1,....
We model the system as a state/event system with one component transition system
for each cell. The specification is represented as an additional testing automaton in

the style of [l7]. The testing automaton will enter a certain bad state ifever the jobs
are not started in the right sequence. Hence, the verification amounts to checking
that the testing environment never enters this bad state. Proving this naturally
requires acomposition of all n+l components of the system, and thus the state space
should explode. However, when our context-dependent minimization is applied to

the intermediate subsystem after each composition step explosion is avoided. We

have succeeded in verifying the property for a ring with 100 cells — and observed

that during verification the growth of the state space was only linear (Fig. 2). The

verification took 30 min on a standardPC. Thebest results published earlier on this

benchmark are that a ring of 50 cells could be handled within reasonable time 91
An interesting point is how few components are required to consider when

checking a reachability property. For each guard g, there is a so-called dependency
closed set of component transition systems, which is the largest set of components
that will be needed to check reachability of g. Our experiments on a range of

industrial examples with up to 400 components have revealed that in most cases

it suffices to compose from 1 to 25% of the components in a dependency closed set.

8. CONCLUSION

We have presented a compositional technique for efficient checking
of reachability properties of concurrent state/event systems. The idea is to

incrementally construct subsystems which are kept small, using acontext dependent
minimization. The technique has been implemented in a tool, and experiments
have shown that much of the combinatorial explosion arising when doing ad hoc

construction of the global state space can be avoided. The reduction in complexity
results from our context-dependent minimization and from the fact that most often

only a small subset of the components in a system needs to be considered.

It is obvious that our implementation is generally not as efficient as the tool

presented in [°]. Both approaches utilize the same compositional principle but

227

while they use a BDD-based representation of the intermediate subsystems, we

use an explicit — and less efficient — representation in order to be able to perform
minimization of the state space. On the other hand, it is also clear that minimization

does improve space complexity, and a challenging research topic is how to marry

an implicit BDD representation with the possibility of performing state space
minimization.

REFERENCES

1. Burch, J.R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, L. J. Symbolic model

checking: 102° states and beyond. Proc. sth Annual lEEE Symp. Logic in Computer
Science. lEEE Computer Society Press, 1990, 428-439.

2. Godefroid, P. and Wolper, P. A partial approach to model checking. Proc. 6th Annual lEEE

Symp. Logic in ComputerScience. lEEE Computer Society Press, 1991, 406-415.

3. Valmari, A. A stubborn attack on state explosion. Proc. 2nd Workshop Computer Aided

Verification. Springer Verlag, 1990, 156-165.

4. Clarke, E. M., Filkorn, T., and Jha, S. Exploiting symmetry in temporal logic model

checking. Proc. CAV’93. Springer Verlag, 1993,450-462.

5. Clarke, E. M., Griimberg, 0., and Long, D. E. Model checking and abstraction. Conf.
Record of 19th Annual ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages. Alberquerque, New Mexico, 1992, 342-354.

Fig. 2. The graph shows that the number of states in the intermediate subsystem grows only
linearly when composing the 100 cells of Milner’s scheduler.

228

6. Emerson, E. A. and Jutla, C. S. Symmetry and model checking. Proc. CAV’93. Springer
Verlag, 1993,463-479.

7. Beologick, VisuaISTATET™ 3.0 Users Guide. 1996.

8. Andersen, H. R. Partial model checking. Proc. LICS’9S. lEEE Computer Society Press,

1996, 398—407.

9. Nielsen, J. L., Andersen, H. R., Behrmann, G., Hulgaard, H., Kristoffersen, K., and

Larsen, K. Verification of large/event systems using compositionality and dependency

analysis. Proc. TACAS’9B. Springer Verlag, 1998, 201-216.

10. Milner, R. Communication and Concurrency. Prentice—Hall, 1989.

11. Park, D. Concurrency and automata on infinite sequences. Proc. sth GI Conf. Springer
Verlag, 1981, 167-183.

12. Larsen, K. G. Context-DependentBisimulation Between Processes. PhD thesis. University
of Edinburgh, Edinburgh, Scotland, 1986.

13. Larsen, K. G. and Milner, R. A complete protocol verification using relativized

bisimulation. Information and Computation, 1992, 99, 1, 80-108.

14. Larsen, K. G. A context-dependent bisimulation between processes. Theoretical Computer
Science, 1987, 49, 184-215.

15. Kanellakis, P. C. and Smolka, S. A. CCS expressions, finite state processes, and three

problems of equivalence. Information and Computation, 1990, 86, 1, 43-68.

16. Paige, R. and Tarjan, R. E. Three partition refinement algorithms. SIAM Journal on

Computing, 1987, 16, 6, 973-989.

17. Aceto, L., Burgueno, A., and Larsen, K. G. Model checking via reachability testing for

timed automata. Proc. TACAS’9B. Springer Verlag, 1998, 263-280.

SÜSTEEMIDE OLEK-SÜNDMUSKONTEKSTIST SÕLTUV

MINIMEERIMINE

Gerd BEHRMANN Kare KRISTOFFERSENja Kim LARSEN

On esitatud efektiivnemeetod siisteemide olek—siindmus saavutatavusomaduste

tuvastamiseks. Meetod muudab paremaks globaalses olekuruumis päri-
suunalise otsimise traditsioonilised algoritmid. Selleks konstrueeritakse jark-jargult
alamsiisteemid, kasutades nn. kontekstist soltuvat minimeerimist. Süsteemide

olek—siindmus automaatseks verifitseerimiseks on realiseeritud vahend, mille

efektiivsust kinnitavad Milneri plaanuri verifitseerimisel saadud katseandmed

100 sdlmega juhu jaoks. Meetod osutus tunduvalt paremaks seni saavutatud

parimast tulemusest. Kirjeldatud meetod on sobiv ka toostusliku mastaabiga

projekteerimisiilesannete puhul (kuni 400 paralleelset olekumasinat).

	b10720984-3 no. 3 01.07.1998
	Chapter
	PHYSICS * MATHEMATICS FÜÜSIKA * MATEMAATIKA
	CONTENTS
	Chapter
	FUNCTIONAL PROGRAMMING WITH APOMORPHISMS (CORECURSION)
	Untitled
	Untitled
	Untitled
	Untitled
	FUNKTSIONAALPROGRAMMEERIMINE APOMORFISMIDEGA (KOREKURSIOONIGA)

	PROGRAM SPECIFICATION BY TYPED GUREVICH MACHINES
	Contribution

	PREFIXED TABLEAUS FOR THREE-VALUED MODAL PROPOSITIONAL LOGICS
	Untitled
	Untitled
	PREFIKSIGA TABELID KOLMEVALENTSETE PROPOSITSIONAALSETE MODAALLOOGIKATE TARVIS

	MSCPDL – A LANGUAGE FOR BEHAVIOURAL ABSTRACTION
	Fig. 1. A small MSC (a), a MSC where a client-server communication has been marked with dotted arrows (b).
	Fig. 2. The pattern of two successive communications.
	Fig. 3. The pattern of the client-server communication. The dotted arrow means zero or more edges and nodes.
	MSCPDL – KAITUMIST ULDISTAV KEEL

	A SPECIFICATION FORMALISM FOR INTERACTING OBJECTS
	FORMALISM INTERAKTEERUVATE OBJEKTIDE SPETSIFITSEERIMISEKS

	CONTEXT-DEPENDENT MINIMIZATION OF STATE/EVENT SYSTEMS
	Fig. 1. Two-component transition systems 73 and 7% (left) are composed into the subsystem Tlo(right). T 74 is then minimized with respect to the guard p; . The resulting transition system is Tlgž,lj,f ! (bottom).
	Fig. 2. The graph shows that the number of states in the intermediate subsystem grows only linearly when composing the 100 cells of Milner’s scheduler.
	SÜSTEEMIDE OLEK-SÜNDMUS KONTEKSTIST SÕLTUV MINIMEERIMINE

	DIVERSORS AND HIGHER-ORDER FUNDAMENTAL SOLUTIONS OF COVARIANT WAVE EQUATIONS
	KOVARIANTSE LAINEVÕRRANDI KORGEMAT JÄRKU FUNDAMENTAALLAHENDID JA DIVERSORID
	INSTRUCTIONS TO AUTHORS
	The following table should be used for transliteration:
	Untitled

	Illustrations
	Fig. 1. A small MSC (a), a MSC where a client-server communication has been marked with dotted arrows (b).
	Fig. 2. The pattern of two successive communications.
	Fig. 3. The pattern of the client-server communication. The dotted arrow means zero or more edges and nodes.
	Fig. 1. Two-component transition systems 73 and 7% (left) are composed into the subsystem Tlo(right). T 74 is then minimized with respect to the guard p; . The resulting transition system is Tlgž,lj,f ! (bottom).
	Fig. 2. The graph shows that the number of states in the intermediate subsystem grows only linearly when composing the 100 cells of Milner’s scheduler.

	Tables
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	Untitled
	The following table should be used for transliteration:
	Untitled

