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Abstract. A logic for reasoning about requirement specification of objects with (internal and

external) non-determinism is developed. Focus is on how to achieve conceptual simplicity by
avoiding the use of infinite sequences, restricting ourselves to finite traces and by formulating
a proof system satisfying the classical rules of first order logic. Under-specification is used to

capture internal non-determinism, enabling us to state general facts about any execution. This

reduces the language complexity: non-deterministic objects are specified by means of a simple
event relation called the ready relation, whereas the underlying semantics is a set of models,
each with a set of such relations.

However, due to a non-standard interpretation, standard equational reasoning over object
expressions is sound, and we obtain an expressive specification language. This enables

us to express internal non-determinism and to relate different execution points of several

objects in the same specification formula without a risk of making meaningless or inconsistent

specifications. Our language is expressive enough to avoid the Brock-Ackerman as well as the

merge anomaly.
We present a sound and (relatively) complete basic proof system. The classical rules and

axioms of first order logic with equality are sound. In addition, some rules and axioms are

needed for the ready relation and other object operatorsconsidered. Refinement may be done in

two ways: by enriching a loose specification over a set ofobjects, one may refine several objects
(reducing the set ofpossible models). By an explicit refinement operator, one may refine a single
object (reducing the number of possible executions in each model).

Key words: object specification, object reasoning, concurrency, parallel composition,
readiness, safety and liveness, proof system, final traces.

1. INTRODUCTION

Our overall goal is to develop a practically useful formalism for specifying
and reasoning about systems of concurrent objects. It is essential that the proof
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system be simple and that the specification language be based on the concepts
that are intuitively clear and mathematically simple. We focus on requirement

specifications rather than abstract system design. The specification of a system
should be expressed in terms of observable concepts, and the formalism should be

strong enough to express liveness as well as safety properties and be well suited for

system development. The proof system should be compositional, and one should
be able to reason about objects from minimal requirements, for instance, deriving

properties of the concurrent composition of objects which are not yet fully specified.
This article presents a general approach, not depending on a specific

programming language. We therefore consider an abstract notion of events.

However, orientation is towards object-based systems, where objects have identity,
which may be communicated. A notion of subclass is introduced. Conceptual

simplicity of our specification language is achieved by using

— traces of observable events rather than state variables,

— finite traces rather than infinite ones,

— “execution dependent” readiness relations, allowing the natural specification
of liveness and of object dependencies,

— object equality, reflecting observable behaviour and “execution

dependencies”,

— generator induction, no fix-point operators.

The ready relations have a modal flavour, in the sense that their interpretation
depends on a hidden quantified variable ¢, ranging over all possible “executions”.

This implies that specifications restrict a fixed but arbitrary execution. The ready
relation, denoted ¢—, expresses immediate readiness, whereas the ‘“many-step”
ready relation «— expresses general liveness. By means of the object expression
P/h, the continuation of object P aftera finite trace h, we may express the readiness

of P after h: P/h < x expresses that P is ready for x after accepting h in the

“current” execution .

We believe that avoiding infinite sequences at the specification level leads to

more intuitive specifications, and it enables us to develop specifications that are

close to (executable) abstract designs. For instance, a generator inductivedefinition

of P/h < z gives an abstract design of P, characterizing the next possible actions

z in the abstract state represented by h.

Under-specification is used to characterize non-deterministic object behaviour,
however, by means of object equality, our language is expressive enough to state

inherent non-determinism.

Simplicity of the proof system is achieved by using

— standard first order logic with equality and induction, but with a non-standard

interpretation,
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— no temporal/modal operators,

— liveness reasoning by means of well-founded induction,

— no fix-point reasoning.

Even though the readiness relations have amodal flavour, they cannot be nested,;
and we avoid the full complexity of modal operators. On the other hand, only certain

kinds of fairness can be expressed.
Rather than using modal or temporal logic, we formulate a proof system

consisting of the rules and axioms of classical first order logic, extended with

standard rules for equality and induction, and with some additional proof rules and

axioms, axiomatizing object continuations and ready relations.

Under-specification of ready relations opens up for internal non-determinism.

For instance, the specification A < a $ A +— b (where @ denotes exclusive or)

expresses that A is ready for either a or b in all executions, which allows for internal

non-determinism. In contrast, A < a A A < b expresses that object A isready for

both event a and event b in all executions (expressing external non-determinism).
We believe this is intuitive and natural for programmers, since internal non-

determinism is not explicitly observable in the sense that from asingle computation,
one cannot judge whether it is non-deterministic or not. This allows programmers

to look at the deterministic and non-deterministic computations in the same way

conceptually and to state general facts about an arbitrary execution, which obviously
leads to easily readable specifications.

We allow a specification formula to talk about therespective readiness ofseveral

objects, as in P — I—o < x (saying that in every execution () is ready
for anything P is ready for). In this respect, our formalism is more liberal than

sat-specifications of communicating sequential process (CSP) [*] and modal logics
[2=*]. In order to be able to express such dependencies between objects, we use a

semantics based on the notion of execution families.
By allowing object expressions and object equality, we may combine

specifications as above with readiness characterizations of composed objects and

laws similar to those in process algebra. As in CSP, we let an object have

an associated alphabet, and consider objects with internal and external non-

determinism. An object is said to be deterministic iff it is free from internal non-

determinism. CSP operators, such as ||, [, M, are used here with a semantics similar

to that of CSP, but with object identity taken into account.

For instance, by stating

(AIB) «z & (A«zVB+x)

(Vze(ANB)2z & A+ z)V (Vze(ANB)+z & B + x)

we express that in each execution, the ready set of A[]B is the union of that of A

and that of B, and that in each execution, the ready set of AMB is either that of A
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or that of B (and nothing else). Thus, M and [] correspond to internal and external

choice, respectively. By means of object equality, we may express laws, such as

(Anß)/h = (A/h)M(B/h)
(ANBYIC = (AOC)N(BOC)
(ANB)[C = (AJC)N(B|C)

stating that internal non-determinism can be expressed at the outermost level.

An appealing property of our proof system is that parallel composition

corresponds to logical “and”, in the sense that

Vhe (P||Q)/h + & P/h+ AQ/h +

for objects P and () with the same alphabet. This equivalence expresses that

in an arbitrary execution, the composition is accepting trace h if and only if

both its components do. This close relationship between the composition and its

components cannot be expressed with CSP’s failure semantics.

Our framework is object-oriented in that objects have identity, which isreflected

by object equality, and which may be communicated. For instance, if P = A|B
and Q = B||C, then P and @ are sharing object B, and the composition P||Q
is the same as A||B||C, in contrast to process algebra. The composition P||Q has

no other identity than those of its components. Thus, we may talk about a sub-

system being a collection of objects without any other identity than those of its

components and may let a subsystem interface consist of several visible objects.
This makes our formalism well suited for describing so-called system scenarios,

specifyingcertain aspects of an object system by describing the roles of the relevant

objects and their dependencies. In such scenarios, the hidden (non-relevant) objects
often cause dependencies between the visible objects. For instance, in a multi-

ticket-agent system discussed later, two agents may not offer the same seat at the

same time.

Notation

We let (zl, z2, .., z,,) withn > 0 denote the sequence of zl, x5, ..,
and z,,, and €

denote the empty sequence, whereas () denotes the empty set. We use the following
infix notations: ; denotes concatenation of two sequences, - denotes appending
an element to the right of a sequence, | denotes reduction of a sequence by a set

(ignoring elements outside the set).
We will use z and y to denote events, s to denote sets of events, h to denote

finite sequences of events, A and B to denote object expressions, and P and () to

denote object constants from a set P of object names. For each object expression,
A there is an associated alphabet «A. We let p and g denote formulas; V, A, =

and — denote logical “or”, “and”, “implication” and “negation”, respectively. We

let A ¢~ denote -A <.
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2. INFORMAL MOTIVATION AND COMPARISON TO RELATED

WORK

In contrast to [°~7], based on stream processing functions, we avoid infinite

sequences; liveness is expressed by a “many-step” ready relation («-). We do not

split the trace in several input and output streams, because in an abstract design,
where several in- or out-streams are desirable, these may be described as suitable

projections of the object trace. Therefore it is trivial to specify a fairmerge [®], since

the total order of events is given in our traces. Furthermore, we avoid the Brock-

Ackerman anomaly [?], since we are concerned with the total order of “input” as

well as “output” events: We may distinguish the readiness of P/(a, b, a’) from that

of P/(a,a’,b) when a and b are input-events and o' is an output-event. For instance,
we may express that the former object continuation is ready for both output events

a' and b', and the latter for a’ only — which solves the Brock-Ackerman anomaly.
In contrast to other formalisms (such as in [>7]), using under-specification to

describe internalnon-determinism, we may express whether an object is inherently
non-deterministic or inherently deterministic (see Section 4.1), due to the presence
of object equality.

Our formalism satisfies the substitution property since the < relation is

deterministic in each execution. We thereby avoid the difficulties of the general case

of “non-deterministic functions/relations” discussed in [l°]. In contrast to [°~7], we

allow object equality, and as a consequence, object equality must satisfy

A=B= (Yhe A/h + & B/h +)

by standard equality reasoning. Thus, equal objects must have the same ready set in

each execution, which is true for identical objects. This equality relation is clearly
stronger than observational equivalence. By stating

P/h1 = P/h2

we express that after h 1 P behaves in the same way as afterA 2 in every execution. In

this way, a specification may relax the total ordering of the events present in histories

to a partial ordering (imposed through a predicate q)

Vhl,h2eq(hl,h2) = P/hl = P/h2

Our ready relation operator may be used to express the immediatepossibilities
of an object in much the same way as the basic modal operators of the Hennessy—
Milner logic [3*]. By means of the many-stepready relation («), we may express

temporal behaviour [!!]. Thus, like in modal or temporal logic, we may talk about

the possibilities and the future of an object at agiven execution point. But in contrast

to such logic, we may, in the same formula, talk about the possibilities/future of

several objects. We find this practically useful in a specification and avoid the

logical complexity of modal operators (at the cost.of reduced expressive power).



203

In contrast to formalisms, such as I/O-automata, state machines, UNITY,

rewriting logic, and TLA [l2], we avoid state variables. This makes our formalism

more suitable forrequirement specifications. Like rewriting logic, we may directly

express action dependencies between objects. However, rewriting logic is not (yet)
oriented towards specification purposes (for instance, there is no simple way of

expressing eventuality).
As shown in [!3], failure semantics is not able to distinguish between an object

which accepts a finite number, non-deterministically chosen, of a’s, then accepting
b and stopping and an object which non-deterministically chooses between a and

b, stops after b and repeats itself after a. We may distinguish the two because

the semantics of the former will be a set of executions, each allowing b after

finitely many (consecutive) a-steps, whereas the semantics of the latter includes an

execution which never allows b. At the specification level, we may distinguish the

two by means of the “many-step” ready relation («-), since the specification P « b

will imply that P must be ready for b in the finite time.

In [*3], it is also shown that failure semantics cannot express specifications, such

as

P/{a) «+b & P+ b

stating that P isready for b after a in an execution if and only ifP was ready for b

initially. Our formalism is well suited for expressing such relationships. Moreover,
such specifications are useful, as will be demonstrated later by examples.

The refinement method inherent in loose specifications allows us to refine

an object system. In addition, we may refine individual objects by an explicit
refinement operator, defined by a subset of executions. In contrast to the subset

relation on the failure sets, our refinement relation will preserve (many-step)
liveness results, as discussed below. This may be taken as another argument in

favour of execution family semantics rather than failure semantics.

3. FORMALIZATION

We will give proof rules and axioms for sequents of form [ |- p with an

“assumption” part [ (a list of formulas) and an “assertion” part p (a single formula).
(Lists in the assertion part could easily be allowed as well.) A specification S of

a set of objects, P, is a set of sequents with object constants from P only, and it

describes a first order theory with the sequents as non-logical axioms. Thenotation

l - p means that [ |- p is provable by this theory.
Since we wish to be flexible with respect to underlying programming language,

the semantics given below, based on the execution families, is as abstract as

possible. It lets object equality of the specification language be interpreted by the

object equality of the model such that any (legal) model is obviously implementable.
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3.1. Specification language

Our basic specification language is that of the first order logic with equality and

with the above notation for event sequences as well as the object expressions and

object relations below. First, we consider the following kinds of object expressions:

— P, an object constant (with the given alphabet),

— A/h, the continuation of A after h (for the object expression A), letting
a(A/h) be aA,

— oy, the “dead object” with the alphabet s,

—l, the “meaningless object” with the alphabet s (the same as os/{a) for

a € 8).

Later, we add parallel composition (||). We consider the following relations over

object expressions:

— A <—, expressing that the object expression A is meaningful in “this exe-

cution”,

— A = A', expressing object equality.

We abbreviate A/(h+ ) < to A/h < z, and introduce the notation A « z,

expressing that eventually the object A will be ready to accept z. Since our language
does not allow object variables, there is no quantification over objects. (However,
object meta variables used in the axioms and the proof rules follow the usual

substitution rules.)
For convenience, we will overload all the above object operators, using the same

symbols at the semantic level as well as at the specification level, except «— which

1s available at the specification level only. As explained below, the < relation is

interpreted as a relation variable ranging over a family of relations «— ,
7 € Z,

defined at the semantic level.

3.2. Validity |

A model for a set of objects P is defined below as a non-empty family of

executions Z and will define the meaning of all the object expressions over P and

object relations, except for <. Instead, it defines a family of relations «— ,
¢ € Z.

Definition (Validity). A sequent |- p from the specification language is valid in a

model if

Vi:ZePi

is satisfied for all values of the free variables, where p; is p with every occurrence

of an < replaced by «+— .
And a sequent |- p is said to be valid, denoted |= p, if
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it is valid in all models for P. We define [ |=p by |=! =p, taking commas in /

as “and”s. Thus free variables in [ or p have the whole sequent as scope and are

implicitly universally quantified.
Similarly, a model for a given specification over P, is a model for P in which

all non-logical axioms of the specification are valid. For a given specification S, a

sequent |- pis valid, denoted |=¢ pifit is valid in every model for S.

Notice that it may well be that neither p nor —p is valid in a model, even when

p is closed, since (Vi : Zep;) V (Vi : Ze —p;) need not hold.

3.3. Modeling

We will use a simple form of interleaving semantics: We imagine that an

execution takes place event by event and that at each execution point, each object
is able to accept a subset of the set of events in its alphabet. Due to (internal and

external) non-determinism, many executions may be possible.
The semantics of a deterministic object can be described by its trace set,

i.e., a prefix-closed set of finite traces. External non-determinism is reflected by
the presence of several traces which are not prefixes of each other. For a non-

deterministic object, this is not sufficient, since a possible deadlock might be

invisible in the trace set. However, in each execution, a non-deterministic object
behaves as adeterministic object. Thus, we may describe anon-deterministic object
by the set of its possible “deterministic instances”, each given by a prefix-closed
trace set. As all the non-determinism may be expressed at the outermost level,
a non-deterministic object P may be regarded as P[P, ---, where each P; is

(internally) deterministic.

However, if the semantics of a set of non-deterministic objects is given by a set

of trace-sets for each object, there is no way to express that a choice made by one

object may depend on a choice made by another object. For instance, a scenario

describing the user interface of two ticket agents may require that the agents may

not both offer the same ticket at the same time. A tank control system scenario may

require that the “high-level detector” will not trigger at the same time as the “low-

level detector”.

In order to capture such dependencies between the objects, we describe a set

of non-deterministic objects P by a set Z of mappings, each associating a prefix-
closed trace set to each object in P, forming apossible combination of deterministic

instances of the given objects. We will talk aboutZ as the set of possible executions,
since an element inZ characterizes an (open) execution (where an environment may

select between the possible traces).
Let [P]? denote the trace set of object P in the execution 7. The semantics of a

set of objects is then given by

Xi :I,P:Pe[P]

We require that each [P]} is prefix closed, that no trace may contain events outside

aP, and that I is non-empty. No other general requirements are needed.
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The trace set of an object continuation is defined in the obvious way, letting

h' € [P/h)} & h;h' € [P]}

Notice that our modeling formalism allows us to distinguish between the trace sets

{e} and (). We introduce a constant L ; to denote the totally meaningless object with

alphabet s, defining

[Ls]f = 0 DEF(L)

and we let 05 denote the totally dead (but meaningful) object, with the alphabet s,

defined by

0] = {e} DEF(O)

Two object expressions with the same alphabet are equal if they have the same

meaning

A=B £ Vis[Al} =B} DEF(=)

We may now express the total trace set of Aby {h | A/h # L,4} or equivalently

by

Tr(A) £ {h|3i:Zehe[A]}} DEF(T'r())

An object is said to refine another with the same alphabet if each possible trace set

of the former also is possible for the latter

AC B 2 Vi3j«[A]} = [B]; DEF(C)

which is the same as {[A]} |¢€ Z} C {[B]} |i € Z}. Two object continuations

with the same alphabet are similar if they have the same sets of trace sets

Axß ž AT BADT A DEF(=)

which is the same as {[A]} |+ €Z} = {[B]; |¢« € Z}. This means that A has

the same possible behaviours as B. A subclass relation, A < B, can be defined

by requiring that B C @A and {(h [ aB) |h € [A]} Nt € Z} C {[B]} |1 € Z}.
Thus, a subclass may extend the alphabet and add trace restrictions.

Notice that P C PriQ, but not P[JQQ C PNO. Since refinement does not

introduceany deadlocks, arefinement of A will preserve typical liveness properties,

stating that each execution A will be ready for something in finitely many steps,
without deadlocking.

Readiness

We let the notation A «— denote ¢ € [A]}, expressing that A is meaningful

(or reachable). Then, A/h«— is equivalent to h € [A], and [A]] is the same as

{h| A/h« }. Thus, the unary «+— relation gives the same expressiveness as [...]},
and all laws and definitions above may be restated interms of the unary «—.

We abbreviate A/(z) «+— to A «— =z, expressing that A is immediately ready
for event z in execution 7. We may express that A is ready for event z in at most n

steps in the execution ? -
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Adz 2 Az DEF(4 )

2+l = 1

A (VyeAe—y= A/(y)& z) i

where [A]} denotes {z | (z) € [A]}}. In order to capture unbounded readiness, we

define « as the least fixpoint of the recursive equation

Acz 2 A—zV [AI; #0 DEF(-)
’ A (Vys A—y = A/(y)«<z) ;

with false as the minimum. Then, A«x expresses that A eventually will be ready

for z in the execution 2. We have (37"1,0 A& 1) = A«z. (The converse need not

hold when oA is infinite.) ' '
For meaningful P, binary «+— has the same expressiveness as unary «— . Thus,

in the (normal) case when all iject constants in P are meaningful, we méy express

all the laws and definitions above in terms of binary —

4. BASIC PROOF SYSTEM

All the classical rules of Gentzen style sequent calculus with equality are

sound (including structural rules and axioms, elimination and introduction rules,
substitution rules, and equality rules and axioms). This also includes rules such

as proof by cases, proof by contradiction, cut, and resolution. It can be proved

by the trivial elimination and introduction of the quantified :-index. However,
skolemization is not sound, unless the -index is taken into consideration.

In addition, standard induction rules are sound, and we may reason about

recursive definitions as usual. For recursive definitions not involving the ready
relation, this is obvious. For recursive definitions of ready relations, all occurrences

of aready relation in a recursive definition must be interpreted by means of the same

execution — which is reasonable.

We focus below on rules and axioms involving the ready relation, first,

presenting a basic system and then some extensions. Our proof system consists of

all classical axioms and proof rules from the firstorder sequent calculus (e.g., as in

[l4]) and additionally, the ones below.

In the proof rules below, we will use the convention that a rule in the form

kP
- g

is the abbreviation of

alp
alq’
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where a is a list of formulas without occurrences of <, i.e., assumptions without ¢

are inherited. Some, but not all rules, allow unrestricted inheritance of assumptions.
In such cases, the inheritance is shown explicitly in the rules. Notice that in this

logic, even if |- p follows from |- ¢, it may be unsound to conclude that |- -g

follows from |- —p (due to the underlying quantifier).
Below, z, y, h, A, B, p, and [ are meta variables ranging over terms (i.e., z and

y range over terms denoting events, h ranges over terms denoting histories, A and

B range over object terms, p ranges over formulas, and [ ranges over lists of (any)
formulas).

The following rule follows from first order logic with equality

IFA=B

I | p(B)
LFp(A)’

where p(A) denotes a predicate with any number of occurrences of A. (Here the

explicit [ signifies unrestricted inheritance of assumptions.)

4.1. Proof rules and axioms

The basic axioms about continuations and unary < are

rA/e = A ; (A1

- A/h/h' = A/h; W! (A2

- A/h — >h€ (aA)* (A3

FA/h =A« (A4

+s $ (A5

- Oos (A6

+kVz+o/(2) £ (A7

kWYheA/hr SR rovided A= aB (eguality)FA=B p

Thus, for two object expressions (with the same alphabet), we have || A = B

if and only if |VheA/h + & B/h + (the “only if” part follows by first

order equational reasoning). Furthermore, we may derive | A # B from

- —-Vhe A/h +— & B/h <+ by equational reasoning. However, we may not derive
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F =(Vhe A/h + < B/h «) from |- A £ B (which would be unsound due to

the underlying quantifier).

Traces

If the notation h € T'r(A) is an abbreviation of A/h # L, we may derive the

following lemmas and rule:

h;h' € Tr(A) & h' € Tr(A/h) (A8

FA/h + = h € Tr(A) (A9

p A/h $
AA/ et t

h eI (trace)

Notice that the assertion |- Vh : Tr(A)e A/h < expresses that A is internally
deterministic, and

F3h:Tr(A)eh #eNA/h 4

expresses that A is inherently non-deterministic. (If A satisfies neither of them, it

may be refined to a deterministic object as well as to a non-deterministic one.)

Readiness

We introduce the axiom

FVh,ze A/h 2z 8 A/hrzr+ (A10

It follows that |- A = Bis equivalent to | Vh,zeA/h + z < B/h + z,

provided both A and B are meaningful and have the same alphabet. Notice that

(A4 is equivalent to | A/(z) +y=> A + z.

The presented logic is sound and relatively complete in the following sense:

Assume that we have rules so that [ |- p ifand only if [ |= p for [ and p without object
expressions. Then, with the addition of the above axioms and rules, we have [ |- p

if and only if |= p for [ and p, involving no other object-related operators than <,

/, and object equality and trace.

The soundness of the above axioms and rules follows by our interpretation and

the semantic definitions. The completeness proof (except for object equality) is

similar to that of [ll], which uses a more complicated semantic model.

In the natural case, where all user-named object constants P are meaningful
(P # 1), all occurrences of unary <— may be removed and re-expressed by means

of the binary <. All occurrences of the unary < in therules and axioms above may
be reformulated with the binary < and object equality.

Letting Alive(A) denote Jz e A + z, the presence of immediate and absolute

deadlock is expressed by | —Alive(A), the absence of immediate deadlock is

expressed by |- Alive(A), and the absence of eventual deadlock is expressed by

| Yhe A/h < = Alive(A/h)
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4.2. Eventual readiness

Readiness in several steps can be axiomatized as follows:

|—onA«l—a: S Aez

n+l
.

n

FVzeA « z 8 Alive(A) A (WeAcy>r=yVA/ly)«-)

Well-founded induction can be used to deduce eventual readiness

FVh,ye A/h<y A (Vh'eh'<hry = A/h <+x) = Alive(A/h) A f(h+y) < f(h)
FA«2x

where < denotes the sequence prefix relation, and f is a total function into the

natural numbers.

(The many-step ready relations used here are interpreted by the corresponding
indexed many-step ready relations.)

5. PARALLEL COMPOSITION

As usual, we let a(A||B) be A U aB. For convenience, we will use a +

operation, augmenting the alphabet of an object: A + s behaves like A except that

it always accepts events from s — @A, thus a(A + s) is @A U s. The + operator will

be used to explain the composition of objects with different alphabets. In particular,
we will have that (A||B) = (A+aß)||(B+aA), where the components of the latter

composition have the same alphabets, and that

(A||B)+z & (A+aß)+z A (B+oA)+z

Modeling

The object A||B is not disjoint from A or B. This dependency can be reflected

in the execution family semantics as follows:

[AIBIf £ [A+aß]}N[B+aAl}
[A+ s]} 2 {h € (aAUs)* |(h [ a4) € [A]F]

Clearly, the defined families are prefix closed and do not contain events outside

the respective alphabets. Notice that for both object operators, its [|}-semantics
is defined in terms of the [|}-semantics of the components. This means that

an execution of a parallel composition is explained from the behaviour of the

components in the same execution. This form of dependency cannot be expressed
within failure semantics. :
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Axioms and proof rules

In addition to the associativity and symmetry of ||, the following laws may now

be proved sound:

- AA = A

- (Al|B) = (A+aß)||(B+ad)
L (AIB)/h = (A/(h1aA)|(B/(h1aB)) forh€ (@AUaB)
| (A+s)/h = (A/(h]ad))+s ,forh€(AUs)*
- A+o = A

- A+s = A+(s—ad)
r (A4+s)+s = A+ (sUs)

Next, we will have to give laws for ready relations over object expressions with the

introduced operators

(A+s)+z & =z€(s—adA)VA+<zx
(A||B)/h+z < (A+4+aß)/h+zxzA(B+caA)/h+z

Thus, (A||B)/h <+ x may be reduced to a formula of the basic system of Section 4.

In particular, for objects A and B with the same alphabet we have

- (A||B)/h+z <& A/h+zAß/h+x

We have that A||B = B iff (all objects of) A is contained in B. Thus, the ||-operator
enables us to express object set inclusion.

Example: Assume that event a is in ®A — aB and that b is in B — aA. Then by
the laws above, A||B+a < A<aand (4||B)/(b) +—a = A+a, thus, we may

prove

(A||B)/(b)+—a = A||B+a

expressing that the composition is ready for a after b only if the composition was

ready for a initially. This is not expressible within failure semantics, as shown in

£l

6. A TICKET AGENT EXAMPLE

Consider a ticket agent A offering tickets to his/her customers. The alphabet
of A includes events in the form A(v), where A denotes the object name, and v

identifies the seat. Customers may accept or reject such events. For instance, if A

is willing to offer seats 1,2, 3 and a customer is willing to accept seats 2,3, 4, then

either A(2) or A(3) will take place.
For an event z, the notation z.VAL extracts the seat identification. The dot-

notation is lifted to event sequences by point-wise extension.
In order to ensure that no seat can be sold twice by an agent A, we state the

following safety requirement:
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| Vhe A/h<+ = nonrep(h.VAL), (Sa)

where nonrep(q) expresses that the sequence ¢ is free from repetitions (i.e., no

element occurs more than once in ¢). The following liveness requirement states that

unsold seats remain available:

FVz,y,he A/h<—x AN A/h+y A .VAL # y.VAL
= A/htz+y

(La)

In a system with only one agent, a most service-minded agent could be characterized

by

Vz,he A/lh+—x & A/hANz € aANz.VAL € h.VAL (Da)

which implies requirements S 4 and L 4 above (and gives a deterministic object).

Two agents

Consider a system with two agents A and B with disjoint alphabets, A(v)-events
and B (v)-events, respectively. We may wish to verify that the parallel composition
A||B satisfies (some of) the requirements above. It is then reasonable to ensure that

one agent cannot offer its customers the same seat as the other agent is offering (at

any time). This gives an additional safety requirement

Vz,y,h,qeA/h+x A B/q+y = x.VAL # y.VAL (Sa,B)

From S4, Sp, and S 4 g, we may derive

Vh,h'sA/h+A B/h' += nonrep(h.VAL; h' .VAL),

which is the same as SAllß' In fact, we may prove that SAllß is equivalent to S4,

Sp, and S 4 g. Also, we may prove that L
Allß

is equivalent to L 4 and Lp.

A service-minded system with two agents can be characterized by

Vh,ve (A||B)/h+Av¢gh.VAL =

((A|B)/h—A(v) V (A|B)/hB(v))
Pap)

(assuming v ranges over seats). This last requirement together with SA” p
Will imply

D
AllB? provided the difference between event A(v) and B(v) is abstracted away.

Such an abstraction may be formalized by a construct A by m, where m is an

abstraction function on events, such that a(A by m) = {m(x) | x € aA}.
Assume S

A||B:
The combination of L4, Lp and D 4 g would mean that the

available tickets are split between the agents initially and that the agents may

not interchange tickets later. D 4 p without L 4 and L would open up for agent
cooperation (such as ticket exchange), whereas L 4 and Lp without D 4 p would

allow the agents to be gradually supplied with the tickets on need (e.g., by a hidden

agent coordinator). .
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Agent cooperation

Since the agents above have disjoint alphabets, we are unable to express in

what way the past of one agent may influence the future of the other. We could

either introduce an agent coordinator (listening to A- and B-events), or extend the

alphabets of A and B, such that they become non-disjoint. For instance, we may

synchronize A and B by adding a special kind of “transfer” event, allowing transfer

of unsold tickets by A to B.

An alternative may be to use asynchronous interaction between A and B: Let

us explore this further and let agents A and B have the same alphabets, letting A

accept all B-events

| Vh,ve A/h+= A/h+ B(v) (L24

and similarly, for agent B. Then L24 and L2p reflect an asynchronous interaction

between A and B. However, any one of S4, Sp, and S 4 g, would now cause

inconsistency. Consider

F Vh,ve A/h+ A(v) = v & (h.VAL) (S’4)

Then S’ 4 and S’ g will imply SAllß
Notice that something like S 4 g is not needed

for this. Cooperation now allows A and B to offer the same tickets. In order to

prove L
AllB?

it still suffices with L 4 and Lp, and La is ensured by the following

two reguirements:

F Vo, w,he A/h< A(v) N A/h+ A(w) ANv # w =A/h+A(v)+ A(w)

Vv, w,he A/h+ A(w) Av # w = A/h-B(v)+A(w)

7. CONCLUSIONS

We have developed a trace-based and observation-based specification
formalism for objects with (internal and external) non-determinism, avoiding
infinite sequences, and state variables. At the specification level, an object is seen

as a simple event relation (ready relation), even though the underlying semantics

(in each model) is a set of such relations. This is done by letting each specification
formula state properties of a single, arbitrary execution. Such specifications are

significantly simpler than, for instance, a CSP specification (by sat), where an object
is specified by a relation over traces and sets.

In contrast to other approaches in the same direction, our formalism enables

us to talk about object equality and to relate several execution points of several

objects in the same specification formula without the risk of making meaningless
or inconsistent specifications as in [®]. Then, it becomes possible to specify
inherent non-determinism. Our formalism is expressive enough to avoid the Brock-

Ackerman anomaly as well as the merge anomaly.
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We have a sound and (relatively) complete basic system, formulated within the

framework of first order logic. In particular, the classical rules and axioms of first

order logic with equality are sound. Skolemization, however, is not sound. An

essential advantage is that parallel composition corresponds to logical “and” (when
adjusted for differences in alphabets).

We have illustrated our formalism with some basic object-forming operators.
In [!!], some more operators are considered, and a lift example (with many lifts

and floors) is specified and designed. Since we avoid infinite sequences, we may
use ordinary generator induction to define functions over traces. This enables us to

develop specifications close to abstract designs. An extension to real-time is being

investigated.
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FORMALISM INTERAKTEERUVATE OBJEKTIDE
SPETSIFITSEERIMISEKS

Olaf OWE

On esitatud loogika mittedeterministlike objektide spetsifikatsioonide
omaduste tdoestamiseks. Objektid spetsifitseeritakse kui siindmuste relatsioonid.

Spetsifitseerimiskeele semantika on määratud mudelite hulgaga, mille puhul
iga mudel vastab teatud relatsioonide hulgale. Spetsifitseerimiskeel voimal-

dab esitada objektide sisemist mittedeterminismi ja siduda iihes spetsifikatsiooni-
valemis mitmete objektide eri tditmispunkte. Keel on piisavalt iildine véltimaks

Brocki—Ackermani anomaaliat ja mestimisanomaaliat. TOestussiisteem on mitte-

vasturddkiv ja (suhteliselt) tdielik. Lisaks klassikalistele reeglitele ja aksioomidele

sisaldab keel objektidega seotud operaatoreid. Spetsifikatsioonide tdpsustamiseks
kasutatakse kahte voimalust: tipsustatakse teatud objektide hulga spetsifikatsiooni
(vidhendatakse vOimalike mudelite hulka) voi tipsustatakse ilmutatud tipsustus-
operaatoriga lihte konkreetset objekti (vihendatakse tditmisjadade hulka koikides

mudelites).
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