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Abstract. Distributed systems consist of a set of processes. These processes cooperate for a

common goal through the use of a communication medium. Gaining an understanding of how

a distributed system works is often difficult and complex. This complexity is introduced by the

communication in the system because it is necessary to understand both the single processes
and how it interacts with the rest of the system.

A method for presenting the complexity of a distributed system is the use of message

sequence charts (MSC). A MSC gives a graphical presentation of a single execution of a

distributed system. Even with this restriction, MSCs easily grow large and incomprehensible.
This motivates the need for tools that allow developers to analyze MSCs.

This paper presents two main results from a project dedicated to building a tool for analyzing
MSCs. The aim of the tool was to reduce the complexity of extracting information from a

MSC. The first main result is a formal description of MSCs. The second result is a language
for describing patterns in a MSC. The tool has been realized in a prototype implementation.
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1. INTRODUCTION

Understanding the details of how a distributed system works is often difficult.

In general, this difficulty is caused by the event-based architecture of distributed

systems. A distributed system consists of several communicating processes. Each

process consists of a sequence of events. An event of a process may initially be

triggered by an external input. This event may trigger a communication event,

which again triggers an event in another process and so forth. As a consequence,
the details of how a distributed system works are based on complex communication

patterns between the processes of the system. .
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A traditional technique for displaying the internal details of how a distributed

system works is the use of message sequence charts (MSCs). A MSC gives a

graphical representation of a single execution for a distributed system. A number

of tools related to the development of distributed systems use MSCs. Examples are

XSPIN [!] and Objectime [?]. Furthermore, it should be mentioned that MSCs are

subject to standardization by CCITT [3].
Aproblem with MSCs is that they easily grow large and incomprehensible. This

problem is caused by the fact that a distributed system can consist of numerous

processes each with complex communication patterns.
In this paper, a tool for analyzing MSCs is presented. The purpose of the tool

is to support developers when analyzing large and complex MSCs. The tool allows

one to use a language for specifying queries. The queries are then executed on a

MSC for retrieving the specified information. The query language is called MSC

pattern description language (MSCPDL) and the tool is called TRACEINVADER.

The paper is structured as follows. First, a number of general terms are defined.

On these terms, the aim of the tool is refined. Then a formal definition of MSCs

is given. This is followed by an informal description of the query language. This

description is closely related to the definition of MSCs. Having presented the query

language and MSCs, a few examples of use are given. The final part contains a

conclusion and a discussion of possible future work.

2. DEFINITIONS

A distributed system consists of a set of communicating processes. These

processes are distributed over a set ofprocessors which are connected through some

communication media.

The behaviour of any process in a distributed system is given by the events

occurring in the process itself [*]. An event is an atomic action, i.e., an action that

is independent of any event of any other process. Examples of events could be an

assignment operation, a communication operation, or a calculation.

A causal relationship between two events of a distributed system is an

indication that one event may have caused or influenced the other event. The

behaviour of a distributed system is given by the events occurring in each process
of the system and the causal relations between these events. Therefore the causal

relations are valuable when analyzing the workings of a distributed system.
As mentioned in the introduction, a MSC is a technique for displaying single

execution of a distributed system. This means that different executions of a system
may result in different MSCs. The difference between executions can depend both

on input to the system and on whether non-determinacy is possible in the specific
implementation. Figure 1a is an example MSC, where the system consists of four

processes. A node of a MSC represents an event and a directed arrow represents
a causal relation. Each process is represented as a vertical line of consecutive

causalities and events. The line grows downward as the time increases. The directed
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arrows that interconnect processes represent asynchronous communication and the

horizontal bidirectional arrows represent synchronizations. In Section 3, a formal

definition of MSCs is given.
Patterns of behaviour describe a subset of a MSC. An example is the

pattern describing an asynchronous communication. Then, each asynchronous
communication in a MSC can be instantiated as an instance of the pattern. Another

example is a pattern that describes a client-server communication. Here, a client

requests a service from a server and the server responds with theresult ofthe service.

Figure 1b is a MSC where an instance of the client-server pattern has been marked

with dotted arrows.

Based on these definitions, the purpose of the tool is refined. The objective of

the tool is to reduce the complexity of extracting information from MSCs by the

use of a simple language, called MSCPDL. The language is designed for describing
the patterns of behaviour. Instances of the described patterns are found through an

efficient search of a MSC.

3. MESSAGE SEQUENCE CHARTS

A MSC is a representation of a single execution for a distributed system. In

this section, a definition of MSCs is given along with a number of operations used

for comparing the nodes in a MSC. Furthermore, a technique for optimizing the

evaluation ofMSC operations is introduced. :

Fig. 1. A small MSC (a), a MSC where a client-server communication has been marked with

dotted arrows (b).
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The definition of MSCs is based on the observation that a MSC is graphs.
Thereforethe definition is given by the firstdefining of the terms node and edge. But

first, an attribute environment is defined. This is a function for supporting storage
and retrieval of information attached to a specific node:

Definition 3.1. [Attribute environment] An attribute is a member ofName, which

is the set ofstrings consisting ofalphanumeric letters. An attribute environment is

a function in the domain Env, = Name — Z mapping from an attribute name to

a value.

A relevant use of the attribute environment is to store the line number of an event

in the linenoattribute. This would allow one to relate the event of anode to a specific

expression in the source code for an application.

Definition 3.2. [Node] A node is identified by a unique number and has an attribute

environmentfor storing attribute values. It is a 2-tuple (i, env,),where i€ 7 and

env, € Env,. The set ofnodes is denoted by Node.

Each node of a graph has a unique identity ?. This allows references to the

specific nodes of the graph by using dot notation (e.z). A node of a graph resembles

an event for a process.

Definition 3.3. [Edge] An edge is a 3-tuple (src, dst,type). {src,dst} € Node
and type € {O, I}. The type indicates whether this edge is directed orbidirectional.

If type is O, then the edge is bidirectional, and if the type is 1, then the edge is

directed. The set of edges is denoted by Edge.

As with a node, dot notation is used for accessing the type of an edge. An

edge can be both directed or bidirectional. If it is directed, then it represents a

causality which can be both an internal causality of a process or an asynchronous
communication between processes. If it is bidirectional, then it represents a

synchronization between the two processes. Having defined nodes and edges, a full

definition of a MSC can be given.

Definition 3.4. [MSC] A MSC is a directed graph defined by the 2-tuple (N, E),
where N C Node and E C Edge. The set ofall MSCs is denoted by G..

The nodes ofa MSC are compared, using the boolean operator synchronization
(=), causality (~), concurrency (||), and minimal causality (—). Given two nodes
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a and b, the operatorsare defined as

a=b 5 z e.type =0

ecE

a~b & z e.type > 0

ecE

allb & —(a~b) A=(a~ b)

a>b & z e.type =l,
ecE

where {E | is the edges of the path between a and b}.
If graph g is built by inserting a directed edge for each minimal causality (—)

from a MSC, then g will be an acyclic digraph.

The final property on a MSC ensures that no message can go back in time.

Furthermore, the causality operator (~) is transitiveand not reflexive, meaning that

the situation a ~» b and b ~» a cannot occur.

In terms of implementation, the operations =, ~», and || are quite inefficient.

The inefficiency is caused by the use of paths in the operations. Finding a path
between two nodes in a MSC is the worst case O(n), where n is the number of

nodes of the MSC. By introducing vector time [°], these operations can be optimized
significantly at the price of memory usage.

Vector time is a technique where each event in the MSC is stamped with a time

vector. The value of the vector increases as events occur, which means that no vector

is ever decremented. By comparing these vectors, using the two operators defined

in [°], one can efficiently evaluate comparisons, using the operators =, ~», and ||.
Vector time is defined as follows:

Definition 3.5. [Vector time] A time vector is a 2-tuple (i,t) € VT = Z x Z",
where t is a n-tuple indicating the knowledge ofthe n clocks in a system and i is the

index of the local clock. The dimension of the time vector is n.

Defined on a time vector are the boolean operators =, ~», and ||. Given

two yector times vy = (i1,(l11,--,t1,n)) and v 9 = (i2,(t21,-+-,%2,n)), the

operators are defined as:

vl=v2 & tii=tifori=l,...,n

v Uy 9 üi Sti NU iy <ti

'l)l||'l)2 S —!(’1)1 A 'U2) A —l('Uz A 'UI),

where = checks for synchroneity,~ for causality, and || for concurrency.

A description of the algorithm for constructing vector time on a MSC is given
. 6 .
in P].
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4. MSCPDL LANGUAGE

In this section, an informal presentation of the language MSCPDL is given.
First, the ideas and requirements of the language are stated. Next, the language
is presented. The presentation is followed by two examples which illustrate the

expressiveness of MSCPDL. A full operational semantics of the language is given
in [°].

A definition of MSCs is given in the final section, where a simple language for

extracting information from a MSC is described. The idea is to extract information

from a MSC by first describing the patterns of behaviour and then searching for

instances of these patterns.
Describing complex patterns of behaviour reguires a mechanism for allowing

abstraction. Otherwise, the work needed for describing a complex pattern will be

unreasonable. Furthermore, the language should focus on describing the patterns
of behaviour and not on how the search for patterns is done. With these two goals,
inspired by Prolog [7] and general language principles, MSCPDL was designed.

4.1. Rules

Patterns are generally described through a number of rules. Eachrule consists

of a name, an interface, and a disjunction with one or more expressions. Each

expression of a rule is a pattern description. This means that an instance of the rule

is found if one of the expressions is matched. A rule has the following form:

rlargs). & Eil/E2|...|En;

This declaration binds the rule r with the set of formal arguments args to the

expressions F to E,. Each expression of the rule has a private scope.

Expressions are build using three different groups of expressions: simple
expressions, combined expressions, and rule invocations. In the following, these

groups of expressions will be discussed.

4.1.1. Simple expressions

The simple expressions of an expression mostly correspond the different

boolean operators that were defined on a MSC 3.4, only the ~» operator has been

omitted.

Causality expression (¢ —f): Models the existence of a causality in a MSC,
between nodes e and f of the MSC.

Sync expression (e <+ f): Models the existence of synchronous relationship
between nodes e and f of the MSC.

Parallel expression (e||f): Models the existence of parallel relationship between

nodes e and f of the MSC.
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In these expressions, e and f are variables. An instance of apattern described by
a single simple expression may include both edges and nodes, depending on which

expression is used. An example is the pattern described by the expression e — f.
An instance of this pattern will both describe the two nodes e and f and how they
are causally related. But an instance of the pattern e||f will only include the two

endpoints, since there is no causal relation to include.

As explained in the definition of a node, each node of the MSC has a

set of attributes. The language allows the utilization of attributes by allowing
comparisons. Nodes of the MSC can be compared by comparing their attributes

with the attributes of other nodes or constant values. Syntactically, dot notation is

used for referring to a value of a specific attribute.

Comparison expression (C; 6 C;): Models the existence of a relation between

attributes bound to events or a constant value.

C; and Cj can be any attribute (e.p;) and (f.p;) or a constant n. 6 can be any
of {<,<,=,#,>,>}. An instance of a comparison is the one or two nodes that

fulfill the comparison.

4.1.2. Combined expressions

Simple expressions are combined in conjunctive and disjunctive expressions.
The order in which the simple expressions are placed in a conjunction or disjunction
is unimportant for the semantics of the pattern description. When it comes to the

evaluation of an expression, it is evaluated from left to right.

Disjunction expressions (F; V E»): The disjunction of the two expressions £; and

Es.

Conjunction expressions (E; A Fs): The conjunction of the two expressions 1
and Fs.

The scope of a combined expression is the entire expression. This means that

variables used in more than one expression of the conjunction or disjunction are

shared. Shared variables provide a simple technique for binding the expressions
of a combined expression together. Combined expressions are instantiated by
instantiating each of the simple expressions of the combined expression.

4.1.3. Rule invocation expressions

The expressive power needed for expressing patterns of behaviour is fulfilled by

allowing compositionally defined patterns of behaviour. Patterns can be described

compositionally by supporting rule invocations. Rule invocations are treated

equally to simple expression. This means that it is possible to describe recursively
defined patterns of behaviour, such as the transitive closure between two nodes in

the MSC.

Rule invocation expressions (r(z1,... ,%,)): The rule invocation of the rule r

with the actual parameters z1,... ,Zj. -
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Rules are invoked with static scopes. The following is an example of two rule

definitions:

foole,f)'< "lei—.
bar(a,b) <« foo(a,b).

In the example, therules foo and bar are defined. Thebar rule invokes the rule

foo. When therule foo is invoked, then a separate scope is created for the evaluation

of the e — f expression. The bar rule will have access to the result through the

actual parameters after the evaluation offoo(a, b).

4.2. Queries

A query is the outermost expression of a pattern description. It is an expression
that applies a combination of rules for giving a final pattern of behaviour. In terms

of syntax, it is simply an expression terminated with a question mark.

An example is the query: e — f 7 When this query is evaluated, all instances of

the pattern e — f are found from a given MSC.

4.3. Syntax

Having given a description of the different parts of MSCPDL, the full syntax is

given on BNF:

(Q) == (Dr)(E)?

(DT) u— T('Tla"' axn)<:<E><DT> IE

(B) == eoi FI(C1) 2 (C») | r(t1,... »Tn) | (E 1 A AEB2) | (E1 V (E2

(O) := n|e.p,

where 6, € {—=, ¢, ||}, 62 € {<,<,=,#,>,>}, n € Num and Num is the set

of all integer numerals.

4.4. Evaluation

Queries are evaluatedby searching a MSC for the instances of a specific pattern.
A more precise description is as follows:

Definition 4.1. [Evaluation] The evaluation function in MSCPDL is a function in

the form: G¢ — (Q < 2G¢), where Q is the set ofall queries.

This definition describes the evaluation function as afunction that given aMSC

and a pattern description, it returns a set of MSCs. This means that an instance of

a pattern is a new MSC. Such an instance MSC consists of the nodes and edges
described by the matched pattern. Additionally, a name space mapping is included.

This name space maps variables of the query to nodes. Instantiating a pattern as a

MSC allows one to continue with a search for patterns in the new MSC.
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4.5. Implementation

The described language and a search algorithm has been implemented in a

prototype with a graphical userinterface. The prototype is called TRACEINVADER.

In TRACEINVADER one can describe patterns of behaviour and search for instances

of these in a MSC. Instances of queries are marked in the MSC, as shown in Fig.
Ib. It should be mentioned that the prototype takes advantage of vector time as

described in Definition 3.5.

5. EXAMPLES

In this section, two examples of pattern descriptions are given to illustrate the

basic capabilities of MSCPDL.

5.1. Successive communications

The first example is aquery that describes two successive communications from

one process to any otherprocess. Figure 2 is a MSC of the pattern described in the

example.

Example S.l.

Rules: com(a,b) <a— b A b.pid # a.pid;

Query : com(e, f) ANe —g A e.pid = g.pidA
com(g, h) A f.pid = h.pid?

where pid refers to the process identity attribute.

The example applies the rule mechanism for defining a general asynchronous
communication. This results in therule com(a, b). Having defined an asynchronous
communication, the query describes the two successive communications, using
simple expressions and the com(a, b) rule. :

Fig. 2. The pattern of two successive communications.
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5.2. Client-server communication

The next example uses recursion for describing a client-server communication.

An instance of the pattern is shown in Fig. 3.

Example 5.2.

Rules: com(a,b) <a — b Ab.pid # a.pid;
tc(a,b) < a — b Aa.pid = b.pid |

a —> c A a.pid = c.pid A c.type = “int” Atc(c,b);
clientserver(a, b, c,d) < com(a,b) A tc(b,c) A com(c,d)A

a — d A a.pid = d.pid;

Query : clientserver(e, f,g,h)?,

where pid refers to the process identity attribute and the “type” refers the type of
event. Events of the type “int” are events that do not involve any communication.

The tc(a, b) rule uses recursion to find the transitive closure between two nodes.

In this case, an invariant has been put on the elements in the closure. The invariant

says that events of the closure should be of the type internal (type = int). The

recursive part of the tc(a, b) rule is evaluated as i PROLOG. First, the variables a

and c are bound, then the rule is instantiated. The clientserver(a, b, c, d) rule first

describes a communication from one process to any other process. The tc(a, b) rule

is then used for describing any number of consecutive internal events in a server

process.

6. CONCLUSIONS AND FUTURE WORK

The purpose of the tool described in this paper was to minimize the complexity
of extracting information from a MSC by the use of a simple language.

Fig. 3. The pattern of the client-server communication. The dotted arrow means zero or more

edges and nodes.
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A solid foundation was provided for the tool by a formal definition of a MSC.

The definition supports both synchronous and asynchronous communication. In the

definition of a MSC, a number of boolean operators were defined for comparing
events of the MSC. Efficient evaluation of the operators was ensured by introducing
a technique based on vector time.

Based on the definition ofMSCs and PROLOG, a small but expressive language
was designed. The language has close relation to MSCs, because it uses the

operations defined on a MSC. The expressiveness of the language was ensured by
allowing the rule-defined pattern descriptions, which can be invoked recursively.

The language has been implemented in a prototype tool. The tool provides a

graphical userinterface by which it is possible to analyze a MSC by searching for

a specific pattern of behaviour. The implementation takes advantage of vector time

for ensuring an efficient search for patterns.

Optimization of the search for patterns described in MSCPDL is

quite complicated because of the recursive nature of the patterns. A study of this

issue is relevant because a developer needs freedom to describe a pattern, without

worrying on how it is retrieved. Furthermore, it would be interesting to test the

expressibility of MSCPDL in a larger context. In XSPIN [l], MSCs are generated
as a result of simulating distributed systems. An idea is to analyze MSCs that are

produced during these simulations.
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MSCPDL -KAITUMIST ULDISTAV KEEL

Mikkel CHRISTIANSEN

On defineeritud MSCPDL keel, mis lubab vihendada sdnumite jérjestusdia-

grammidest (MSC) informatsiooni ekstraktimise keerukust. MSCPDL vo6imaldab

nn. kiitumiskujunditena esitada abstraktselt MSC tippudevahelisi pohjuslikke
seoseid. Keel on realiseeritud MSC analiiiisikeskkonna prototiiiibina, mida saab

kasutada MSCPDL-is kirjeldatud kujundite eksemplaride otsimiseks. Edasise t6O

eesmirk on selgitada analiisaatori praktilisi voimalusi vorguprotokollide analiitisil.
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