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1. INTRODUCTION

Finitely-valued logics have numerous applications to computer science in

such areas as hardware verification, nonmonotonic reasoning, theory of logic
programming. This has aroused interest in the investigation of automated theorem

proving for finitely-valued logics.
In this paper tableau-based theorem proving for some of the three-valued modal

propositional logics is discussed. We consider three-valued counterparts (two for

each logic) of well-known two-valued modal logics K, K4, T, B, S4, S 5 (see,
e.g. [']) denoting them by K;, K4;, T;, B;, S4;, 55,1 € {2,3}. Anotion of

Kripke frame for these logics is as in the two-valued case, but now truth values

of formulas at possible worlds are from the set {true, false, undefined}. These

counterparts (except for logics K 4 and B) are considered by Takano in [?], where

the cut free sequent calculi for these logics are constructed.

In this paper the formal proof procedures called the prefixed tableau systems
are introduced for the logics K;, K4;, T;, B, S4;, S5;, ¢ € {2,3} and soundness

and completeness theorems are proved for these systems. The importance of the
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prefixed tableaus is that they provide us with the algorithm to determine whether a

formula is valid.

Prefixed tableau systems for the two-valued modal case were elaborated by

Fitting in [*]. These are refutation procedures, i.e. we attempt to obtain a falsifying
model of possible worlds for a given formula. In a prefixed tableau each formula

has a prefix. Prefixes of formulas represent the names of possible worlds and the

accessibility relation between the worlds is reflected by syntactic features of these

names.

The paper is organized as follows. In Section 2 we introduce the syntax and

semantics of the three-valued modal logics. In Section 3 the prefixed tableau

systems for these logics are presented and soundness of the systems is proved. In

Section 4 we prove the completeness for these systems. Section 5 contains some

concluding remarks.

2. SYNTAX AND SEMANTICS

We put 7' = {l, 2, 3} and shall use 7 as the set of truth values. Intuitively, the

truth values 1,2, 3 stand for “true”, “undefined”, and “false”, respectively. We let

A, W, v, ...

denote truth values.

Formulas are constructed from propositional variables by means of

propositional connectives and the necessity operator ; we assume that for

each propositional connective F' the arity a(F) > 0 and the truth function

fr: T*F) — T are predetermined.

Definition 2.1. A valued formula is any pair ofa formulaand a truth value.

Definition 2.2. A (three-valued) Kripke frame is the triplet (W, R, v), where W

is a nonempty set (set ofworlds), R is a binary relation on W, and v is a mapping
which assigns a truth value fromT to each pair ofa propositional variable and an

elementof W.

Definition 2.3. Suppose that (W, R, v) is a Kripke frame and i € {2,3}. We call

the triplet (W, R, v') a (three-valued) Kripke structure of type i (generated from
(W, R, v)) ifv* is the mapping which assigns a truth value to each pairofa formula
and an element ofW and is defined by recursion as follows:

v*(p, s) = v(p, s), where p is a propositional variable;

vz(F(Ala vt 7Aa(F))7 8) — fF(fUl(Ala 3)7 i 7vz(Aa(F)7 3));

1, if sRt implies v2(A,t) =1 for every t € W;
v?(OA,s) = { 2, if sRt and v?(A,t) = 2 for some t€ W;

3, otherwise.

i ={l, of sRt z:mplies v3(A,t) = 1 for everyt €W;
3, otherwise.



176

Let L be a modal logic. Models of L are defined as follows.

Definition 2.4. Models of K; are nothing but the Kripke structures of type 1,
whereas a model of T;, K4;, B;, S4; is a Kripke structure (W, R, v*') of type i

such thatR is reflexive, transitive, reflexive and symmetric, reflexive and transitive,
respectively. A model ofS5; is a Kripke structure (W, R, v"), where R isreflexive,

symmetric and transitive.

Let L; be one of the logics we are considering.

Definition 2.5. A valued formula (A, p) is L;-satisfiable if there exist a model

(W, R,v") of L; and a world s € W such that v'(A,s) = p. A valued formula
(A, w) is Ls-valid iffor each model (W, R, v*) of L; and for each world s € W,

oAS

Note that a valued formula (A, ) is L;-valid iff valued formulas (A, p 1),
(A, u2), where pi, po € T — {u}, are L;-unsatisfiable.

3. PREFIXED TABLEAUS

We shall consider informally the notions of trees, branches, nodes, etc. The

symbols
A A
- and —m«+——————

BRI Bol) 700 B Bi+By+...+B,
will respectively denote trees of the following form ;

Those symbols will be abbreviated by the following expressions, respectively:

byK AR, e,08¢£ ©
Q{Bi:igm}’ +{Bzz§m}

Definition 3.1. A prefix is a finite sequence ofpositive integers. A prefixed valued

formula o(A, \) is a prefix o followed by a valuedformula (A, \).

We shall systematically use o, o', etc. for prefixes throughout this paper. The

prefixes will be interpreted as naming worlds in some model. o(A, \) means that

under this model A is forced to have the value )\ in the world o names.

A

| A

o Bi /l\
' | and O o 08

o B Bi B Bm

o B .
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We define tableau rules as follows. These rules are divided into two parts:
the rules for formulas of the form F(A;,...,A;), where F' is a propositional
connective, and the rules for modalized formulas. We begin with formulas of the

form F(A1,...,A,) and present the rules for these formulas following [*]. (In

fact, these rules are obtained from the definition of the rules for the formulas of the

form F(A,,... ,A,,) from [*] by omitting the first condition.)
For each prefixed valued formula 0(F(A1,... ,An), A), where F' is an m-ary

propositional connective, we define the rule as follows:

O’(F(Al, ea ,Am),Ä)
+{U(Ail,)\jl) O--- OO'(Ai„Äjt) TR il AS S A m

|

and the propositional condition Hy(F;Ay, ... ,Aj,) holds}

where H) (F; Aj,, ... ,Aj,) means that

(1) if f represents the connective F', then

f(l/l,... s Vitgyeoo yVigyeee 3 Vigy v ,I/m) =X

for all values of the function f, where v;, = A;, and other V's are arbitrary; and

(2) no t’ <t satisfies (1).
Before presenting rules for modalized formulas we give some more

terminology. The following two definitions are borrowed from [l].

Definition 3.2. We say a prefix o is used on a tableau branch ifoZ occurs on the

branch for some valued formula Z. We say a prefix o is unrestricted on a tableau

branch if o is not an initial segment (proper or otherwise) ofany prefix used on the

branch.

Let o be an arbitrary prefix.

Definition 3.3. We say the relation of“accessibility from” on prefixes satisfies:
(1) the general condition if o,n isaccessible from o for every integer n;

(2) the reverse condition ifo is accessible from o, n for every integer n;

(3) the identity condition if o is accessible from o;

(4) the transitivity condition if the sequence o, 0’ is accessible from ofor every

non-empty sequence o’.
For the various logics we are considering, the conditions which the accessibility

relation on prefixes satisfies are given in the following chart.

Logic l Conditions

Ki General

K4; General, transitivity
T; General, identity
Bi General, identity, reverse

S4; General, identity, transitivity
SÕi No special conditions, any prefix is accessible from any other
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Definition 3.4. A prefixed formula o (A, \) which occurs over the line ofa rule is

called a premise of the rule. Let By + ... + Bj be the expression below the line in

a tableau rule. We say that B;,1 < 1 < j, is a consequence of this rule.

Now we present the tableau rules for modalized formulas. Each of these rules

has conditions that depend on a branch which is supposed to be extended by this

rule. So, let @ be a branch such that 6 contains the premise of the rule and 8 will be

extended by this rule.

let L; be a logic we are considenng = i.e. 3. €l2 3%
L e {K,K4,T,B,54,55}.

For a logic L, these rules are defined as follows:

R 1 %, where o’ has been used on 8 and is Ly-accessible from o.

o(DA, 2) . :
R 2 o,n(A,2)' where o, nis an unrestricted prefix on 6.

-~ o{OA3) — ! : .

R 3 A+(A3)’
where ¢’ has been used on 6 and is Ly-accessible from o.

o(0A,3) . .
R 4 oA,3)’

where o, nis an unrestricted prefix on 6.

For a logic L 3 the tableau rules for modalized formulas are defined as follows:

R'l %(7%%—11)—), where o' has been used on 0 and is L3-accessible from o.

! o(OA, 3) : .R'2
oA + o nA3

where o, nis an unrestricted prefix on 6.

A tableau is a tree, with each node labelled with a prefixed formula.

Definition 3.5. A L;-tableau for a formula (A, X) is any tree whose first node is

theformula 1(A, \) and the next nodes are determinedby the following procedure:
if a branch of the tree contains a prefixed formula oZ and a tableau rule with the

premise oZ for the logic L; is defined, then this branch can be extended by adding
new nodes through the application of this rule to oZ (following the convention that

formulas separated by “O” go into the same branch and sets of formulas separated
by “+” go into different branches).

Definition 3.6. A L;-tableau branch is closed if it contains both (A, ) and

o(A,p), A # p, or the branch contains some nonatomic prefixed formula o(A, \)
and there exists no defined tableau rule with the premise o(A, \) for the logic L.
A tableau is closed if each branch of it is closed.

Example. Consider the logic K53. Let the propositional binary connective D be

defined as follows: :
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. 3 2

] )1 3 2

B | |

2)1 2 2

Then the tableau rules for > are as follows:

o(AD>B,1)
BD +0(4,357

°

o(A D 8,3)
o(A,1) oo(B,3) (3)

o(A2 8,2)
(59)

o(A,;1) oo(B,2) +O(A,2) 0oo(B,3) + 0(A,2) oo(B,2) —*"
We construct a Ko-tableau for the formula

(O(A D B) D (OA D OB),3) as follows:

1. 1((A4 5 B) 5 (045 0B),3)
2. 1(0(45 B), 1) from 1. by D 3
3.1(0A > OB,3) from 1. by D 3
4. 1(0A,1) from 3. by D 3
5. 1(08, 3) from 3. by D 3
6. 1, 1(B,3) from 5. by R 4
7. 1, HAD B,1) from 2. by RI

8. 1, 1(A,1) from 4. by R 1

9a. 1, 1 (B, 1) from 7. by D; 9b. 1, 1(4, 3) from 7. by D 3
X X

The tableau is closed.

The definition of satisfiability below shows that we treat a tableau as the

disjunction of its branches and a branch as the conjunction of its nodes. Let L be a

logic we are considering. For short, we refer to the accessibility notion on prefixes
that is appropriate for L as L-accessibility.

Let 2Z; be a logic we are oconsidering, = i.e. i € {2,3},
Le{K,K4,T,8,54,55}. Let S be a set of prefixed formulas and let M =

(W, R, v*) be an L;-model.

Definition 3.7. By an L;-interpretation of S in the modelM we mean a mapping 1

from the set ofprefixes that occur in S to W such that ifa prefix T is L;-accessible

from a prefix o, then I(o)RI(7). S is L;-satisfiable under the L;-interpretation J

if, for each o(A,\) € S, v'(A,I(0)) = \. S is L;-satisfiable if S is L;-satisfiable
under some L;-interpretation.
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Loosely, a set of prefixed formulas is L;-satisfiable if it partially describes some

model.

Definition 3.8. A tableau is L;-satisfiable if some branch of it is L;-satisfiable. A

branch is L;-satisfiable if the set ofprefixed formulas on it isL;-satisfiable.

Note. This use of the term L;-satisfiable should not be confused with L;-satisfiable
for valued formulas (Definition 2.5 above).

Let L; be a logic as above.

Lemma 3.9. Suppose T is a prefixed tableau that is L;-satisfiable. Let T' be the

tableau that results from a single L;-tableau rule being applied to T. Then T is

also L;-satisfiable.

Proof. As the proof of Lemma 3.1 in Chapter 8 in [l]. []

Corollary 3.10 (soundness). /f there existsa closed L;-tableau for (A, X), then the

valuedformula (A, X) is L;-unsatisfiable.

Proof. Suppose that there exists a closed tableau for (4, ), but there are an

L;-model (W, R,v") and a world s € W such that v*(A,s) = A. Define an

L;-interpretation Iby setting (1) = s. It follows that the starting L;-tableau

{I(A, M)} is L;-satisfiable. Then, by Lemma 3.9, every subsequent L;-tableau is

L;-satisfiable. But an L;-satisfiable tableau cannot be closed, which contradicts the

assumption. []

4. COMPLETENESS

In this section the completeness theorem is proved for every logic L we are

considering. The proof of this theorem follows the proof of completeness for

prefixed tableaus for two-valued modal logics presented in ['].
We describe a systematic procedure for constructing tableaus for each logic Lj;,

i € {2,3}, L € {K,K4,T,B, 54,55}. This procedure must produce a closed

tableau if one exists and if there is no information necessary to construct a model.

Certain formulas in a tableau must be considered over and over in any
reasonable proof procedure. Namely, if 0(0A, 1) occurs on a branch, we want to

make sure that o’(A, 1) has been introduced for each prefix o’ accessible from o

which is used on the branch. As time goes on, there may be more and more such

prefixes. This means that we want to work with o(O0OA, 1) many times. In our

systematic procedure we proceed as follows: Whenever a branch 6#; is obtained

from a branch 0 by adding a formula ¢’Z, where ¢’ is an unrestricted prefix on

0, we apply the tableau rule to each formula of the form o(0OA, 1) on #; such

that o’ is L;-accessible from o, i.e. we add o'(A4, 1) to the branch 6, (the actions

just described are formulated as the instruction Z(6;, L;) defined below in the

definition of the systematic procedure). Similarly we work with formulas of the

form o(0OA, 3) in case of a logic Ls. ;
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Let (A4 \) be a valued formula. The systematic L;-procedure for (A, \) has

different stages and is defined as follows.

Stage 1. Begin by placing 1(A, A\) at the root. This concludes stage 1. Suppose that

n stages of the construction have been completed. Ifthe tableau we have constructed

is closed, then stop. Likewise, stop if every occurrence of a prefixed formula is

finished. Otherwise go on to

Stage n + 1. Choose an occurrence of a prefixed formula that has not been finished

as high up in the tree as possible on the leftmost branch, say itis (B, ). IfB is

atomic, simply declare the occurrence finished. This ends stage n + 1. Otherwise

we extend the tableau as follows: for each open branch @ through the occurrence of

o(B,p) :

(1) let Bbe of the form F(A;,... ,Ay). Foralogic L;, 7 € {2,3}, let the

tableau rule for (B, 1) have k consequences (see Definition 3.4 above).
Then split the end of 6 into k£ branches and add these consequences to the

ends of these branches, respectively;

(2) let (B,u) be of the form (0A,1). For a logic L;, i€ {2,3}, let

oj, 1 <j <m, be all the prefixes which have been used on # and are

L;-accessible from o. Then extend § by adding nodes 0;(A4,1),1 < j < n;

(3) let (B, u) be of the form (0A,2):

(a) for alogic Ly let k be the smallest integer such that o, k is unrestricted

on 6. Then add o, k(A, 2) to the end of 6.

Let 6; be an open branch obtained from 6 as just described. Then

perform the instruction Z(6;, Ly) defined as follows: let o;(0A;,1),
1 < i < n, be all the formulasof the form ¢’(OA, 1) on #; such that o, k

is Lo-accessible from o;, 1 < ¢ < n. Then extend 6; by adding nodes

o,k(A;i, 1), 1 <l4 < n. This is the end of the instruction Z(601, L).
Let 6, be an open branch obtained from 0i after performing
the instruction Z(6;, L 2). Then perform the instruction Z;(63, L)
defined as follows: let 0;(0A4;,3), 1 <i <m, be all the formulas

of the form ¢'(OA,3) on 6, such that o,k is Ls-accessible from

oi, 1 <l< m. Then extend 3, applying the rule R 3 to formulas

0i(0A4;,3), 1 < i < m, step by step as follows: step 0: put 80 = 6,;
step i, 1 < i < m: let B°—! be an open branch obtained by step i —1;
then split the end of o°—! and add o, k(A;, 1) to the end of one fork and

add o, k(A;, 3) to the end of the other. This is the end of the instruction

71(62, Ls).

(b) for a logic L 3 the branch 6 which contains (OA, 2) is closed (see the

definition of the closed branch). So this case is excluded.

(4) let (B, p) be of the form (OA, 3):
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(a) for alogic Lo let k be the smallest integer such that o, k is unrestricted

on 6. Then add o, k(A, 3) to the end of 6.

Let 6; be an open branch obtained from @ as just described. Then

perform the instruction Z(61, Lo) defined above.

Let #; be an open branch obtained from 6; after performing the

instruction Z(61, Lo). Then perform the instruction Z; (63, Ly) defined

above.

Let 63 be an open branch obtained from 6, after performing the

instruction Z;(62, L3). Let 03, 1 < @ < m, be all the prefixes which

have been used on 03 and are Ly-accessible from o. Then extend 63,

repeating the application of the rule R 3 to the formula o(0A, 3), step
by step as follows: step 0: put 80 = 63; step i, 1 < i < m: let o°—! be

an open branch obtained by step i —1; then split the end of #*~! and add

Oi(A, 1) to the end of one fork and add o;(4,3) to the end of the other.

(b) for alogic L 3 let k be the smallest integer such that o, £ is unrestricted

on #. Then split the end of the branch # and add o, k(A, 2) to the end

of one fork and o, k(A, 3) to the end of the other. Let #; be an open
branch obtained from€ as just described. Thenperform the instructions

Z(oy, L3) defined above.

Having done this for each open branch 6 through the particular occurrence of

o(B, i) being considered, declare that the occurrence of o(B, ) isfinished. This

completes stage n + 1.

If the construction of a tableau never terminates, then an infinite branch must

always be involved as follows from famous K&nig’s lemma.

Definition 4.1. A tree is finitely generated ifeach node has only a finite number of
immediate successors.

Lemma 4.2. (Konig’s lemma). An infinite finitely generated tree has at least one

infinite branch.

Proof. See [']. D

Let L; be a logic we are considering, I.e. i€{2,3}, LEe€

{K,K4,T, 8,54,55}.

Definition 4.3. Let S be a set ofprefixed formulas. We say that S is L;-downward
saturated if:

(1) for no atomic formula A, prefix o,and truth values X\, i, A £ u do we have

o(A,)) € Sando(A,p) € S;

(2) for eachformula o(A, \), such that there does not exist any defined tableau

rule forL; with a premise o(A, \), we have (A, \) € S;

(3) ifo(F(AI,... ,Am), A) € S and there exists a defined tableau rule with a

premise o(F(Ay,...,Am),\), then some consequence of that rule belongs to S;
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4) if 0(0A,1) € S, then, for each prefix o' that occurs in S and is

L;-accessiblefrom o, ' (A, 1) € S,

(5) for a logic Ly: ifo(oA,2) € S, then, for some o' that is Lo-accessiblefrom

o, o'(A,2) € S;

(6) for a logic Ly : ifo(oA,3) € S, then

(a) for each prefix o' that occurs in S and is La-accessible from o,

o'(A,1) € Sord'(A,3) € S; and

(b) for some prefix o' that is Lo-accessible from o, o'(A,3) € S;

(7) for a logic Ls: if 0(0A,3) € S and A isof the form 08, then, for some

prefix o' that is Ls-accessiblefrom o, o'(A,3) € S; ifo(oA,3) € S and A is not

of theform 08, then, for some prefix o' that isLz-accessiblefrom o, O'(A,2) € S

oro'(A,3) € S.

Lemma 4.4. If S is L;-downward saturated, then Sis L;-satisfiable .

Proof. Suppose S isL;-downward saturated. Construct a model as follows.

Let W be the set of prefixes that occurs in S. For o, 0’ € W, let 0Ro’ provided
the prefix ¢’ is L;-accessible from o.

Define a valuation v as follows: for ¢ € W and atomic A |

(4,0) =
A,f o(A,X) €SS,

N) =

1, if o(A,u)£Sforeach u ET.

This determines a frame (W, R, v) anda structure (W, R,v"). It is easy to check

that therelation R satisfies the conditions for the logic L;.
Let o(B, \) be a prefixed valued formula. By induction on the complexity of B

it can be verifed:

if o(B,\) €S, then v(8,0)=2.

Finally, S is obviously L;-satisfiable in the L;-model just constructed under the

L;-interpretation I that is simply the identity map on prefixes of S. O

Let L; be the logic we are considering, i.e. i€{2,3}, L€

{K,KA4,T, B, S4, Ss}.

Theorem 4.5. If a valued formula (A, ) is L;-unsatisfiable, then a systematic

Lj-procedure for theformula (A, \) produces a closed L;-tableau.

Proof. We show the contrapositive. Suppose that there exists a systematic
L;-procedure for (A, \) which produces a L;-tableau 7" which is not closed. If the

procedure ever terminates, there is an open branch in 7, say 6. Likewise, if the

procedure does not terminate, then, by Konig’s Lemma 4.2, there still is an open
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branch, say 0, again. It is easy to check that the set of formulas on the branch 6

will be a L;-downward saturated set. Then, by Lemma 4.4, this set of formulas

is L;-satisfiable. But 1(4, ) is on 6, hence in the L;-model with the valuation

v, defined in the proof of Lemma 4.4,v*(A,1) = ), i.e. the formula (4, \) is

L;-satisfiable. Contradiction. []

As we mentioned above, a valued formula (A, A) is L;-valid iff both formulas

(A, A 1), (4, A2), where A;, Ay € T — {A}, are L;-unsatisfiable. This yields the

following

Corollary 4.6 (completeness). If a valuedformula (A, \) is L;-valid, then there

exist a closed Li-tableau for the formula (A, \1) and a closed L;-tableau for the

formula (A, X2), where Al, o €T — {A}.

Corollary 4.7. If there exists a closed L;-tableau for the formula (A, )), then a

systematic L;-procedure for (A, \) produces a closed tableau.

From these corollaries we get the following algorithm to determine if a valued

formula (A, \) isL;-valid: carry on systematic L;-procedures for formulas (A, A 1),
(A, \2), where Al, Ag € T — {\}.

S. CONCLUDING REMARKS

In this paper we presented prefixed tableau systems for some three-valued

propositional modal logics. We proved soundness and completeness theorems for

these systems. The completeness proof involves the argument of a systematic
procedure to construct tableaus. As shown in Section 4, this procedure provides
us with the algorithm to determine if a valued formula is valid.

As in case of two-valued modal logics (see [']), the notions of

logical consequence for valued formulas can be introduced and soundness and

completeness theorems for them can be proved.
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PREFIKSIGA TABELID KOLMEVALENTSETE

PROPOSITSIONAALSETE MODAALLOOGIKATE TARVIS

JirateSAKALAUSKAITE

On esitatud moningatele kolmevalentsetele propositsionaalsetele modaal-

loogikatele sobivad prefiksiga tabelite siisteemid. Prefiksiga tabelite siisteemide

mittevasturddkivuse ja tdielikkuse teoreem on tdestatud Kripke tiilipi semantikate

suhtes.
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