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Abstract. Wave propagation in one-dimensional bodies with a scalar microstructure is

discussed. Under suitable constitutive assumptions on the microstructure, i.e., dry friction

dissipation, and on the body, i.e., purely elastic or viscoelastic, a strong absorbing effect on

the propagation of disturbances is shown. The presence of a threshold for the amplitude of

the incoming wave, in case of shocks, allows for undamped propagation of initially large
disturbances, namely a wave with constant amplitude, while initially small amplitude shocks

are dissipated. As the critical value depends on the state of deformation ahead of the wave, a

self-adaptive behaviour arises.
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1. INTRODUCTION

A passive self-adaptive structure is able to modify its response to external

disturbances both in dependence from varying external controls and from the

characteristics of the external disturbance itself. On the other hand, many composite
or complex materials (e.g., liquid crystals, microfractured materials, polymers, and

so on) may be described in terms of microstructures.

This work discusses the possibility that a simple model of a microstructure, with

internal dissipation of viscous or dry friction type, may give an account of a passive
self-adaptive behaviour. According to the usual definitions the microstructure

is assumed to be of the scalar type (see, for instance, Capriz [ll, Gurtin and

Podio-Guidugli [%], Kunin [3], and Mindlin [*]). The procedure applied here for
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constructing the model is based on the use of the second law of thermodynamics to

obtain constitutive restrictions (cf. Ericksen [°] and Leslie [®] for liquid crystals).
We examine in this work a one-dimensional model of a medium with a scalar

microstructure with a strongly nonlinearLipschitz dissipation function which may

describe, for instance, amicrofractured material. Our model could also be applied to

explain the long-range absence of decay observed in seismology (cf. the “dilaton”

introduced by Engelbrecht ["#]. Thebasic ingredient of the model is a dry-friction

type of dissipation in the microstructure.

In this case a self-adaptive behaviour arises, in that while the propagation of

a small amplitude shock is governed by the usual jump relations for an elastic

dissipative material, a large amplitude shock, with the amplitude above a well-

defined threshold value which depends on the state ofdeformation ahead of the wave

only, is “damped” to the threshold value, and then propagates without dissipation.
The threshold may be modified by hysteresis cycles under which the material may

undergo external loadings.
Thus, a material with this kind of dry-friction microscopic dissipation may

be used for devices which absorb large disturbances, reducing them to stationary
waves which propagate without damping, while small disturbances are unaffected.

This behaviour may be classified as self-adaptive, in that the state of deformation

modifies the response threshold and the wave amplitude. Such a behaviour has

already been describedby Leugering [°] for wave propagation in networks of beams

and strings with dry-friction joints.
In case of a vector microstructure, we have previously investigated a strongly

nonlinear (smooth) viscous friction dissipation function (see Cermelli and Pastrone

[1%117). Here also a threshold effect for the propagation of disturbances may be

described, but it results mainly from the anisotropy caused by the orientation of the

microstructure ahead of the wave front.

2. ONE-DIMENSIONAL MODEL

Consider a one-dimensional continuum B, with = a generic point in a reference

configuration of B. A scalar microstructure is a real valued field d = d(z) on B,
and a deformation of B is an invertible mapping y = y(z) of B into IR, with the

displacement gradient u = u(x) = 0;y — 1. A motion is a time-dependent family
of deformation-microstructure pairs (y(t), d(t)); the corresponding velocity pair is

denoted by v = y; and w = d;. We will refer to the map

t— (u(t),v(t),d(t), w(t)) (1)

compatible with the requirement

Ut = Vg, dt = W,

as an admissible kinematic process for B.
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A strong singularity for the motion is a time-parametrized curve ¢ = £(t) in

B, such that, for each ¢, the fields v and d; (together with their derivatives) are

discontinuous at£(¢). Analogously, aweak singularity is a time-parametrized curve

such that now the fields u; and d; are discontinuous together with their derivatives.

The velocity £ of the singularity will be denoted by V.

The basic dynamic fields of this theory are the free energy W, the Piola stress

o, and the internal force k. With the introduction of the body external force bexy
and the microstructural external force by, for any portion PC B, the balance

equations have the form

/ +/b —i/v6'PG 'P eXt_dt ’P’
(2)

//-;-l—/bmiC:O.
P P

Localization of the integral balances yields the field equations

Ut = Vzy

U = O%+ bexta (3)

0 = k+ bmim

to be satisfied away from possible singularities, and the jump condition

V[v] + [o] =0 (4)

at the singularity. Note that at a weak singularity this condition becomes

[o] = 0. (5)

The dynamic fields above are related to the kinematic fields by a suitable set of

constitutive equations: to account for dissipation we assume here that

W = W(u,d), o = õ(u,v,vr,d, w), k = k(u,v,Vx,d,w),

with W and 6 C 2 and C' functions, respectively, and % continuous with respect to

(u, d). We shall omit from now on the tilde over the constitutive functions.

A constitutive process is a kinematic process together with the corresponding
dynamic fields computed using the constitutive equations. The dissipation
inequality in this context states that, for any constitutive process and portion P of

the body B,

d 1——{/W+—/v2}—/ av—/bextv—/bmicw::—/ASO, (6)
dt p 2 Jp oP P P P

with A the total dissipation density.
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Use of the balance equations and the arbitrariness of the constitutive process

yields the following constitutive restrictions

ol(u,d,vr,W) = Oeg(u, d) 35 (0t si)

k(u,d,vr,w) = Keg(u,d)— klu,d,vz, w),

with
oW oW

Oeq —

577, Req =

——B-d_’
and the jump relation across a strong singularity

—(W] = (o) [u])V <O, (7)

with (o) the average of o across the singularity.
Thus, the total dissipation A is determined by the nonequilibrium constitutive

functions through

A = õ(u,d,vr,w)vr + k(u,d,vr, w)w > 0.

The structure ofthe nonequilibrium stress and force can be made more precise under

the assumptions that: (i) the dissipative internal force A is absolutely continuous

with respect to v, of (regular) bounded variation with respect to w, and continuous

away from w = 0; (i1 the stress ¢ is differentiable with respect to its arguments.
These hypotheses yield in general a Lipschitz dissipation density and are

compatible with the consideration that, if the microstructure is not taken into

account, the dissipative mechanism should be smooth, of the viscous friction type.
Under the above hypotheses the following representations hold:

6(u,d, vz, w) = A(u, d, vz, w)vy + B(u, d, vy, w)w,

Kk(u,d,vr,w) = C(u, d, vz,w)vr + E(u,d,vx,w),

with F(u,d,v;,w) a bounded variation (BV) function of w.

Now, a standard theorem asserts that any (regular) BV function may be

decomposed as the sum of an absolutely continuous and a jump component, so that

(omitting the additional arguments)

E(w) = D(w)w + @(w),

where we may take ®(w) given by

®e[-8,8,] ifw=o,
@

P =Õ.sgn(w), 1t w 0 )
In what follows we shall assume that the coefficients of the nonequilibrium fields

do not depend on the kinematic fields, so that

6 = Av, + Bw,
(9)

k = Cvr +Dw+ Õ(w),



213

with A, B, C, D the entries of a positive definite matrix. Thus, for Lipschitz
dissipation functions, only two typesof behaviour are possible, namely a dry friction

and a viscous dissipative mechanism.

The field equations have the explicit form

Ut =" Uy,

v = (dyWf(u,d)), + Avrz + BWz, (10)

0 = OdWf(u,d) + Cvr + Dw+ w).

In our applications we shall consider an energy function quadratic in the

displacement gradient

W =W(u,d) = —š—cZ(u o (11)

with ¢, A given constants and ¢ a given function. For fixed d = dj, this is a typical
one-well convex energy function, with the equilibrium state ug = Adp. The field

equations become then

Ut = Üzx,

v = Cur-2Xd, + Avrz +.BWz, (12)

0 = -Au+2X2d+'(d) + Cvr +Dw + &(w).

Notice that this form of the energy induces a hysteretic behaviour in the stress-

against-displacement gradient plane. Consider the quasi-static equations

o = geont

Keq = @

and let for simplicity ¢ = 0 and A > 0. The following diagram shows such a

behaviour: quasi-static lines d = const are shown for d = 0 and d = dj, along
which the stress 0 = ¢?(u — Ad) and the internal force keq = —Ac*(u — 2d)
increase (or decrease) monotonically, until the internal force reaches the threshold

value given by £®.. Along the horizontal lines the internal force and stress remain

constant, while the microstructural density and the displacement gradient vary.
We shall assume from now on that

A>o,

as this choice is compatible with a naive model of plasticity suggested by the

diagram below:
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3. WEAK SINGULARITIES

It is well known that a linear dissipative material does not allow for acceleration

waves to propagate. This result has an analogue in the case we are considering here.

Consider a weak singularity across which u,, us, and d; are discontinuous, while u,

v, and d are continuous.

The basic jump conditions at this weak singularity are the continuity of the

traction across the singular surface,

[o] = Alv-] + Blw] = 0, (13)

and the equation obtained from the microforce balance,

D[w] + C[v,] = —[®(w)]. (14)

Notice that, if w = 0, then @ is indeterminate and its value is given by

¢ = &(u,d,vz) = —94 W (u,d) — Cvg = Keg(u,d)— Cvz

Assume now that the state ahead of the singularity is at rest, i.e., v+ = w* =O, so

that

—P < Keg(u,d) < Pe.

Fig. 1. The o — u diagram.
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The jump relations above become

Av; +Bwr =O, (15)
Cvr + DwY.= Keg(u, d) — Õ. sgn(w7).

A weak singularity may propagate in this type of material only if its amplitude
reaches the threshold value (recall that the dissipation matrix is positive definite by
hypothesis) »

B
—

V, = ADTBO (f‘ieq(ua d) — ®.sgn(w™)),

with Keq(u, d) only determined by the state ahead of the wave. On the other hand,

as :
A

—

w .=

—ÄD—:B—C (Heq(%d) — &, sgn(w )) )

then it is easy to see that, for instance, w> > 0 if and only if Keq(u,d) — @, > 0.

This is impossible due to the continuity of the displacement gradient and

microstructural density, and the hypothesis that the state ahead of the wave is at rest,

which implies —®, < Keq(u,d) < @.

4. STRONG SINGULARITIES

Consider now the propagation of strong singularities (shock waves), so that the

displacement gradient u and the velocity v are discontinuous across the singularity,
but the microstructural density d is continuous. We assume that the state ahead of

the wave is at equilibrium below the threshold value, so that, as before,

—®, < Keq(ut,d) < 8,. (16)

Thejump conditions now consist of the momentum balance (4)

Vv] + [oeq] + Afue] + Blw] =O, (17)

with V' the velocity of the singularity, the dissipation inequality (7)

- (171 - (ell + 3 (ALI + BDEA) V<o (19)

(note that the average of the equilibrium stress across the interface yields the last

terms, containing the jumps, in the above inequality as a consequence of the fact

that the state ahead of the wave is at rest); the microforce balance (11)3 evaluated

behind the interface

Clut] + D[w] + Keq(u™,d) + Pesgn[w] = 0. (19)
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Notice that the dissipative term @, if w™ # 0 and V' > 0, is given by

P = P(w°) = PDcsgn (w°) = —P.sgn [w] = P.sgn .

We list here also an additional condition obtained by taking the jump of the

momentum balance (11)9 at the singularity

d av
— —Vp-2V=-a = (oeg)u(u7, d)b+ (oeg)al(u7, Y

dp dy )+A(E£ Ve) +B( -Vl —2O
where

[l =e, Jud=-V8 a 0 W=7 luul—c [dzx]=s

and we have used the jump compatibility condition

B[u] =-V6+
—

as well as others of the same nature (cf., e.g., Wright [2]).
Consider now the special case of an energy function quadratic in strain of the

form (11): the jump conditions (17), (18), and (19) become

AVB+BVy = (¢ =V?aq,

(AB+By)aV* < 0, (21)

CVB+DVy = -XŽa+keg(ut*,d) -Õ.

The first equation, together with the second inequality, implies

(C 2 — 2V )a2V <N> O

and assuming without loss in generality that V' > 0, this implies that either (i)
a = 0, in which case no shock may propagate, or (ii) V 2 > ¢, so that the shock is

supersonic, or finally (iil) ¢ -

V 2 = C.27

which requires that A+ B~y = 0, so that the complete list of jump conditions has

the form

Ccß + Dcy = -Ada + keg(ut*, d) — 5.

In what follows we shall assume that (iii) holds, so that we exclude a priori the

presence of supersonic shocks in our material.
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5. DISCUSSION

From now on, we assume that the energy function is quadratic in the

displacement gradient, the state ahead of the wave is at equilibrium, and the

propagation velocity V' is positive. We shall discuss in this section some easy

consequences of the equations described above. The main point is that, in general,
the presence of a dry-friction term in the microstructure has a strong absorbing
effect on the propagation of disturbances, in that the shock amplitude is necessarily
bounded from above. On the other hand, the presence of the threshold-activation

mechanism allows for undamped propagation of initially large disturbances, so that

above-threshold shocks persist without decay.

5.1. Absence of viscous dissipation

In this (oversimplified) case we assume that

A=B=C=D=|o,

so that the only source of dissipation in this model is the dry-friction term ® = ®(w)
depending on the microvelocity. Notice that, as the state ahead of the wave is at

equilibrium, (16) holds. Across a strong singularity the following jump relations

hold:

V = > V=+c,
23)XCa = kog(ut,d) = Õ,

so that we have two cases

() If

—De < Keg(u7,d)= -ACŽa + keg(uT,d) < O, (24)

then the microstructure is not activated: the internal force k¢, does not reach the

threshold value, and as d; = —+ = 0, the amplitude « of the shock is constant but

otherwise arbitrary (determined by the initial conditions only).

(1) If

neq(u+,d) -XŽa<-D. or B> /-seq(u"",d) — Ac2a, (25)

then the microstructure is activated, but the shock amplitude is completely
determined by the state ahead of the wave through the relation

Aa = Keg(uT,d) — Pesgn(y) (26)

and (25) must hold with equality sign.
In this case the microstructure has a strong absorbing effect on the amplitude of

a shock singularity propagating into a rest state. This property might be used as a

device to absorb vibrations.

Notice that the threshold value itself for the shock «, obtained by (24), is

determined by the state ahead of the wave, and may be modified by deforming the

material or varying the microstructural density.
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5.2. Presence of viscous dissipation in the microstructure only

Here A = B = C = o,but D > 0. The second equation of system (23)
becomes now

Dcy = --XŽa + Kkeg(uT, d) — @, (27)

and, as before, two cases are possible.

(1) If the jump amplitude is small, so that (24) holds, then the same conclusions as

in case (1) above hold.

(i1 Conversely, ifthe microstructure is activated and (25) holds, then the initial jump
« may assume arbitrary values above the threshold, but it decays eventually to the

value given by (26). In fact, by (20)

d_a_)\c
0o

and (27), we have

da Ä

dt —2D (—)\6201 + Heq(u+,d) — (Dcsgn(')')) ;

so that

XCa — Keg(uT, d) — Dcsgn(Vy)

ast — +OO.

5.3. Viscous dissipation in both the micro- and the macrostructure

We are now considering the general case where the dissipation matrix, with

coefficients A, B, C, and D, is nonsingular. The jump relations at the singularity
are given by (22) (we omit, as before, the necessary condition V = c¢). We may

distinguish between two cases.

(1) If

—Pe < Keg(u7, d) — Cep = ’ieq(u+a d) — Cef — Ala <@, (28)

then the microstructure is not activated, and thus the only nontrivial jump condition

is# = 0. This implies in turn that o may be arbitrary (only determined by the initial

conditions) provided

—P. < Heq(u+,d) — Xa < .. (29)
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(ii) Conversely, if the jump is above the threshold value, then the system (22) may

be solved in the form

— B/c 9
B=-2(APO + keg(ut,d) — @c sen()
g—L Ä 2 +

AD - BC (-Aa + sealu*,d) - Besgn(7)) .
Here the shock jump is necessarily bounded from below in the absolute value. To

see this, consider for instance the case vy > 0: by the positive definiteness of the

dissipation matrix, &
2XCa < Keg(u*,d) — @, < 0.

If this value is reached during the evolution of the system, it is easy to notice that,

by uniqueness, the shock amplitude may not increase above this value.
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LAINETE VOIMENDUMINE JA SUMBUMINE UHEMOOTMELISTES

ADAPTEERUVATES MIKROSTRUKTUURIDES

Paolo CERMELLI jaFranco PASTRONE

On uuritud lainelevi iihemdotmelistes skalaarse mikrostruktuuriga kehades.

Mikrostruktuur allub kuiva hoodrde tiiiipi dissipatsioonile, makrostruktuur on kas

elastne voi viskoelastne. On ndidatud tugeva dissipatsiooni olemasolu. Mõnda

tiitipi olekuvdrranditepuhul on lainelevi seotud ldve olemasoluga: alates amplituudi
teatud vaartusest 166klained levil voimenduvad, kuid 166klained, mille amplituud
on viaiksem kui ldvi, sumbuvad. Livi soltub deformatsioonist 160klaine ees.
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