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Abstract. We describe a method for the decomposition of multivariable nonlinear continuous-time

systems with the time-separation property on two-rate continuous-time aggregative models in state

space. The method can be applied to solve problems connected with the design of the digital
control systems in the industry. We obtained the decomposition error and upper limits of sampling
periods for slow and fast discrete-time subsystems. A numerical example is considered in order to

emphasize the effectivity of our method.
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1. INTRODUCTION

Many physical and engineering problems are appropriately described by
multirate dynamic models. The computational efforts required for control

analysis of such models are quite excessive. It is therefore considered desirable

to develop reduced-order models that approximate the dynamic behaviour of

multirate systems. A lot of work is currently being done along this direction,

including multi-timescale approaches [']. The results of [*’] show that the

singular perturbation theory for difference equations involves the reduction, a

separation of timescales, and boundary layer phenomena. The paper [°] surveys

the literature on decentralized and hierarchical control, and methods for the

study of large-scale systems. The purpose of ['] is to demonstrate two methods
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for the analysis of singularly perturbed difference equations in the context of

linear-control problems. These methods are the technique of matched asymptotic

expansions and the multitime method. In [*], an efficient algorithm is developed
for designing decentralized dynamic compensators for large-scale systems. The

Gauss—Seidel method and the Newton—Raphson method are presented to solve a

set of nonlinear equations with the compensator parameters as their unknowns.

In [’], several analytical results are introduced to characterize the set of

decentralized controllers which achieve desired eigenvalue assignment. A

method is proposed to simultaneously assign eigenvalues and eigenvectors of a

linear system using decentralized control.

Much progress has been made on analysis of two-rate systems both in

continuous-time as well as in discrete-time cases. All these studies focus only on

the linearcontrol aspect of the two-rate problem.
In ['°], an efficient method for computing state and output equations and

sampling periods for two-rate linear multivariable systems based on the

canonical Jordan’s form of the original system is introduced. In the present work

we expand the main ideas of ['’]. We describe a new method for designing a

class of two-rate nonlinear discrete-time control systems. This class of systems
has the characteristic of the sampling rate for the fast subsystem being faster than

the sampling rate for the slow subsystem.

2. NONLINEARITIES IN THE CONTROL SYSTEM

Consider the nonlinear, continuous-time system

X(1) = Ax(T) + Bu(t) + f(x(7),u(7))
, (2.1)

yt)=C&(7), (2.2)

where x(T)e Rn, u(t)€e Rm, y(T)e RP, and f(x(t), u(T))E Rn are the state, control

input, output, and known nonlinearity vectors [''], respectively. The numerical

values of the nonlinearity vector can be obtained from experimental results or

using numerical methods ["*].

3. DECOMPOSITION OF CONTINUOUS-TIME NONLINEAR SYSTEMS

A. Transformationsof the state equations

Let us consider the linear transformation q(t)= 7x(t), where 7 is a

nonsingular n X n matrix. It is easy to see that (2.1)—(2.2) are transformed into

the equations -



199

('](’C)=ch(’r)+l§u(’t)+Tf(l:), (3.1)

y(1) = Cg(1), (3.2)

where the matrix J- indicates the canonical Jordan’s form of A:

Jc=TAT"', B=TB, Õ=CT7'.

Equations (3.1)—(3.2) may be written in terms of submatrices as

i](T)z AIZI(T)+B]U(T)+ Tlf('C), (33)

Z,(l)=A,z,(t)+ Byu(t) + L» f(17), (3.4)

y)=Ciz; (1) + Crz,(l), (3.5)

where

small eigenvalues of a matrix A; : |?»(A1 )| =T

large eigenvalues of a matrix A,: |7»(A2 )| 2

A 1 0)) x [B] x [1 REAQ)e

B. State equations for fast and slow subsystems

The next qualitative definition is given as

Definition 3.1. A functionf is said to be a fastfunction if the derivative off is

large. Otherwise, a function fis said to be a slowfunction if the derivative offis
small.

Assume that vectors have slow and fast constituents

u(t)=u,(t)+uy(r), (3.6)

y(1) =y (1) +Y;(7), (3.7)

f(v)=1;(1) + 1,(1), (3.8)

3.9z1(v) =l2l, (T)+21,(7), . (3.9)

3.10z23(1) =123, (1) +23,(7). (3.10)
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If we now substitute (3.6)—(3.10) into (3.3)—(3.5), we find that, according to

Definition 3.1,

21 (I)=Ajz; (V) + Bju(t)+Tif (7), (3.11)

žzx (’C) = A2Z2.\' (T) + BZ“S (T) + TZfs(T), (312)

ys (1) =Cizy (1) +Czy (7). (3.13)

We have from (3.4), (3.6), (3.8), (3.10), and (3.12)

2y (V)= A2y(1)+ Byu p (1)+ Dff(l). (3.14)

According to Definition 3.1

15z1(1)=z; (7). (3.15)

From (3.5), (3.7), (3.10), (3.13), and (3.15), we find that

yr(®)=oCazo (1), (3.16)

We note that state equations for a fast subsystem are given by (3.14) and (3.16)
and may be written as

if(T)=Afo(T)'f'Bfllf(T)'f‘Tfff(T), (3.17)

Yr(@)=Crzp(n), (3.18)

where

Zf(T)=Z2f(T), Af =A2, Bf =B2, Tf=T2, Cf=C2.

According to Definition 3.1

7, (1)=0. (3.19)

From (3.12), (3.13), and (3.19), we obtain

¥s(l)=Cizy (1) +CyA;yByu (v)- CrAy'Tof (1) (3.20)

if Ay
L

exists.

State equations for a slow subsystem are given by (3.11) and (3.20) and may

be written as

zs(T)= Agzg (1) + Boug(t) + T £, (7), (3.21)

ys('t):Cszs(’_t)+Dsus(’c)+Ts2fs(’c), (3.22)
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where

zs(T)zzl_‘.(T), Ag =Ay, B, =B, 7;] =T, CS=C]’

1 -]
Ds =—C2A2 82, Ts 2 =—C2A2 T2.

C. Decomposition error

Definition 3.2. We call the norm |l € |l the decomposition error, that is,

e(1) [|=ly@®) -ys(0) -y,()| (3.23)

Consider the system

x(T) = Ax(t)+Bu(t) + [l£(7), (3.24)

y(t) = Cx(l)+ Du(t) + Tr(7). (3.25)

Using the well-known Laplace transform for the system (3.24)—(3.25), we can

easily show that

T

y(1) = Cexp(AT)x(o) + J-Cexp(A(t —t))Bu(t)dt

0

T

+J Cexp(A(t —l))Tif(¢)dt + Du(t) + Tr£(7). (3.26)

0

In convolution representation, (3.26) can be written as

Y(T) = yyo (T) +(Gyu*u)('c)+(Gyf*f)(”c) +Du(l) + Df(7), (3.27)

where

Yo (T) = Cexp(AT)X(O), (3.28)

Gyy (1) = Cexp(AT)B, 3.29)

Gyt (1) = Cexp(AT)T;. (3.30)

From (2.2), (3.6), (3.8), (3.18), (3.22), (3.23), and (3.27)—(3.30), we find that



202

€=YO—YO, —YO, +(Gyu — Gyfuf y¥ug+(Gyy — Gysux )*U,

+(Gyf o Gyfff )*ff +(Gyf — Gysfs )*f, - D;Us — Ts2 f., OD

where

yo(1) = Cexp(AT)x(o),

Yo, (1) =Cyexp(Asl)z(o),

Yo, (0) = C;s exp(A;1)z5(0),

Gyu (t)=Cexp(AT)B,

Gyfuf (T)= Cf exp(Af'c )Bf,

Gyu, (1) = C, exp(Ast)Bs,

Gyf (1) = Cexp(AT),

Gyfff (1)= Cy exp(Aft )Ty,

Gy ¢ (1) = Cs exp(AgT)T, .

From (3.31), we find, after some algebra, that

e<|lyo @)+ ”yof (1 )”+yo, @]+ ]'”Gy„ (T =o)=Gy .y, (- t)” o)]s
0

T T

+[|6yut -9-Gy,u,- Jusolee+Gy -0-Gy
o, =0oa

0 0

T

+j |Gyt @-0-Gy¢,@=)[,Ot+D] Jus )+ |75, |l@) 632

0
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4. STATE EQUATIONS FOR THE TWO-RATE NONLINEAR

DISCRETE-TIME SYSTEM

Definition 4.1. The nonlinear equivalent discrete system is the discrete model

having a continuous-time nonlinear system with analog/digital and

digital/analog converters.

Consider the system (3.24)—(3.25). Using the well-known Laplace transform

for (3.24), we obtain that

T

X(T) =exp(A(T =T ())x(To) + lexp(A(’c —1))Bu(t)dt

To

1

+ Jexp(A(t -DE(t)dt. (4.1)

To

Using Definition 4.1 and Eq. (4.1) for the system (3.24)—(3.25), we can easily
show that the state equations for the equivalent discrete system are

x[(t +l)A] = Fx(tA) + Gu(tA) +Ty £(1A), (4.2)

y(rA) = Hx(tA) + Eu(tA) +Ty £(sA), t=0,1,2, ..., 4.3)

where

A A

F=exp(Ad), G= [ jexp(Aq)dq]B, . [Jexp(Aq)quTl
0 0

H=C, E=D, Ty =T).

We note that the state equations for the equivalent fast subsystem, which was

obtained from (3.17)—(3.18), are given in the form (4.2)—(4.3) and may be

written as

Zf[(t+l)Af]= Ffo(fAf)'f‘Gfllf(fAf)‘i‘ Tdfff(tAf)’ (4.4)

yf(tAf)z Hfo(tAf), =Ol (4.5)

where
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Ag

Fr=exp(AfAr), Gy= Jexp(qu)dq By,
0

-

Tdf = Jexp(qu)dq T;, Hy =Cy.
0

The state equations for the equivalent slow subsystem, which was obtained from

(3.21)—(3.22), are given in the form (4.2)—(4.3) and may be written as

z,[(t+ 1A|=Fz (tAg) + Gou (1A )+ Ty, £S(A), (4.6)

Vs(tA) = Hoz(A) + Equ (A)+ Ty £S(IA,), 1=0,1,2,
..., — (4.7)

where

AS AS

F, =exp(A;A;), G=[ JCXP(Asq)dq:lßsa Tdsl — [ JCXP(Asq)dq:lTs] ,

0 0

Hy=Cs, E;=D;, Ty =T,.

4. SAMPLING PERIODS FOR THE TWO-RATE NONLINEAR

DISCRETE-TIME SYSTEM

The choice of the sampling period A for the equivalent discrete system
depends upon the system dynamics. A small A used to be associated with serious

problems owing to quantization and roundoff. On the other hand, if a system has

slow dynamics, then it might dictate a larger A. The selection of the best

sampling periods is a compromise. For example, we might use

By =AT (5.1)

Ay g B (5.2)

From (4.2), (4.3), we find that
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yl(z + DA| = HF(A)x(tA) + HG(A)u(tA) + Hle (A)EGA)

+Eu[(t + DA] +77, f[( + DA]. (5.3)

Using ¢t = 0, x(0) = 0, and (5.3), we find that

y[ A] = HG(A)u(0) + Eu[ Al + HTy, (A)f(0)+ Ty, f[A]. (5.4)

If the maximum values of control input, output, and nonlinearities are given and

Definition 4.1 is satisfied, then (5.4) may be written as

Ymax =[HG(A) + EJumax +[HTy (8)+ Ty, | fmax (5.5)

From (5.1), (5.5), and (4.4)—(4.5), we find

Yfa SSAD ) Waa + [Hde,— (Af)] nax” (5.6)

From (5.2), (5.5), and (4.6)—(4.7), we have

YSmax =[H3GS(AS)+ES] oo
ax

+ [HsTds] (As)+Td.‘.2 ]fsmax . (5.7)

Note that we can obtain Ar and A; from matrix equations (5.6) and (5.7),

respectively.

6. EXAMPLE

Consider the fourth-order system (2.1)—(2.2) given by

-0.1259 -10116 0.5584 -2.2093 -1.4252 —1.5087

A
—2.3202 -2.5385 -1.0378 -0.4024

B
0.9051 ¥4777

—

|-2.2824 -0.2158 -1.9373 32799
°

|

2.7818 0.9982

2.6355 1.5343 1.3487 —1.6382 —1.3959 -1.1119

C=
0.937 0.252 0.56 0255 '

=

|10.048 0396 0024 0296

0.01+0.04u? +o.o6sin x

0.03 + 0.02u3 cos x

f(x,u)= 23 _ š
0.02 +o.osuj sin x 3

o.os+(l—u3)sinx 4
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to demonstrate the implementation of our decomposition method. Computation
of the largest singular value of € from (3.32) gives

; ||B(3)l|s 01273,

where

xT(O)= [O.OOl 0.003 0.002 0.005],

o.os+o.olsin2t
u(T) = , :

0.04 +o.o3sin 3t

From (5.6), we obtain

Af = 0.35,

where

T T | T

me =[l3 26], fr =[l2 24 43 25], y. =]os-03]

From (5.7), we have

A, =2.9,

where

ui =[2B 15], 17 =[63 52 8172], yi =[l4 245].

The fast-subsystem dynamics (4.4)—(4.5) is described by

03435 0.1751 —-0.1305 -0.0448

Ff =
, Gf =

,

-0.1751 0.3455 0.113 — 0.0387

=
0.0748 0.1363 0.0132 01318

H
0.19 0.57

9 710145 01098 00659 -0.0264] /028 016]

The slow subsystem (4.6)—(4.7) is specified by

0.419 0 0.2324 -1.3558
-

»
G=

?0 02214 0.4642 0.3893

7 —[0.9684 0 0.9684 0.7747—1 H _l' ] —0.37—l44510 0.7487 04492 1.0482
| S|-024 032

|
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E
0.0031 10:0319

¥
0.1324 0.1045 0.0591 -0.0163

S
|-0.0063 —0.0022[ % T|0.0739 00829 0.0265 0.0357|

7. CONCLUSIONS

The decomposition method proposed by us permits finding discrete-time state

equations for the fast nonlinear subsystem (4.4)—(4.5) and the slow nonlinear

subsystem (4.6)—(4.7) if the original continuous-time system (2.1)—(2.2) has a

time-separation property. We obtained the decomposition error (3.32) and high
limits of sampling periods for the slow (5.7) and fast (5.6) discrete subsystems.
The translation of a mathematical model of a fourth-order system into a

computer model is implemented using the MATLAB program, because solutions

to the problem are expressed in the MATLAB almost as exactly as

mathematically.
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KAHEKIIRUSELISTE MITTELINEAARSETE MITMEMÕÕTMELISTE

PIDEVA AJA SÜSTEEMIDE SÜSTEEMNE JUHTIMINE

Igor ASTROV ja Ennu RUSTERN

On esitatud meetod, mis voimaldab diskreetaja olekuruumis dekomponeerida
mitmemdootmelisi mittelineaarseid pideva aja siisteeme kiireks ja aeglaseks
alamsiisteemiks. Selle meetodi abil saab projekteerida niilidisaegse t6ostuse

automaatjuhtimissiisteeme. On leitud dekomponeerimisvea hinnang ning kiire ja
aeglase alamsiisteemi diskreetimissammude iilemised rajad. Meetodi kasuta-

tavust on demonstreeritud neljandat jarku siisteemi varal.
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