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Abstract. We approximated the behaviour of the systems, having the time-separation property, by
two lower-order subsystems: a slow subsystem with large eigenvalues and a fast subsystem with

small eigenvalues. The method proposed permits finding state equations for two-rate nonlinear

discrete systems if an equivalent discrete system is presented in the canonical Jordan’s form. For

slow and fast discrete subsystems we obtained the decentralization error and upper limits of

sampling periods. The theoretical analysis is illustrated by a fourth-order system model.
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1. INTRODUCTION

Many physical and engineering problems are appropriately described by
multirate dynamic models. Usually decentralized constraints arise in controlling
large composite systems because a centralized controller, i.e., a single controller

which observes all outputs of the system to control all inputs of the system,
commonly requires excessive information gathering for practical application of

such controller. Thus, the study of the control of multirate systems directly leads

to the investigation of decentralized control systems.
A good combination of engineering judgment and analysis can be used to

define in a reasonable, albeit ad hoc, way a special structure for the dynamic
system. One should look for timescale separation (fast and slow dynamics), weak

coupling, and similar phenomena, as they naturally lead to decentralizing of the

system ['?]. Linear discrete systems with fast and slow modes are discussed in
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[**]. In [’], a systematic procedure for complete separation of slow and fast

regulator designs is developed by extending the idea of two-stage eigenvalue
assignment. In [°], a detailed study of nonconventional sampled-data control

systems, based on a block multirate input—output model, is presented. The model

is developed for multivariable multirate nonsynchronous sampled-data control

systems and can be easily extended to multivariable systems. One of the main

contributions of [*] is that it emphasizes the usefulness of the fast-slow

separation in simplifying the design of stabilizing feedback controllers for linear

discrete systems with inaccessible states. The objective of [7] is to introduce a

decentralized control approach to multirate linear systems. In [*], the idea of

multirate control is formulated and an algorithm for linear discrete systems is

developed. In [’], a decentralized control technique is applied to the problems of

the stabilization of periodic output feedback or pole assignment for a

periodically time-varying discrete-time system.
While much progress has been made on analysis of two-rate systems both in

continuous-time and discrete-time cases, all the studies focus only on the aspect
of linear control of the two-rate problem. The method proposed in ['°] allows for

finding state and output equations and sampling periods for two-rate linear

multivariable systems if an equivalent discrete system is presented in the

canonical Jordan’s form. This method is also a very simple design procedure.
In what follows we describe a new approach to two-rate nonlinear control,

based on the idea of time-separation for fast and slow constituents of vectors.

This approach leads to a new class of two-rate nonlinear discrete-time control

systems which are based on elementary principles of modern control theory and

are relatively easy to analyse and implement.

2. STATE EQUATIONS FOR THE NONLINEAR EQUIVALENT
DISCRETE-TIME SYSTEM

Consider the nonlinear, continuous-time system

X(T) = Ax(T) + Bu(t) + f(x(1),u(1))
, 2.1

y(t) = CX(T), (2.2)

where x(T)e Rn, u(t)e Rm, y(T)e Rp, and f(x(7), u(1))e R are the state, control

input, output, and nonlinearity vectors, respectively.
Note that the study of nonlinear systems with concrete nonlinearities will not

lead to good practical results ['']. This implies that the system (2.1)—(2.2) can be

considered with the known nonlinearity vector f(7) ['']. The numerical values of

the vector f(t) can be obtained from experimental results or using numerical

methods [']. :
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Definition 2.1. The nonlinear equivalent discrete system is the discrete model

having a continuous-time nonlinear system with analogldigital and

digitallanalog converters.

Using the well-known Laplace transformfor (2.1), we obtain

T T

x(1) = exp(A(T -To)X(T0) + Jexp(A(T —1))Bu(t)dt + jexp(A(T —t)f(¢)dt.

To To

(2i3)

Using Definition 2.1 and Eq. (2.3) for the system (2.1)—(2.2), we can easily show

that the state equations for an equivalent discrete system are

x[(tl+l)A]= Fx(tA) + Gu(tA) + TE(tA), (2.4)

y(tA) = Hx(tA),. t=0,]1,2,..., (2.5)

where

A A

F =exp(AA), G= [J. exp(Aq)quß, T= Jexp(Aq)dq, H=C.

0 0

3. DECENTRALIZATION OF DISCRETE-TIME NONLINEAR

SYSTEMS

A. Transformations of the state equations

Suppose that we consider the linear transformation q(z) = Ox(t), where Q is a

nonsingular n X n matrix. It is easy to see that (2.4)—(2.5) are transformed into

the equations

q(t+l) = Jq(t)+ Gu(t) + TE(2), (3.1)

y(H)= Hq(r), t=o,l, 2, ...,
(3.2)

where the matrix J; indicates the canonical Jordan’s form ofF

J;=OFQ7', G=OG, H=HQ', T=OT.

Equations (3.1)-(3.2) may be written in terms of submatrices as

21t +1) = Fzl(t +1) = Gyu(®)+ [1£(?), (3.3)
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Zy(t+l)=Fz,(2)+ Gou(z) + Df(t), (3.4)

y(t)=Hjz;(t) + Hyz,(2), t=o,l, 2, ..., (3.5)

where the eigenspectrum of the matrix F, consists of small eigenvalues and the

eigenspectrum of the matrix F; consists of large eigenvalues within, including
the unit circle

- |D —[Zz(f):l.Fz 0 é=|:G2:|, fi=[H2 Hl]’ T:ltTl:|, q(t)=
zl(t)Ja=lo 50l

B. State equations for fast and slow subsystems

The next qualitative definition is given as

Definition 3.1. The constituents of vectors are said to be slow constituents if
these constituents are slowly varied constants between the sampling periods.
Otherwise, the constituents of vectors are said to be fast constituents if they are

strongly varied variables and important only during a short initial period.

Assume that vectors have slow and fast constituents

YO =yr®)+ys ), (3.6)

u(®) =u,(r)+u (o), (3.7)

f(r) =ff(t)+fs(t), (3.8)

3.9Z](f)=zlf (1) +2q (2), (3.9)

102y()=125 (1) +25,(1). (3.10)

If we now substitute (3.6)—(3.10) into (3.3)—(3.5), we find that, according to

Definition 3.1,

Zy (t+l)= Flzls ()+Gu,)+D£, 0), (3.11)

2y (t+l)= B2y(I)+Gyu,(n) + Df(0), (3.12)

ys()= Hyzy (I)+Hyzy (2). (3.13)

According to Definition 3.1

Zy (t) = const. (3.14)

From (3.12) and (3.14), we get
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2, )=[l-FK] Gu,)+[l-K]T,1) (3.15)

if [[-F, ]_l exists. We have from (3.13) and (3.15)

y,()=Hzy O+Hy[l-B] Gu,o+H[l-K]' Df,o). (3.16)

State equations for a slow subsystem are given by (3.11) and (3.16) and may be

written as

z,(t+l) = Fz, (1) + Gou (1) + T £,(2), (3.17)

Y. ()=H.z (t) + Ecu (t)+ T2.y f.(), t=o, 1,2,..., (3.18)

where

zs()=2 (1), F;=H, G;=G, Ty =T, Hy;=H,,

—1 —]
E;=[l-B] G, L =H[I-K] T

From (3.4), (3.7), (3.8), (3.10), and (3.12), we have

Z2f t+l)= F2Z2f (1) + quf(t)“l' Tsz(t) (3.19)

From (3.5), (3.6), 39). (3.10), and (3.13), we find that, according to

Definition 3.1,

Yr(o)=Hyzy (D). (3.20)

We note that state equations for a fast subsystem are given by (3.19) and (3.20)
and may be written as

Zf(t+l)=Ffo(l)+Gfllf(l)+Tfff(t), (3.21)

yf(t)=Hfzf(t), =0 1.7 &
(3.22)

where

Zf(t)=Z2f(t), Ff=F2, Gf=G2, Tf=T2, Hf=H2.

C. Decentralization error

Definition 3.2. We call the norm || € || the decentralization error, that is,

le@) =y-y;) -y, (3.23)
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Consider the system
x(z +1) = Fx(t)+ Gu(z) + Tl£(2), (3.24)

y(t) = Hx(£)+ Eu(t)+TE(t); t=o,l, 2, .... (3.25)

It is easy to see from (3.24)—(3.25) that

t t

y(t) = HF'x(o) + HZFGut-i)+ HzFM - i) + Eu() + Tof().
=1 i=l

(3.26)
From (3.7), (3.8), (3.23), and (3.26), we find

t t t

e(1) = HFx(O)+HXYF'Gu-(t-D+HYF Ga(1-D+HYPII t-0

7= = (j=]

t t

-1 . L j] .+HZF’ Hs(t—l)—HfFfzf(O)—HfZF; Grup(r—i)
=il =l

[ t

-H; > F Tt(- )- HyFl2,(o)— Hy) F'Gou(=)
=1 =l

t

b |—HSZF; T£,(t—i)—Equ (1)~Ty £,(0). (3.27)

(=]

After some algebra we have from (3.27)
[

leo|s laIlA O lall »A ut-5]
=1

t t

AAGD A at- ]+lDA e-
I=l =1

t

HH DO o=+|g| ]
=1

t
v

t
M

+HHf|H\GfH§:.HFfH’ I”“f(’_i)||+”Hf””Tf“_ZlHFf”l c-
j= i=

t

HAK laOLal IDSIst
=l

t .

aa [NO -o+ o [, [l ol 629

j=]



193

4. SAMPLING PERIODS FOR THE TWO-RATE NONLINEAR

DISCRETE-TIME SYSTEM

It is not easy to choose the sampling period A for the equivalent discrete

system as this choice depends upon the process dynamics. If A is extremely
small, then digital signals are nearly continuous, and continuous methods of

analysis and design can be used. Many systems are originally conceived with fast

sampling periods and the only way to accommodate the increased computer load

is to slow down the sampling period. The selection of the best sampling period is

a compromise. For example, we might use

ano (4.1)

L (4.2)

From (3.24), (3.25), and using ¢t = 0, x(0) = 0, we find

y[A]= HG(A)u(O)+ E(A)u[A]+ HT; (MEO)+ T, (A)E[A]l (4.3)

If the maximum values of control input, output, and nonlinearities are given and

Definition 2.1 is satisfied, then (4.3) may be written as

Ymax = [HG(A) + E(A)|umax +[HT (A) + T 5 (A) Emax- (4.4)

From (4.1), (4.4), and (3.21)—(3.22), we have

AN =[Hfo(Af)]ual; +[Hfo(A f)]ffmax. (4.5)

By (4.2), (4.4), and (3.17)—(3.18), we get

Yspm =[HsGs(A)+Es(ADN, +[HT (A)+T5, (Af,, 49

Note that we can obtain As and A; from matrix equations (4.5) and (4.6),
respectively.

5. EXAMPLE

A numerical example is given to demonstrate the applicability of our results.

The fourth-order system (2.1)—(2.2) is described by

-1.9374 1.9436 -0.6813 2.4671 —1.6969 —1.0097

2.3577 —1.7226 1.538 —1.8748 1.0891 — 0.3007
A=

-0.782 —2.0548 -2.3693 -3.0104
|B=

0.3717 13819
£

—1.3489 00.6111 —-0.9831 0.5293 0.1199 —0.6356
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0179 0318 -0.088 -0.11

C=[o.sBB 0228 0.07 —0.245]’
0.01+0.1(1—u )cosx;

A 0.03-—o.os:,¢§’2+o.olsinzx2 |
0.02 +0.06u7 — 0.05c0sx 3

0.04 +u2(l—sin x4)

This model has been discretized into the form (2.4)—(2.5) using A = 0.6. From

(4.5), we obtain

A p> =O5

where

ü; =[l4 27], f/ =[ll 25 42 21, y7,, =[ol -05].

From (4.6), we obtain

Ag =l7,

where

ug =[34 68], f =[62161084065)=y
-

v=[s 9.7].

Computation of the spectral norm of € from (3.28) gives

le(2)|| < 0.7026,

where

x 7 (0)=[0.004 0.001 0.002 0.006],

0.01-o.o3cost
u(t) =

.
.

o.o3+o.olsin2¢

The fast-subsystem dynamics (3.21)—(3.22) is described by

0.1653 0 -0.2883 0.1522

Ff =
, Gf =

,

0 0.2837 1.0498 0.1702

4.9
0.3203 0.0801 0.4004 0.1603

. 2

-0.1945 0.0529

S ~1-0.0002 07094 04254 09932] /| 00729 -01371]
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The slow subsystem (3.17)—(3.18) is specified by

0.8555 0 —0.8324 1.0744
FS =

, GS =
,

0 0.9194 0.5292 0.2878

.
-0.4043 -1216 0.0004 -1.6227

H
0.0521 -0315

l; —

|-0.8055 —0.6906 —-0.2301 —0.0003 / $°|-0.0383 -—0.3402
|

E
0.1447 -0.0229

-
00747 00337 00619 0.036

5
1-0.2261 -0.0193 %

7

|0.028 -—-0.1288 —0.0465 -0.1761[

6. CONCLUSIONS

The method proposed in this paper permits finding state eguations for the fast

nonlinear subsystem (3.21)—(3.22) and the slow nonlinear subsystem (3.17)-
(3.18) if the equivalent discrete sy.tem (2.4)—(2.5) has a time-separation
property. We obtained the decentralization error (3.28) and upper limits of

sampling periods for the slow (4.6) and fast (4.5) discrete subsystems. Using the

MATLAB program, we translated a detailed mathematical model into a

computer model, because the problem solutions are expressed in MATLAB just
as they are written mathematically, without traditional programming.
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OLEKURUUMI KAHEKIIRUSELISTE MITTELINEAARSETE

MITMEMOOTMELISTE DISKREETSETE SÜSTEEMIDE

KIRJELDAMINE

Igor ASTROV jaEnnu RUSTERN

Diinaamilise siisteemi olekumudel on Jordani kanoonilist kuju kasutades

detsentraliseeritud aeglaseks ja kiireks alamsiisteemiks. On médratud vastavate

alamsiisteemide diskreetimisperioodide iilemised piirid.
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