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Abstract. We discuss the generalized summability methods B = (Bjt), i.e., such matrix

methods whose elements B, are certain bounded linear operators on X into Y (X, Y are

Banach spaces). Mainly we consider the case Y = X. Therefore four kinds of operators are

defined and examined, which are firmly connected with the given method B. The operators
are of @ — [ type, mapping a sequence space « into another space 3. We derive four main

theorems, the corollaries of which characterize both the generalized and classical Euler—Knopp
and Riesz methods.
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methods of a — [ type.

1. INTRODUCTION AND PRELIMINARIES

Let X and Y be Banach spaces (B-spaces) over the field K, where K = R

or K = C. The space L(X,Y') of all continuous linear operators on X into Y is

known to be a B-space (see, e.g., ['], V, Sec. 1; 2], IV, Sece. 2). BB F: X->Y

we mean throughout this paper that F maps X into Y, 11.e., Fx € Y for each

z € X. In our case F is ofX> Y type. We denote by x = (zx) and n = (yk)
the seguences with 7x € X and yr € Y, respectively. The well-known (see,

e.g., [>*]) sequence spaces are myx = {(z}) : zx € X; supi||zk|] < oo); cx =

ÜUzk):tr €X; 3 limkzk); (e = ((tr):3x € X; > [tel] < oob These

are all B-spaces with the norm ||x|| = supg||zk|| in mx, cx and the norm ||x|| =

> & llzkll in £x. In the sequel also the operator spaces L(sx,X), £L(X,s'x), and

L(sx, sx) are used, where sx and s’x are mx, cx or £x. These spaces are also

B-spaces.
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The aim of this paper was to examine such generalized matrix transformations

which are determined by certain operators and triangular matrices B = (8,,;,) with

B € L(X,Y). The results of earlier investigations see in [>76].
Below, in Section 2, we describe four particular operators which are necessary

to realize this research. The fundamental properties of the operators considered

in Section 2 are obtained in Section 3. In the last section we present several

applications of our main results for the generalized Euler—Knopp and Riesz

summability methods [®] and their classical analogues [~?].
The results of our paper can be used to characterize generalized summability

methods of sx — s'x type and also to prove new Tauberian and Mercerian

theorems in B-spaces.

2. FUNDAMENTAL OPERATORS

Let B = (Bnk) be a matrix wailh B, € L(X,X) (n,k € N) and

N :={o, 1, 2,...}. By the matrix B we describe the following four particular
operators.

(a) Let the operator

B, = ank (’I’L € N) (1)
k=o

be defined by

B == ZBnka: (x € X;n € N). (2)
k=o

(b) Let the same symbol 8,, denote another operator of sx — X type. This

operator will be defined by

n

BnXZZßnkxk (XE Sx; N EN). (3)
k=o

When needed, it is possible to interpret the operator in (a) similarly to that in

(b). Therefore we should apply the operator (3) to the constant sequence x, = z,

where X,» = (z, s o
(c) In particular we need the operators B of sx — s’y type, where sx and s%

are certain pairs of mx, cx, £x. Letus define an operator of such kind by

7 = Bx, (4)

where 7 = (y,,) and

Yn = ZBnkivk (x € sx;n € N). )
k=o
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Using (3), the last equality can also be written in the form

Yn = Bnx (XES)(;TLEN). (6)

By (4)—(6) the following identities hold:

n=Bx = (gs) = (Bax) ={Y Busas) ~(x € ax): ™
k=o

(d) The operator B can be interpreted as B : X — s'y. In this case B would be

defined by

n=Bx = (B,z) = (žB„ka)) (z € X). (8)
k=o

These four operators determine the relations by which the sequence x = (zx),
with zx € X, or only a single element z € X would be transformed into a

certain element of X or into another sequence 7 = (y,), with y,, € X. All

these transformations we call generalized matrix transformations, since they are all

defined by the matrix B = (B,), with B, € L(X, X). We shall use the same

notation B also for the matrix, transformation, and summability methods.

3. MAIN PROPERTIES OF FUNDAMENTAL OPERATORS

First, we shall present the theorem (see, e.g., [l], lIL, Sec. 1; [2], IV, Sec. 1)
of functional analysis applied in several proofs below. As we know the following
result is valid for all normed spaces.

Theorem A. Any linear operator is continuous if and only if it is bounded.

The operators described in Section 2 have several properties connected with

their linearity, continuity, and norms, which will be demonstrated with the following
theorems.

Theorem 1. Let the operators By, : X > X (n € N)andß: X — s'y be defined
by {(1), (2)} and (8), respectively, where By € L(X,X) (n,k € N) and s's is

mx or cx.

(@) Then B € L(X, s'y) and B, € L(X,X) (n € N).
(b)If(Bnz) €s' for each z € X, then ||B,|| = O(1) and

181 l < sup Ba )

(c) If, additionally, all 8,, satisfy the condition B,z = x for each x € X, i.e.,

n

ZBnszw (x € X;n € N), (10)
k=o
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then ||B|| = 1 and

IBrll=l — (n € N). (11)

Proof. 1. 1t follows immediately from (1), (2), Bnx € L£(X, X), and the principal
properties of the space £(X,X) that B, € L(X,X) (n € N).

The linearity of the operator B : X — s’y is obvious by (8) and the assumption
Bur € L(X, X). Now, due to Theorem A, it is necessary to demonstrate that 8 is

a bounded operator.
As (Bnz) € s for each z € X, then there exists a number M, such that

IBpz|| < M, (n € N). Hence, the sequence (B,) is pointwise bounded

everywhere in X. Whereas all 8,, € £(X, X) and X is a B-space, it follows from

the principle of uniform boundedness (see, e.g., [l], VIL, Sec. 1; [2], IV, Sec. 5) that

the sequence ||B,|| is also bounded. Therefore there exists a positive constant M

such that

lIBn/ < M (n € N). (12)

Finally, using (8), (12), and the norm in sy, we find that | Bz|| = ||(B,z)|| <

sup,,||Brl|[|lz]| < M]||z||. Hence, B is a continuous operator (see Theorem A), by
which B € L(X, s'y).

2. Because of (12), ||B,|| = O(1). For B, defined by (8), in view of our

premises the identities

18l = sup [|Bz|| = sup [[(Buz)| = sup sup||Byz| (13)
llz)|<1 llz]|<l lzll<l m

hold.. While B, € ZL(X,X) and ||Br]]| = O(1), we find that B =

SUp||4|<lsUPy||Brlll|z]| = sup,||B,||. Hence, (9) is true.

3. The validity of (11) follows immediately from (1) and (10). To prove the

assertion ||B|| = 1, we shall start from (13) and due to (10) we obtain ||B|| =

SUD||z(|<l5UPR||Bnz|| = supjg<l|/{z|| = 1, which completes the proof.

Theorem 2. Let the operators By, : sx — X (n € N) and B : sx — s be

defined by {(1), (3)} and (7), respectively, where By € L(X,X) (n,k € N) and

Sx ismx,cx orlx.
Then the following assertions hold.:

(a) Bn € L(sx, X) (n€N);
(b) B € L(sx, s'y), where s'y is any of mx, cx or sy = sx = Ux.

Proof. By the assumptions, all the observed operators 8,, and B are linear operators.
1. Asall B, € L(X,X), then each of them is bounded (see Theorem A).

Therefore there exist M, > 0 such that

| Brxz|| < Mpk|lz|| (z € X;n,k € N). (14)
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Now, relying on (3), (14) and in view of sx, we find that for eachn € N

n n

IBaxll <D IlBnellllzrll <D Mukllxll = Lnllx|
k=o k=o

where Ln = > -0 Mnk > 0.

Hence, for each 8,, : sx — X there is a constant L,, such that

IBrx|l < Lnlxll (x € sx). (15)

Therefore B, € L(sx,X) (n € N).
2. To demonstrate the boundedness of 5, we must distinguish the following two

cases.

(i) Let sx be one of the spaces mx, cx or £x and s’y be mx or cx. While

Bis of sx — s’ type, then for each x € sx we have By = (Bp,x) € s.
Therefore for each x€ sy there exists M, > Osuchthat||B,x|| <M, (n € N).
Consequently, the sequence (5,,) is pointwise bounded everywhere in sx. As X

and s
x

are B-spaces, and as from part 1. of the proof we have 8,, € L(sx, X) for

eachn € NN, it follows from the principle ofuniform boundedness that the sequence

(I1Br]|) is also bounded. Therefore there exists M > 0 such that (12) holds. Then,

considering (12), the norm in sy, and the boundedness of each 8,, we find that

IBx|l = |(Brnx)|| < sup,||Bullllx]l < M||x]| or, shortly,

IBx|l < Miixll (x € sx). (16)

Hence (see Theorem A) B € L(sx, s'y).
(ii) Let B be of £x — 2x type, i.e., n = Bx € £x for each x € £x. Using (7)

and the norm inZx, we get

n] = Ilßxll = 1(Bax)ll = > Ilßrxll <o (x € £x). (17)

Based on our premises and on a theoremof Bosanquet and Kestelman (see [3], Sec.

1, p. 1), we may deduce from (17) that there exists M > 0 such that

> llßrxll < Mllxl (x € £x). (18)

From (18), (7), and (17) we obtain (16), by which the operator 3 is also continuous

(see TheoremA). Thus B € L(£x,¥x). The proof is complete.

Theorem 3. Let the operators By, : sx - X (n € N)and B : sx — s’y be

defined by {(1), (3)} and (7), respectively, where By € L(X,X) (n,k € N) and

s’y ismx or cx.
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(@)If (Bnx) € s’yforeach x € sx andifsx is mx, cx or £x, then there exists

M > 0 such that the following inequalities hold:

Ilßrl| <M (nEN), (19)

IlB]| <M. (21)

(b) If in addition to the previous assumptions the condition (10) isfulfilled and

ifM = lin (19)—(21), then for sx = mx or sx = cxthe following equalities
hold:

IB| = 1 (22)

IBrl| = 1 (n € N), (23)

but for the case sx = 2x the relations (22) and

(n+l)7' < Ba <1 (n € N) (24)

are valid.

Proof. 1. By the assumptions we have Bx = (Bpx) € s’y (x € sx). Thus the

sequence (B,) is bounded for each x € sx. Because of that the sequence (8,,) of

operators 3, : sx — X is pointwise bounded everywhere in sx. Now, just like in

part 2(i) of the proofof Theorem2, we conclude that (|| B,,||) is also bounded. Hence

there exists M > 0 such that (19) is true. By our assumption (B,x) € s’y for each

x € sx and therefore also for eachx = er(1) = (0,... ,0,7,0,...) (z € X;
k € N), where z £ 8 is in the kth position. As Brek(zx) = Bz (2 € X;
n,k € N), then, using (19) and the result 8,, € L(sx,X) of Theorem 2, we see

that sup)jz)<1|Bnk|| < supjy<lllßnx|l < M. Hence (20) is true.

In view of the meaning of s'y, we get for B defined by (7) that

IB|| = sup [|Bx|| = sup |[(Bnx)|| = sup sup ||Bnx]l- (25)
Ilxl[<l Ilxll<l llxll<l »

Because all 8,, € L(sx, X) (see Theorem 2), we find by (25) that

IB]| < supsup [|Bnllx]l = sup [|Bn]|- (26)
x]l<l n n

The statement (21) follows now from (19) and (26).
2. First, let sx be mx or cx and let the operator B, : sx — sy (n € N)

satisfy the supplementary conditions (10) and (19) with M = 1. Applying the

relations (3), (10), and the definition of the norm of an operator, i.e., ||B,| =

sup”X”SlHanfl = supHXHSIH ZZ:O B„ka:kH (n € N), we find that

18l > IBaelõ)] = | šß„kžH @I =1 (nEN)
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for eachx, = e(ž) = (Ž,ž,..) € cx C mx with Z]] = 1.

From the last inequality and (19) with M = 1 we have 1 < ||B,| < 1
(n € IN). Consequently, (23) is valid.

Taking additionally part 1. of this proof into account, we get that (21) with

M =1 is valid for B. Hence ||B|| < 1.

But, on the other hand, in view of (25) there exists a sequence x, = e(Z) such

that || B]| 2 [|BXz|l = [|(BnXe)ll = sup,||BuXzll = 1, or, shortly, ||B|| > 1.

The assertion (22) follows from the last two inequalities.
Let now sx = £x. Then by the assumptions By € s (x € £x). Employing

part 1. of our proof, we obtain that (19) and (21) hold, with M = 1. Now we shall

find the inferior estimation for ||B|| and for all ||B,,||. To this end, let us take the

sequence¥\ = (Z,... ,%,0,...) € £x,whereZ =e(n+1)"! € X and ||| = 1

for thefirst n+l elements of (™). Obviously, ||x™|| = (n+l)||Z|| =1 (n € N).
Hence, foreach 8,, : £x — X there exist Y(") € x and anumberM, = (n+ 1)”1
such that

B 2 ™ {5O Buseln +1)72| =@DRN 27
k=o

Therefore

IBall = sup IBrxll > IBX = (n+l)X = (n+ 1)7!
llxll<l .

or, shortly, ||B,|| > (n+1)~! (n € N). Consequently, the inequalities (24) are

valid.

In view of (27) and by B : £x —s, there exists a sequence (¥(™)) with (") €

2x such that [Bx™| = [[(Bux™)| = sup,[|Bux™|| = sup,(n+l)~! =l.

Further we have ||B|| = supy,<lllßx|l > 18, Xx™|| = 1. Therefore the

inequalities 1 < ||B]| < 1 hold, yielding (22). This completes the proof.

Theorem 4. Let the operators B, : x > X (n € N)and B : {x — sy be

defined by {(1), (3)} and (7), respectively, where By € L(X,X) (n,k € N).
If the sequence (Bnx) € 2xfor each x € £x, then

(a) thefollowing statements hold:

limB,x = 6 (el vl (28)

B,7.= 0 (x € X;k € N); (29)
n

(b) there exists

o 0

L=sup sup » ||Bnsz (30)
k=<l,

=%
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and thefollowing inequalities hold:

sup Y [|Buxll < L, (31)
llxll<l 7

Ilßrl| <Z, Jllßnell <L, |B]| <L (n,k€EN); (32)

(c) the relations (24) and (22) are valid if the operators B, satisfy the condition

(10) and ifL< 1 in (30).

Proof. 1. By the assumptions we get that B,x € X and (B,x) € {x for each

X € £x. Thereby

>" 11Baxll < » (x € £x) (33)

and evidently

lim [| By, x[| = 0 el) _ (34)

Hence (28) is true. Whereas the limit (34) exists for each x € £y, then it exists

also for all elements of £ = {ex(z) = (6,...,0,z,6,...)|x € X,k € N}, which

is the fundamental set of £x. In this case, and taking (1) and (3) into account, we

obtain from (34) that lim,||Bnex(z)|| = lim,||Buz|| = 0 (z € X;k € N),
which yields (29).

2. As by the assumptions all 8,, are of £y — X type, then in view of Theorem
2 B, € L(£x,X). Now it follows (see [], Sec. 1, p. 1) from (33) that there exists

K > Osuchthat )" ||Bnxll < K|lx|l (x € £x). As this result is valid for each

ex(z) € E,then Y >2 || Burz|| < K||z|| (z € X;k € N), from which it follows

that sup)z<l 2 met [Bnr|| < K (k € N). Consequently, there exists a number

L < K, defined by (30), such that

> llBnmezl| < Lizll (z € X;k € N). (35)
n=k

Because of (35), one can see that the second of inequalities (32) holds.

Next, using (35) and the norm in £x, we get

n OO

S IBaxll = || 30Bk <DODO Bti < Illxll, —36
n n k=o k n=k

from which (31) follows.

As By = (Bnx) € €x (x € €x), then ||Bx|| = >, [|Bax|| and so [[Bnx|| <
IBx|| (x € €x;n € N). Therefore, it follows from (36) that |B|| < L and

|Brll < L (n € N). This proves the statement (32).
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3. Next, let B, satisfy the supplementary condition (10) and let L < 1 in (30).
Then, relying on part (b) of Theorem 3 and on the fact that B, (n € N) are of

2x — X type, we see that these operators satisfy the inequality (24).
For B there exists (™ = (%,...,;%,0,...). € £x (n € N), where & =

e(n +1)~2 and ||| = (n + 1)~!, such that due to (10) we have

n

B 8 =|3 Busi]| =(n 4+ D2l = (04D (neN).
k=o

As B = (B,x™) € £x, we get from the last identity

1B =S 1B =Y+ D722 Y+ 1) n +2)7=l
n n n

Thus ||B|| = supyjy <1 IBxll > IB%(™|| > 1. The statement (22), i.e., | B|| = 1,
follows now from the last inequality and ||B|] < 1 proved in part 2 of this proof.
This completes the proof.

Remark. If in part (c) ofTheorem 4 we would only assume that ||B,|| < 1 (n € N)
instead of L < 1, we would come to 1 < ||B|| < L instead of (22) and to the

statement (24).

4. APPLICATIONS

The results derived in Section 3 permit us to employ Theorems 1-4 for several

generalized and classical summability methods. For that reason, we shall use

notations corresponding to those used in previous sections.

Let us consider two special cases: the generalized Euler—Knopp and the

generalized Riesz method defined and discussed in [®]. As is known, in £(X, X)
the multiplication of operators is determined and the usual estimation of the norm

of their product is given (see, e.g., [l], V, Sec. 2; [2], IV, Sec. 2).

Denote by (R, P,), or shortly by R, the generalized Riesz method with the

elements R, € L(X, X), specified in [°] by

RnPy (k=0,1,...,n),
87Fnk = { 0 — (k>m)

where Py, R, € L(X, X) and R, is fixed by

n

Rnd> PBr=z (z € X;n€N). (38)
k=6
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According to the notations used in Sections 1-3, let B = R, Bnk = Rnk» Bn = Ry,
where due to (1) and (37)

A B B el (39)

k=o k=o

Thus the relation (2) takes the form R,z = z (n € N). At the same time, from

(3) and (39), we get that

n n

Fux = z Rnkzk =Rn z PkZk (x € sx;n € N). (40)
k=o k=o

Because of that the operator R : sy — s’y or R : X —s, maps any X € sx or

z € X into Ry € s’y or Rz € s', respectively. So, by (7) or (8) we have

Rx= (FRnx) (x€Esx), (41)

Reix' (Rnz) (z € X). (42)

Let us denote the generalized Euler—Knopp method (see [®]) by (£,A) or,

shortly, by £ with the elements E,; € L(X, X) defined by

MARI -At (k=0,1,...,n),
43E”kz{ §)k (k>n), (43)

where A € £(X,X) and A° = 1.

In conformity with the notations used above, let B = &, Bur = Fng, B = En-
Thus, after (1)—(3) and (43) we can write for all n € N that

(44)En — zEnka
k=o

n

Enzt = zB=) (45)
k=o

Enx = zEnkivk = Z(Z)Ak(I — A)" Ry (46)

k=o k=o

The operator £ of sx — sy type or of X — s’y type mapsany x € sy orz € X

into £x € s’y or £z € sy, respectively, so that by (7) or (8) we get:

Ex = (Enrx) (x€Esx) (47)

£ = (.8} (z € X). (48)

Next, relying on these generalized methods, we discuss the classical Riesz and

Euler—Knopp methods, which we denote as usual by (R,p,) and (F, q), where
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pp € Kand g = A7! —1, A € R. We use also the shorter symbols R and E = E).
These methods are applicable for number sequences as well as for sequences in

B-spaces. The corresponding matrices are R = (r,,x) and E = (e,),where

T —e, Pn=s> pr and P, £O, (49)
k=o

Eenk = LASNE (50)

When needed (e.g., in case of sequences in B-spaces), it is possible to treat these

classical methods also in an operator form. Then we shall use the formulas (49),
(50) with

Rnk = T'nkl and E„kZßnkl, (s])
n n

Rn =) Ru and En=) Ey, (52)
k=o =0

Rx = (Rax) and Ex=(Enx) (53)

instead of (37)—(48).

A. Relying on Theorems 1-4, we can deduce some essential results for the

generalized methods i and £. For this reason it is important to emphasize that

both methods R and & satisfy the condition (10) due to (38) and (45). Thereby
the operators #,, and £, of X — X type satisfy the relations (R,z) = x, € s’X
and (Enz) = Xr € 8 for sy = mx or sx = cx and for each z € X.

First we note that the two next corollaries follow immediately from Theorems

1 and 2, respectively.

Corollary 1.1. Let the operators R,,, &, of X — X type and the operators R,
E ofX — s type be defined by {(37)—(39), (43)—(46)} and {(42), (48)},
respectively, and let s’y be mx or cx.

If Py, Rp, A € L(X,X) (k,n € N), then the following statements hold:

(a) R,E EL(X,s ) and R,,E, € L(X,X) (neN);

(b) ieBl ard |[En]=E=l (n€N). (54)

Corollary 2.1. Let the operators R, &, of sx — X type and the operators R,
£ of sx — sy type be defined by {(37), (40), (43), (46)} and {(41), (47)},
respectively, and let sx be mx, cx or £x.

If Py, Ry, A € L(X,X) (k,n € N),then the following statements hold:

@R,& € L(sx,X) (n eN)
(b) R,E € L(sx,;B%), where 8y is mx, cx or s’y = sx = Üx.

Next, relying on Theorem 3, we shall deduce the following corollaries. For

simplicity we shall give different formulations for the both methods, (R, P,,) and

(E, ).
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Using the relations (37)—(41), we immediately have

Corollary 3.1. Let the operators R, : sx — X and R : sx — s'y be defined by
(37)—(41), where R, P, € L(X,X) (k,n €N) and sy ismx or cx.

(@)If(Rnx) € sy foreach x € sx andif sx ismx, cx or £x, then there exists

M > 0 such that

IR <M, IRI <M, [RrPx]]<M (n,kEN). (55)

(b)If in this case M = 1 and sx is mx or cx, then

R|=land =1 (nEN), (56)

butifsx = £x, then |R|| = 1 and

m+D) VR <1 (n € N). (57)

For the special cases of (£, A) methods the condition |A|| + || — A] < 1, or

by ||l]| < ||A|l + ||l — Al| the condition

A+ 1L = Al =1 (58)

must be fulfilled, which we use everywhere below.

Corollary 3.2. Let s’y be mx or cx and let the operators &, : sx — X and

E : sx — s'y be defined by (43)—(47), where A € L(X, X) and satisfies (58).
If (Enx) € s'x for each x € sx andif sx is mx or cx, then

JE]|=l and |[En]| =1 (nEN), (59)

| Enkll <1 (n,k € N), (60)

butif sx = lx, then (60) holds, ||E|| = 1, and

(n+l)7' < n <1 (n € N). (61)

Proof. For sx = mx or sx = cx and for each x € sx such that ||| < 1, we get
by (58) '

I€axll <DENAIRNT =AI *llzell < (IAI +l7-A[lx] <1
k=o

Therefore ||y||= supjjy)<1 [[€nx|l £ 1 (n € N). Thus, &, satisfies the condition

(19) with M = 1, by which (60) is valid due to Theorem 3. For this case (59) also

holds by Theorem 3.

As (19) with M = 1 is fulfilled also in the case sx = {x, we get again
|€nll < 1. Then the assertions ||£|] = 1 and (61) immediately follow from

Theorem 3. This completes the proof.
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The study of the Riesz methods of £y — £x type would yield a corollary, the

formulation of which would be analogical to that of Theorem 4. Thereforewe omit

it from our discussion.

Thus, we shall deduce a corollary of Theorem 4 only for the method (£, A). For

this aim we need the following Remark and Lemma.

Remark. In the case A = 0 the method € = (€, A) is not of Lx — £x type.

Lemma. Let A € L(X, X) and let (58) be satisfied. If A # 0, then

> lIG)AF — AYe <HA ? (lz]l <Lk eN). — (6))
n=k

Proof. By (58) and A # 0 we get that || — A|| < 1. As A € L(X, X) and (43)
holds, all E,, € L(X,X). Thus we have ||E..| < ()lAIFIT = A"F (n,k €

N). Then, using the binomial series, the identity (}) = ("_,), and changing the

variables by n — k = 7, we see that for each ||z|| < 1

D Bzl < D GlAIMNT—A"
n=k n=k

= AD G=AP =A@ -7-AD
120

or, shortly,

00

> [Emezl < A (2l €Lk € N),
n==k

which proves the assertion.

Corollary 4.1. Let the operators £, (n € N) and £be defined by (43)—(47),
where A € L(X, X) and satisfies the condition (58).

If the sequence (E,x) € 8x for each x € lx, then

(a) the equalities (28) and (29), where 8,, = &, and By, = E,, hold,

(b) there exists

00

L=sup sup > llEnzezl]l <A (63)
k |ell<lp-k

and the following inequalities hold:

sup > [[€nxll < E, (64)
lIxIISI 7
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| Enk]l <1 (n,k € N), (65)

()<],]<l,— I<[E]<l (nEN). (66)

Proof. Statement (a) follows immediately from Theorem 4.

(b) By our assumptions the condition (58) is valid and £ is of £x — £x type.
Then, in view of the Remark, we have A # 6 and therefore || /—A|| < 1. Now, using
Lemma, we see that (62) holds and accordingly there exists a number L defined by
(63). By Theorem 4 we therefore get (64).

Now we find an estimate for the norms of operators &, and &, taking
{(10), (43), (45), (46)} into account and considering the fact that these operators
are of {x — X and £x — s'y type, respectively. Usingalso the properties of norms

for the product of operators and the relations A™, (I — A)™ € L(X, X), we get for

each ||x|| < landn € N

lEnxll < > ONAIFIT = AFllzell < (lAL+ I - AD)™ =1

k=o

and also ||Enkz|]] < 1 (|z]] £ 1; mn,k € N). Conseguently, | Enk| =

sup|iz<lll Bnkz|l < 15 [|€nll = supyy<lliénxll £ 1 (n,k € N), by which (65)
holds. Inequalities (66) follow immediately from the Remark to Theorem 4. This

completes the proof.

B. Secondly, we consider the classical methods (R, p,) and E), defined by
(49)—(53). These methods are considered as special cases of generalized methods

discussed in Section 4.A. From the Corollaries presented in this section we shall

infer some properties for the operators R,, E,, R, and E. Several of these

properties include indirectly also some known properties of the methods (R, p;,)
and E) (see [(79]).

8.1. To simplify the expressions given below, we note M = sup,, M,,, where

My = [Pal™t S 0 Ipi| (n € N).
We recall that the well-known particular cases (see, e.g., ["°]) of (R, pn) are:

the Cesaro method (C, 1), the method of logarithmic means, and the Zygmund
method (Z,a) (a = 1,2,...). Therefore it is reasonable to treat separately the

(R, pn) methods with p, > 0 (n € N), i.e., the positive (R,p,,) methods.

In the following summary, based on the classical Riesz method, we shall use

the notations “GC” and “PC” for the general case and the positive case of (R, py),

respectively.

Summary. L Let sx and s'y form any pairs ofmx and cx.

Thenfor R,, : sx — X and each-n € N we have:

R Loy X); ”Rn” =M, in GC; [Rn]|=l in PC
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and for R : sx — s’y we obtain

R € L(sx,B%); ||R|| =supM, in GC; ||R|=l in PC.
n

IL Let sx = £x and s’y be mx orcx.
Then for R,, : £x — X and each n € N we have:

Ruk Lllx,X IRn]| € [n +l)7*Mn; Mn] in GC;

IRnll € [(n+l)7l] in PG,

and for R : £x — sy wefind:

Relllysyl |R|=supM, in GC; Rl =1 in PC.
n .

8.2. Let the method E\ = (FE,) be determined by a parameter A € R.

According to the generalized method (£,A) we get now A = AI. As in the

generalized case, let A satisfy (58), i.e., |A| + |1 — A| = 1 due to A] = A]
IT — Al| = |l—A]. As by the last equality 0 < A < 1, then all the elements e,,;, are

non-negative (see (50)). The summary with 0 < A < 1, presented below, follows

immediately from Corollaries 3.2 and 4.1. >

Summary. L. Let sx and sy form any pairs ofmx and cx.

ThenforBy, :sx=+ X (n € N)andforE:sx— sy we have:

En € L(sx,X); B=l and Ec £lsx.sx); |E||=l

IL Let sx = x and s’y be mx or cx.

Thenfor E, :£x > X (n € N)andforE :lx —sy we have:

En € L(tx,X); Bl o +1) 1) B e Llx,s%); |E] =1

111. Let sx — S —l7
Thenfor B, :¢x - X (n € N)andforE:bx— 2x we have:

E, € L(fx,X); NEul€(n+l)7sl]; EeLilx,tx); |E|I <Xt
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ÜLDISTATUD SUMMEERIMISMENETLUSTE POHIOMADUSI

Tamara SORMUS

On vaadeldud iildistatud summeerimismenetlusi B = (B,), s.O. maatriks-

menetlusi, mille elemendid B,; on B-ruumides X ja Y tegutsevad pidevad
lineaarsed operaatorid. On defineeritud meetodiga B tihedalt seotud nelja liiki

operaatorid ja neid uuritud. Tegu on x — [-tiilipi operaatoritega, mis kuju-
tavad jadaruumi o mingisse jadaruumi 3. On tdestatud neli pohiteoreemi, mille

jareldused iseloomustavad nii tildistatud kui ka klassikalisi Euleri—-Knoppi jaRieszi

menetlusi.
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