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Abstract. A radical map in the class of all graphs (not necessarily finite or undirected) is defined

and a complete characterization of the corresponding semisimple graphs is given. It is proved
that the congruence lattice of a finite graph satisfies the Jordan-Dedekind chain condition.
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1. INTRODUCTION

We consider the congruence latticeof a graph without any restrictions (finiteness
or undirectedness). If pis an arbitrary congruence relation of G, then the prime ideal

(p] is isomorphic to the direct product of the congruence lattices of all p-classes and

its dual [p) is always isomorphic to the congruence lattice of the factor-graph G/p.

A radical is defined here as a mapping (with certain properties) from the class of

all graphs to the class of all sets. We show that taking the greatest lower bound of

all co-atoms of the congruence lattice defines a radical (the J-radical). A graph G

is J-semisimple (J(G) = 0) if and only if at least one of the following conditions
holds:

1. G is simple,
2. G is edgeless,
3. G is complete,
4. (G is linear.

Finally we prove that the congruence lattice of a finite graph satisfies the Jordan—

Dedekind chain condition.
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2. BASICS
-

A pair G = (V, E) is called a graph if E is an antireflexive binary relation on

V. The elements of V and E are called vertices and edges, respectively. A graph
G is said to be undirected if the relation £ 1s symmetric. Usually we use the short

notation zy € F instead of the correct notation (z,y) € E.

Let Gi = (Vi,E7) and Gy = (Va, E3) be graphs. We say that a mapping

Vi —Ls V 4 is a graph morphism if the condition

flz) £ fly) = oy € By & f(z)f(y) €s] (1)

holds for arbitrary vertices z,y € V7. Then we can write G L G>. Sucha

morphism has been defined in [']. It is easy to verify that we get the usual structure

of category. In other words, the identity mapping G 8, G'is always a morphism,

and the composition G 1 äf) G 3 of two morphisms G 1 i> G> and G» 23 G 3 lis
a morphism as well.

An equivalence relation p on the vertex set V of the graph G = (V, ) is called

a congruence relation on G if the condition

zpz’' Aypy' A —(zpy) = [zy € E & I’y € E]

holds for arbitrary vertices z,z’,y,y’ € V. Itis easy to see that the kernel Ker f

of every morphism G ——f—> H is a congruence relation and conversely, every

congruence relation p of G is akernel of some morphism. This is true because there

is a unique graph structure on the factor-set V/p such that the natural projection
V 5 V/p is a morphism. This graph is called a factor graph of G by p and is

denoted as G/p.
Let A, B, and C be graphs, A Ä Ca morphism, A —> B an epimorphism

and Ker g C Ker f. Then there exists a unique morphism B " ¢ which makes

the following diagram commutative:

If Kerg = Ker f, then h is a monomorphism. Consequently, if A il
is a morphism, then there is an isomorphism h making the following diagram
commutative:

A--D50

do
B —3ce

4 b

wl L
A/Ker f —a Imf,
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where 7 is the natural projection and ¢ is the natural injection.

3. PRINCIPAL IDEALS IN THE CONGRUENCE LATTICE OF A GRAPH

Let Con G denote the set of all congruence relations of the graph G. Note that

Con G is partially ordered by the inclusion relation C.

Theorem 1. Con G is a complete latticefor every graph G = (V, E).

Proof. Let us prove at first that the intersection NA of every nonempty subset A

of Con G is a congruence relation of G. It is obvious that NA is an equivalence
relation. Let (z,2'),(y,y') € NA and (z,y) ¢ NA. Consequently, there is a

congruence relation p € A such that (z,y) € p. As p is a congruence relation,
it follows from (z, z'), (y,3’) € NA C p that

(z,y) € E & (z',y') € E.

Therefore, NA is a congruence relation. Note that NA is also the greatest lower

bound of A. It remains to prove that there is also the least upper bound for every

nonempty subset A C Con G. Indeed, if A is nonempty, then the set

AS =fo|o € ConGAYplpeEA->pCo)

is nonempty because the congruence relation 15 = V xV belongs to A®. Therefore

NA® is a congruence relation and coincides with the least upper bound of A. [

Theorem 2. If G = (V, E) is a graphand p € Con G, then

[p) =2 ConG/p.

Proof. Let us prove the following lemma first.

Lemma 1. [f h is an epimorphism, then for every pair of the morphisms gl, g2

Ker(g; o h) C Ker(gs o h) <> Ker g; C Ker gs.

Proof. If Ker(g; o h) C Ker(gy o h) and (z,y) € Ker gl, then g1(z) = g1(y). As

h is onto, there are z’ and y' such that h(z') = z and h(y') = y. Consequently,
g1(h(z")) = g1(h(z")) and therefore (z',4') € Ker(gy o h). By the assumption
(z',y') € Ker(gy o h) and therefore go(h(z')) = go(h(z')) which is equivalent to

(z,y) € Ker g,.
IfKer g 1 C Ker g 2 and (2',y') € Ker(g; o h), then g 1 (h(z')) = g1(h(z')) and

thereforego(h(z')) = g2(h(z")) which is equivalent to (z’,3') € Ker(gooh). This

completes the proof of the lemma. ]
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We know that every congruence relation of the quotient graph G/p is the kernel

of some morphism G/p D H.LItG 55 €/p be the natural projection. We

define a mapping Con G/p 5 {p}* as follows:

f: Kerg +— Ker(g o).

f is well-defined because if G/p 2 Hiand G/p 2, H, are two morphisms and

Ker g; = Ker g, then by Lemma 1 we get Ker(g; o ) = Ker(gz o 7). And more,

it follows from the lemma that f is injective and order-preserving.
It remains to prove that f is onto. Let § € ConG and p € ö. Then there is

a graph H and a morphism G 2, H such that Kerg = 6. Therefore there is a

morphism G/p y H such that hor = g and thus

6 = Kerg = Ker(h o) = f(Kerh).

It shows that f is indeed onto and consequently f is a lattice isomorphism. []

Theorem 3. If G is a graph, p € Con G is an arbitrary congruence relation, and

G/p = {Gj}jcg, then

(p] = H COIIGj.
JET

Proof. Let G; 3 G (j €J) be the natural injections. Define a mapping

ConG d [l;e7 ConGj as follows:

¢: Kerf— {Ker(f o¢j)}jer-

Let (p] — Con G be a natural monomorphism.

Lemma 2. [foy,o9 € (p], then

01 C oy & (po)(o1) < (Ho2)(02).

Proof. Let Ker f 1 = «(01) and Ker fp = t(02). If 07 C 09, then also Ker f; C
Ker fo because ¢ is a lattice embedding. Consequently, Ker(f;o¢;) C Ker(f2o¢s)
for everyj€ J and thus ¢u(01) < di(o2).

If ¢1(o1) < ¢e(o2), then by definition

Ker(fl o¢j) C Ker(fz 01;) (2)

for everyj € J. If (z,y) € t(01) =Ker fy, then (z,y) € pbecause of the

inequality ¢(c1) C p. Consequently, there existsj € J such that z,y € Gj
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and therefore ¢j(z) = z and +;(y) = y. Now we get from fi(z) = fi(y) that

(z,y) € Ker(fi o ¢;) and by inequality (2) (z,y) € Ker(f2 o ¢;). Therefore

fa(z) = fatj(z) = fatj(y) = f2(y) and this means that (z,y) € Ker f5. Thus we

have proven the inequality ¢(0q) C t(02). As ¢ is a lattice embedding, it follows

that o 1 C 09. []

We now turn to the proof of the theorem. It follows from the lemma that ¢¢ is

injective and order-preserving. It remains to show that ¢ is onto. Let {o;},c7 be

an arbitrary element of [[, ,
Con G;. Let

o= U oj= ((z,y) | 37 € J(4z,y) € Uj)}-
JET

We will show first that o is a congruence relation and o € (p]. It is obvious that

o is an equivalence relation. Let z,y,z',y' € V be arbitrary nodes of G, zoz’,

yoy' and —(zoy). Consequently, there are 7 and j in 7 such that (z,z') € o; and

(y,y') € oj,but (z,y) & oy forall k € 7.
If i = j, then 0; = o, which implies

(z,y) € E + (z',y') € E, (3)

because o; is a congruence relation on G;. If i £ j, then —(zpy) and therefore

zpz' Aypy A —-(zpy),

because z,z’ € G; € G/pandy,y’ € G; € G/p. As p is a congruence relation,
we get (3). Therefore o € Con G.

It is clear that o C p, because if (x,y) € o, then there exists ¢ € 7 such that

(z,y) € ConG;. Thus z,y € G; and therefore (z,y) € p.

And finally, we show that for all o € (p] ¢u(0) = {oj}jes. Leto =

t(c) = Kerf. Then ¢t(c) = {Ker(f o ¢j)}jc7 and it remains to show that

Ker(f.o 1) = o;.
Indeed, if (z,y) € Ker(f o1;), thenz,y € G; vilz) = r and w;(y) = y.

Thereby (z,y) € Ker f = o and there exists k € J such that (z,y) € oy and thus

(z,y) € Gg. Consequently, j = k and therefore (z,y) € o;.
If (x7,y) € o;, thenz,y € G; € G/pand (z7,y) € Uiegoi = 0 =Kerf.

Therefore (z,y) € Ker(f o ). O

4. RADICALS

Let S and G be the class of all sets and the class of all graphs, respectively. Let

7 C G be a subclass of G. A mapping H — & is called a radical in 7 if the

following three conditions hold:

1. r(G) € Con G;
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2.if G,H € H,and G s Hisan epimorphism, then

(z,y) € 7(G) = (f(z), f(y)) € r(H);

3. r(G/r(G)) = 0.

A graph G is said tobe r-radical if r(G) = 1 and G is said tobe r-semisimple 1f

r(G) = 0. Here 0 and 1 denote trivial congruence relations. The following theorem

gives us an important example of a radical.

Theorem 4. Let H be the class ofall nondirected graphs. Let G be an arbitrary

graph in ‘H and c(G) an equivalence relation corresponding to the partition of G

into its maximal connected components. Then the mapping H =5 Sisaradical in

the class of all nondirected graphs.

Proof. Let G = (V, E) and H = (V', E") be nondirected graphs. It is obvious that

c(G) € ConG. Let G , H bean epimorphism and (z,y) € ¢(G). Accordingly,
z and y lie in the same maximal connected component of G and therefore there must

be a chain of vertices

=7O, yot =Y

such that v;v;4.l € E. As f is amorphism, then for every component v; of the chain

f(IE) — f(UO)af(Ul)? ---,f(Ue) = f(y)

either there is an edge (f(v;), f(vi+l)) € E' or f(v;) = f(viyl). This means that

f(x) and f(y) lie in the same maximal connected component of H and therefore

(f(2), f(y)) € c(H).
As G/c(G) is always edgeless, all the maximal connected components of

G/c(G) consist of a single vertex. Therefore ¢(G/c(G)) = 0. O

It is easy to verify that a graph G is r-radical if and only if it isconnected and G

is r-semisimple ifand only if it is edgeless. Let ¢(G) denote the partition of G into

the maximal complement-connected components. It is easy to prove that 2 55
is a radical and G is ¢-radical [¢ — semisimple] iff G is complement-connected
[complete].

5. SPINRAD’S CONGRUENCE RELATION

Modular decomposition of a graph has been studied by several researchers in

many different areas. A nice overview is given by Mohring and Radermacher [?].
Spinrad [?] developed an O(n?) algorithm to find the modular decomposition which

has been used to develop the fastest known algorithms for several combinatorial
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problems ([*]). We prove that the modular decomposition is related with a certain

radical.

A subset M of the vertex set V' of the graph G = (V, E) is called a module if

[zz € E > yz € E]A[zz € E — 2y € E]

for arbitrary vertices z,y € M and z ¢ M. It turns out that the modules are nothing
else but the equivalence classes of congruence relations. A subset M C V' is a

module iff there is a congruence relation p such that M € V/p. This is proved in

[1
Theorem 5. The union A U B of two intersecting modules A and B is a module.

Proof. Lett € ANB,z,y € AUB,andz € V—(AUB). Without loss of generality
we may assume that z is in A. Ast € A, we get (z,2) € E > (t,2z) € E and

(t,z) € E — (y,z) € E. Accordingly, the implication (z,z) € E — (y,z) € E

is valid. Similarly we can deduce the implication (z,2) € E — (z,y) € E.

Therefore A U B is a module. =

Theorem 6. [fM is a nonempty set ofmodules and NM # 0, then the union UM

is a module.

Proof. Letz,y € UM and z € V—-UM. Accordingly, there exists A, B € M such

that z € A andy € B. As the intersection is not empty, there exists t € NM C
A N B. It follows now from Theorem 5 that M = A U B is a module, z,y € M

and z € V — M. The statement of the theorem directly follows from the definition

of the module. []

For every vertex z of G = (V, E), we have a set

M(z):={M |ze M+#VAMisamodule}

of all nontrivial modules containing the vertex z. Let M, = U M(z). It follows

from Theorem 6 that M, is a module. Let S = {M, | z € V'}. It is easy to verify
that if there are at least two vertices in G, the following four conditions hold:

1. SCE P(V),
2.0 € 5,
3- U.’L‘EV Ma: — V,
4. M:z:nMy 7'&@:}/\/[:5 ZMy-
Thereby we can say that $ is a partition of the vertex set V of G. Letus denote the

corresponding equivalencerelation by s(G).' As every eguivalence class of s(G) is

a module, we can say that s(G) is acongruence relation of G. Letus call it Spinrad's
congruence relation.

1 If G consists of a single vertex, we take s(G) = 1.
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Theorem 7. IfG has at least two vertices, then s(G) is an upper bound (in Con G)

ofall congruence relations not equal to 1.

Proof. Let p # 1 be a congruence relation of G and 0 = s(G). Letz € V be

an arbitrary vertex, K a p-class (module) containing the vertex z, and L a o-class

(module) containing z. By the definition of s(G) we have K C L. If (z,y) € p,

then z,y € K. Therefore z,y € L and thus (z,y) € o. Accordingly, p C o and

thereby o is an upper bound of all congruence relations different from 1. B

Lemma 3. If 0 # 1 is an upper bound ofall congruence relations of G different
from 1, then ¢ is a co-atom ofCon G.

Proof. If 6 C o C 1, then o = 1 because otherwise o C ¢ which leads us to the

contradiction d C 6. O

Corollary. For every graph G the Spinrad’s congruence relation s(QG) is either

equal to 1 or it is a unique co-atom of the congruence lattice Con G.

Lemma 4. [f there are no co-atoms in Con G and G Iy Hisan epimorphism,
then there are no co-atoms in Con H.

Proof. If there is a co-atom p in Con H, then there is a co-atom in the dual principal
ideal [Ker f) and consequently there is a co-atom in Con G. Indeed, the mapping

ConH -2 [Ker f), Ker h — Ker(h o f) is a lattice isomorphism and therefore

#(p) is a co-atom of Con G. O

Theorem 8. The mapping G — s(G) is a radical in the class ofall graphs.

Proof. We know that s(G) is a congruence relation and either s(G) is equal to 1

or s(G) is a co-atom of Con G. Accordingly, there are at most two elements in

Con(G/s(@G)) and therefore s(G/s(G)) = 0.

Let G -3 H be an epimorphism and (z,y) € s(G). If s(H) = 1, then it is

clear that (f(z), f(y)) € s(H). If s(G) = 1, then by Lemma4 we have s(H) =1

and therefore (f(x), f(y)) € s(H). Consequently, we can assume that neither

s(G) nor s(H) is equal to 1. Therefore, by the Corollary s(G) and s(H) are unique
co-atoms in Con G and Con H, respectively. Let H - H/s(H) be the natural

projection. As the mapping ¢: Kerh — Ker(h o f) (H Bymorphism) is

an isomorphism between Con H and [Ker f), the image Ker(7 o f) of the co-atom

s(H) = Ker7 is a co-atom as well and thereforeKer(7 o f) = s(G). As (z,y) €

s(G), we have 1(f(z)) = 1(f(y)) and (f(2), f(y)) € Kera = s(F). D
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6. UNIQUENESS OF THE SIMPLE QUOTIENT

Theorem 9. If there is a co-atom p in ConG such that there are at least three

vertices in G/p, then p is a unique co-atom of Con G and, furthermore, p is the

least upper bound ofall congruence relations different from 1.

Proof. Let G = (V, E) and p € ConG be a co-atom such that |G/p|> 3. Let

us assume that there is a congruence relation o not comparable with p. We will

obtain a contradiction. Note that there exist a o-class M and a p-class G; such that

MNG; # oand G; € M. As M and G; are intersecting modules, their union

M U G; is a module by Theorem 5. We define now the following sets of modules:

M = (MUG)|G;jEG/p N G;O0MF£0),
N = I(G;|Ge:E€G/p A GNM=O.

As NM £ (), then by Theorem 6 U M is a module. The set A/ is empty because

otherwise we have a partition of GG into the modules

G=uM]ll ] &4
T GleN

and thus the corresponding equivalence relation p’ is a congruencerelation such that

p C p' C I(p# p'). Thisis impossible because p is a co-atom. So, M N G; # 0

forevery G; € G/p.
As G; € M, thereis a vertex zg € G; — M. Let z,y € G — G; be arbitrary

vertices notin G — G; and z € G; an arbitrary vertex in G;. Lety € G, € G/p,
z € Gy € G/p. As M U Gj is not empty for every j, there must be y' € M N G,
and z' € M N Gy.

Fig. 1. Venn diagram of the modules G, G, G;, and M
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Now we get a chain of implications (Fig. 1):

zz€ B, = rzy €E (G;isamodule),

= £'z9 € E (G is amodule),
= 4290 € E (M is amodule),

= yzp € E (G is amodule),

= yz € E (G, is amodule),

showing that G— G is amodule. Therefore we have acongruence partition G/p" =

{G;,G — G;} and p € p" C 1. Accordingly, p = p” but then there are only two

p-classes. This is impossible because of the assumption |G/p|> 3. []

Theorem 10. Every two simple guotient graphs ofa graph G are isomorphic.

Proof. Let G/p be a simple graph. It follows from Theorem 2 that p is a co-atom

of Con G. If |G/p|> 3, then by Theorem 9 we have that p is a unique co-atom and

therefore G/p is a unique simple quotient of G.

Let |G/p|=|G/o|= 2. It is obvious that p and o are co-atoms of Con G. Let

Glp={M'M — M'} and G/o = {M,G — M}. Without loss of generality we

may assume that M NM' # (). Letae MNM'. Letz € G',ye G—-G',z' € M,
and y' € G — M be arbitrary vertices. We will show that zy € E iff 'y’ € E (or

- V 1 S etS S e e e s T | AA o . (e AA/RA O

Theorem 10. Every two simple quotient graphs ofa graph G are isomorphic.

Proof. Let G/p be a simple graph. It follows from Theorem 2 that p is a co-atom

of ConG. If |G/p|> 3, then by Theorem 9 we have that p is a unique co-atom and

therefore G/p is a unique simple quotient of G.

Let |G/p|=|G/o|= 2. It is obvious that p and o are co-atoms of Con G. Let

Glp={M'M — M'} and G/o = {M,G — M}. Without loss of generality we

may assume that M NM' # (). Letae MNM'. Letz € G',ye G—-G',z' € M,
and y' € G — M be arbitrary vertices. We will show that zy € E iff 'y’ € E (or

zy € Eiffy'z’ € F) and therefore the factor-graphs G/pand G//o are isomorphic.

Let us assume first that M’ U M # G. Consequently, G — (M’ N M) is a module

because(G—M'YN(G-M)=G—-(M'UM) #oandG-(M'NM) =

(G- M')U (G — M). But now (Fig. 2)

zy€EE = ay€ E (M'isamodule),

= ay' € E (G- (M'N M) is amodule),

= z'y' € E (M is a module).

Fig. 2. Venn diagram of the modules M and M.
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IfMUM=G,thenM—M =G — M and M' —M=G — M. Thereby
y' € M,y € M' and we haveachain of implications

zy€E = yy€E (M isamodule),

= 'z’ € E (M'isamodule).

7. THE J-RADICAL

Let G be the class of all graphs. Let G — Sbea mapping such that J(G) = 1
if there are no co-atoms in Con G and, otherwise, J(G) is egual to the greatest lower

bound of all co-atoms of Con G.

Theorem 11. A mapping G — J(G) is a radical in the class ofall graphs.

Proof. 1t is' clear that J(G) € ConG. It follows from Theorem 2 that

J(G/J(G)) =O.

Let G - H be an epimorphism and (f(z), f(y)) ¢ J(H). Consequently,

there is a co-atom Kerh € Con H(H , .isa morphism) such that

(f(z), f(y)) £ Kerh and thus (z,y) ¢ Ker(h o f). We know that the mapping
Kerh — Ker(h o f) is an isomorphismbetween Con H and [Ker f) and therefore

Ker(h o f) is a co-atom in Con G. Accordingly, (z,y) ¢ J(G) and thus J is a

radical. []

Let G = (V,E) be a linearly ordered set and p € ConG an equivalence
relation. p is called a cut of G if there are subgraphs Gy, G such that G/p =

{Go,GI} and there is a vertex v € V such that for an arbitrary vertex z € V

T €Gy&vel

It is clear that every cut of G is a congruence relation of G. Obviously, if G is a

linear ordering, then all its cuts intersect to zero and therefore G is J-semisimple.
So, we can say that a proof of the following theorem is obvious.

Theorem 12. /f G is either simple, edgeless, complete or linear, then G is

J-semisimple.

Furthermore, it turns out that also the inverse statement is true.

Theorem 13. A graph G is J-radical iff there are no co-atoms in Con G and G is

J-semisimple iff it satisfies at least one of thefollowing conditions:

1. G is simple,
2. G is edgeless,
3. G iscomplete,
4. G is linear.
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Proof. 1f there are no co-atoms in Con G, then by definition J(G) = 1, and if

J(G) = 1, then Con G cannot have any co-atoms.

If one of the four conditions holds, then G is J-semisimple by Theorem 12.

Let us assume that J(G) = 0. If there is a co-atom p € ConG such that

|G/p|> 3, then it follows from Theorem 9 that p is a unique co-atom and therefore

0 = J(G) = p. Accordingly, |Con G|= 2 and thus G is simple.
If all the simple quotients of G' have two vertices, then by Theorem 10 they are

all isomorphic. There are three different graphs having exactly two vertices (Fig. 3):

If p is a co-atom and G'/p = O, then all the simple quotients of G are isomorphic
to Op. Letz,y € V andz # y. As J(G) = 0, there is a co-atom p such that

(z,y) & p and therefore z and y lie in different p-classes. As G/p = Os, we have

zy ¢ E. Because the vertices z,y were chosen randomly, we can say that G is

edgeless. Similarly, we can prove that if there is a co-atom p € Con G such that

G/p = Ko, then G is complete.
If there is a co-atom p' € ConG such that ConG/p' & Ay and z,y € V

are different vertices of G, then by the condition J(G) = 0 there exists a co-atom

p such that (z,y) & p. As G/p = A,, then by Theorem 10 either zy € E and

yr £ E orzy ¢ E and yz € E. Thus, we have proved that there is a directed edge
between an arbitrary pair of vertices. It remains to prove that there are no 3-element

cycles in G. Let zyz be a cycle (zy,yz,2x € E and zz,2y,yz € E). If pis an

arbitrary co-atom, then either z = y = z(p) or two of the vertices are equivalent by
p. All the free vertices cannot lie in differentp-classes, because there are exactly two

p-classes. If z = y(p) and z # z(p), then there is a p-class M such that z,y € M

and z € M. This is impossible because M is a module. Accordingly, for every
co-atom p and for arbitrary vertices z,y, 2z, we have x = y = z(p) which is a

contradiction with the condition J(G) = 0. DO

8. AN EXAMPLE OF A J-RADICAL GRAPH

Let N be the set of natural numbers and let us define a binary relation o< on the

set N as follows:

nxm = n<m Aodd(m),

Fig. 3. Graphs with two vertices.



167

where odd(m) is true iff m is odd. In this section we prove that the corresponding
infinite graph A/ = (N, ) is J-radical.

Lemmas. /M C Ni„lvamodule, z EM,andz +1 € M,thenz +2 8 M.

Proof. Let M be a subset of N such that z ¢ M and x + 1 € M. Suppose that

z+2¢e .M. |
If z is odd, then z + 2 is odd and z + 1 is even. Accordingly, x o< z + 2 and

r X xA+l.

If z is even, then z + 1 is odd and = + 2 is even. Accordingly, x o< 7 + 1 and

x ¢ = + 2. Therefore M cannot be a module. O

Lemma6. IfM C Nisamodule,z <y <z€M,andy ¢ M, thenz & M.

Proof. If z is even, then z < z and z ¢ y. Therefore x and z cannot lie in the same

module M.

If z is odd, then y o< z and y ¢t z. Therefore z £ M. []

Theorem 14. A
proper subset M C N is a module iff either M = {n} or M =

{0,...,n — 1}for some n € N.

Proof. The if-part is trivial. Let M # () be a module and there be no n such that

M = {0,...,n — I}. Therefore there isy ¢ M such thaty +1 € M. Letz # y be

an arbitrary natural number.

Ifx <y, thenzx ¢ M by Lemma6. Letz >y+1. Ifx € M, thenz > z +2
by Lemma 5 and therefore y ¢ M by Lemma 6 which is a contradiction. Therefore

x ¢ M and obviously M = {y + I}. O

Thus we have proved that there is a sequence of modules in M

M, cM cM>C..CMc.C...

such that every nontrivial module M is equal to one of the modules Mj.

Accordingly, the congruence lattice Con A/ is isomorphic to the ordinal w+ 1 which

obviously has no co-atoms.

9. CONGRUENCE LATTICE OF A FINITE J-SEMISIMPLE GRAPH

It is remarkable that the value of the J-radical depends only on the congruence
lattice of GG but not on G itself. Thus one can define J-semisimple graphs by their

congruence lattice. We know the following J-semisimple graphs:
1. A trivial graph 0 = ({o}, (). Its congruence lattice is isomorphic to the trivial

lattice II; — the partition lattice of the set 1 = {o}.
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2. All simple graphs have the congruence lattice isomorphic to Il — the partition
lattice of the set 2 = {o,l}.
3. The edgeless graph with n vertices 0,, and the complete graph with n vertices

K, have a congruence lattice isomorphic to 11,, — the partition lattice of the set

iy SO, by, el

4. n-element linear orderings have a congruence lattice isomorphic to Hg—l. This

is guite obvious, but we will prove it.

Theorem 15. The congruence lattice of the n-element linear ordering is

isomorphic to 113—'.

Proof. Let G = (V,E), V = {O, ...,
n — I}, and £ bea linear ordering such that

(1,7) € Eiffi < j. Itis obvious that there are n — 1 atoms in Con G. They are just
the congruence relations (01), (12), ...,

(n — 2,n —1), where (7,7 + 1) denotes the

congruence relation where 7 and ¢ + 1 are the only elements which are different and

equivalent. It is obvious that everycongruence relation can be uniquely represented
as the leastupper bound of acertain set of atoms and that for every set of atoms there

is a unique congruence corresponding to this set of atoms. []

Thus, all the congruence lattices of finite J-semisimple graphs lie in the

following diagram (Fig. 4):

10. JORDAN-DEDEKIND CHAIN CONDITION

Let L be a finite lattice. We say that L satisfies the Jordan—Dedekind chain

condition (JD) if any two maximal chains ofL have the same length.

Fig. 4. Hasse diagram of the partially ordered set of congruence lattices of all finite

J-semisimple graphs. Ly < L, means that there is a lattice embedding L; — L.
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Theorem 16. If ConG is finite, then it satisfies the Jordan—Dedekind chain

condition (JD).

Proof. We will prove the theorem by induction on the size of Con GG. The statement

of the theorem is obvious when G is J-semisimple. Indeed, all the finite partition
lattices are semimodular and therefore satisfy the JD. Lattices 117 satisfy the JD

because ifLl, ..., L, satisfy the JD, then also the directproduct L; X
...

X L,, satisfies

the JD.

Let |Con G|= k and all the smaller congruence lattices satisfy the JD. We can

assume that J(G) # 0. Let

c: O=ooop<ol<...<Om-I=32o<O%m=l,

c: =O, 0 < =0{—o <o, =1

be two maximal chains of ConG. Obviously o and ¢’ are co-atoms of Con G

and therefore J(G) < o and J(G) < o'. Let £(c) denote the length of c. Let

s, s', and u be maximal chains of the intervals [J(G), o], [J(G),d'], and [O, J(G)],
respectively. Let t: 00 < ... < om-1 andY': 07 < .. < oh-, (Fig. 5).

It is obvious that the ideal [J(G)) = G/J(G) satisfies the JD because G/J(G) is

J-semisimple. Therefore ¢(s) = £(s’). Also, the ideal (o] satisfies the JD because

(by Theorem 3) it is isomorphic to the direct product of smaller congruence lattices.

Therefore £(t) = £(s) + £(u). Similarly, £(¢') = £(s") + ¢(u). Accordingly,

el = )+ I=2o(s)3Yu)+l
= 4(s)+L(u)+l=L{)+l
= C)

and thus Con G satisfies the JD.

Fig. 5. Diagram of maximal chains in Con G
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GRAAFI KONGRUENTSIDE VORE

Ahto BULDAS

On defineeritud radikaal koigi (mitte tingimata 16plike voi mittesuunatud)

graafide klassis ja antud vastavate poollihtsate graafide tiielik kirjeldus. On

toestatud, et lopliku graafi kongruentside vores kehtib Jordani—Dedekindi tingimus.
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