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Abstract. Recently observed anisotropy of the order parameter in high-7. superconductors
is explained by unscreened interaction of charge carriers with long-wave optical phonons.
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According to recent investigations the order parameter A (i.e. the
gap) in high-T superconductors is strongly anisotropic (see e.g. [*?]).
Anisotropy is observed along ab plane, whereby maximal A values are in
a and b directions (I' — M directions in k-space) and the minimal ones, in
between (I' — Y directions in k-space). It is remarkable that the density
of states at the Fermi surface has also the same anisotropy. At present
it is not clear yet whether the sign of A(k) dependence is alternative
or it remains positive for all directions. The recently-observed superlinear
(cubic) dependence of Cu and O nuclear spin relaxation rate on temperature
(v ~ T?) [®] and the intensity of electronic Raman scattering on frequency
(I ~ w?®) [*] certify that the value of |A| near the Fermi surface in ' — Y
direction is rather small in comparison with its value in I' — M direction.

The parameter |A| with the nodal line in I" — Y direction is character-
istic of the angular momentum of Cooper pairs /=2 (s.c. d-wave pairing).
Therefore, the experimentally-observed anisotropy of |A| is commonly
considered as a strong support of those theoretical models which lead to
the d-wave pairing. This applies especially to the models in which pairing
interaction is caused by spin fluctuations (see, e.g. [°~®)], as high-T su-
perconductors exhibit indeed strong antiferromagnetic (AF) fluctuations.
Nevertheless, as long as sign-alternative behaviour of A(k) characteristic
of the d-wave pairing has not been proved, the models leading to strongly
anisotropic s-wave pairing ({=0) remain topical. The experimentally-
observed reduction of the Knight shift below 7. [°] as well as the Josephson
tunnelling between high-T, and usual superconductors also support a sin-
glet pairing.
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Recently the authors of [1°] proposed a model which allows to obtain
a strongly anisotropic s-wave pairing. In this model pairing interaction
arises from a Josephson-type pair tunnelling between the nearest CuO,
planes. Below we propose another model which also leads to a strongly
anisotropic s-wave pairing. In our consideration we take into account that
anisotropic s-wave pairing may take place when pairing interaction has a
long-range part. Indeed the superconducting gap results from the mixing
of free-particle states near the Fermi surface by the interaction. Long-range
interaction mixes the states with close k vectors and therefore it may lead to
a k- -dependent gap A. The anisotropy of A in this case is of the same type
as that of the density of states (p) on the Fermi surface while A increases
with p. As we already mentioned above, this is just the situation in high-7.
superconductors.

In ordinary superconductors long-range Coulomb interactions are very
weak due to their almost perfect screening by free charge carriers. How-
ever, in high-T, superconductors these interactions are remarkable. Direct
experimental evidences of that are given by renormalization of long wave
vibration modes by superconducting transition observed in Raman and
infrared spectra [1112:13],

Usually the imperfect screening of long-range Coulomb interactions
in high-T, superconductors is associated with layered structure, relatively
low charge carrier concentrations and low symmetry ['*15]. Notice that
the large slow AF fluctuations observed in these materials also enhance the
long-range Coulomb interactions. Indeed, these fluctuations are associated
with the local lowering of the charge carrier concentration. Therefore,
in AF-ordered clusters Coulomb interactions are not screened. The same
holds for the areas in their vicinity up to the characteristic length of ~ A,
the penetration depth of the infrared field being associated with an op-
tical phonon (the s.c. skin depth). At low (and probably intermediate)
charge carrier concentrations A essentially exceeds the n.n. Cu-Cu dis-
tance. Therefore nontotally screened areas overlap and, as a result, charge
carriers interact remarkably with long-wave optical phonons. Note that
charge carriers interactions with spin excitations of AF clusters should be
weaker, as charge carriers and spin excitations of AF clusters are separated
in space and their interaction is a short-range one.

According to the BCS mean field theory the quas1part1cles spectrum
is determined by the equation

Ag=-2 Unxplp (1)
k

where x; = (1/2Ep)tanh(Eg 1, Ep = (A% + 62)1/2 determines the
quasiparticle’s energy, ¢ is the energy of a free smgle charge carrier
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measured from the Fermi energy ¢,
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1s the interaction of the Cooper pairs arising from electron-phonon coupling,

7=k—k, Wq is the frequency of the phonon of the branch v and the
wave vector ¢, g,,(q) is the dimensionless interaction function (h = 1,
kp = 1). We consider that this function has maximum at small ¢ for which
e N epypgand Ugp, = Uk - k’) In this case

=D U@xeeiPras— D v Xe g » (1a)
7 2

where U(q) = >, | gt (¢)|* allows for the maximum mentioned and u
stands for the rest of mteractmn which is the usual BCS interaction. We
note that Eq. (1a) holds not only for a weak but also for a moderate and
even a strong coupling with long wave phonons.

We suppose that the Fermi wave vector k F s large in comparison with
the ¢ characteristic of U(q). Then in (1a) for k near kp Ag, P Ay and

the gap equation gets the form

— 2 ik Yk X Dp

A-‘ i
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where ¥ .
& = Y _(U(q)/2Eg, Jtanh(Eg, /T) (4)
q
Bey o (AL 4+ (g BL(Fr) + ¢ Ey(Rp)'/?, ()

L

where E;,y(k’p) = dEg[dk; y, k = Kp. Approximation (5) holds when
the derivatives E; , do not diverge.

We suppose (contrary to ['°]) that the tunnelling of the pairs between
the nearest CuO; planes does not give any remarkable contribution to A
and restrict ourselves to the consideration of the pairs moving along Cu02
planes. In this approximation in (3)-(5) k£ and ¢ can be considered as two-
dimensional vectors. Taking into account that for small ¢ the unscreened
interaction function g(¢) ~ ¢~! and that in the case of a partial screening
g(0) # 0, we can approximate U(q) by the following formula

Ulq) =U/(K* + g2 +4q)), (6)
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where k << kp. Here k = k(c) depends on the hole concentration, c; this
dependence is weak for small ¢ (when the unscreened area is determined
by an individual hole), but it is remarkable (¢ ~ c¢) for higher hole con-
centrations. The U(g) dependence (6) is in a qualitative agreement with
experiment [1°], where the maximal phonon renormalization by supercon-
ducting transition has been found for small q. Note that the condition
k << kp (and, on the whole, formula (6)) holds only in the case of inter-
mediate charge carrier concentrations when kr is not too small and « is
not too large.

By performing a rotation in k space at the angle @ = = arccos(E’p)
(wglch determines the direction of the normal vector to the Fermi surface

at kr), where ¢ \
p=(E," +E,)7'/? (7)

is the density of states at the Fermi surface along «, one can integrate in (4)
over §y = —g,Sina + gycosa (here and below E; | = E; (), p = py,
= 5‘,,, and A = A, depend on the angle ¢ = arccos(kp,/kp)) Then

for k ~ Lp
€~ U/oo dQtanh(Eq /T)/Eqg+/ Q* + &2, (8)
0

where Q = §; = gzcosa + gysina, Eg = (A% + Q?/p*)!/2. AtT =0
this expression takes the form

dQ U \
\/(Q2+A2 )(Q2+,.;2) apA(l—b2), (9)

where K (a:) is a full elliptical integral, a = k, b = Ap/k if K > Ap and
a = Ap, b = k/Ap in the opposite case.

Here we consider the weak coupling limit when £ >> 2A<,,p,, In
this case Py

o = (Upp/r)In(46/Aypy) - (10)

The contribution of the BCS interaction is as follows:

€=Up

=Y ugAp/2Ep =V < Agn(2h5/A,) > (11)
k!

where @ is the mean phonon frequency,

V.=<u, >,
< A= / dkp(uy/V)poAy (12)
F
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is the averaging over the Fermi surface (integration in (12) has been per-
formed along the Fermi surface). Here we take into account that u REr
describes a short-range interaction, due to which the sum in (11) does not
depend on ¢.

By substituting (10) and (11) into (3), one obtains the following inte-
gral equation for A, (T=0):

Ap(1 = (Upg/r)In (46/Aypy)) =V < Ayl (2hw/A,) > . (13)

Let us consider two limiting cases: a) U >> V andb) U << V.
a) In the first case p-dependence of A is weak

Ay % AL+ (Up,/w)ln (45/Dopy)] (14)
Here
A=A(1+9),
Ay = 2hwexp (-1/V) (15)

is the BCS gap (isotropic),
0 =(U/KV) < peln (46 /Dopy) > . (16)

A, is larger in these directions where p,, is larger.
b) In the second case (U << V)

Ay = AD + AV (17)

where
Ag)) = (4x/py)exp (—£/Upy) (18)
AW =V < ADIn (2hw/AP) > (19)

(AN << Afpo)). In this case the gap is strongly anisotropic; the larger
values of A are in the directions in which p,, is larger as well.

Symmetry of the function p,, is determined by symmetry of the gra-
dient of the Fermi surface in the E-space. The energetical spectrum of free
charge carriers (holes) in CuO, planes in high-7'. superconductors [7'1°] is
often described by the formula

eg = —2t(cos k; + cos ky) — 4t'cos k,cos ky —ep (20)

where k, and k, correspond to the wave vector components in a @ and
b directions, t =~ 0.25 eV, t' ~ 0.45 t (see Fig.1). For c¢p < —4t' the
Fermi surface is closed around I' point. In this case p, has maxima at
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Fig. 1. The equienergeticallines €(kz, ky) = €F +eg, g = —1.10001 +0.03077
k, k=0,1,2,.9;t=0.5.
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Fig. 2. The p (density of states) dependence on ¢ = arctan( k, / ky) forecp =< P (see
Fig.1).
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¢ = nr/2,n = 0,1,2,... (Fig.2). Such maxima were indeed observed
experimentally [*]. According to obtained formulae (14)-(18), unscreened
long-range interactions lead to anisotropy of the superconducting gap A,
with maxima in the same directions. This result is in agreement with
experiment. Finally we note that the critical temperature T, is determined
by maximum value of A, and p,, (here at ¢ = 0). From Fig.2 one can see
that po is maximum for e p &~ —4t'. Consequently according to proposed
model A and T, have maximum values at intermediate hole concentrations
close to e p &~ —4t'. Such dependence of A on the doping concentration is
also in a qualitative agreement with experiment.

We conclude that nontotally screened long-range electron-phonon in-
teraction, which is observed in high-7,. superconductors, allows one to
explain the anisotropy of the superconducting order parameter (gap) re-
cently observed experimentally.
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ANISOTROOPNE PAARDUMINE JA EKRANEERIMATA KAUGMOJU
KORGTEMPERATUURSETES ULILJUHTIDES

Vladimir HIZNJAKOV

Energeetilise pilu anisotroopiat korgtemperatuursetes ilijuhtides,
mis hiljuti eksperimentaalselt avastati, on seletatud optiliste foononite
ekraneerimata kaudmojuga.

AHHU3OTPOITHOE CITAPUBAHHE H HEDKPAHHPOBAHHOE
JANBHOJENUCTBYIOIIEE B3AUMOJIEHCTBHE B
BbICOKOTEMIIEPATYPHBIX CBEPXITPOBOIHHUKAX

Bnamumup XHXHAKOB

OGHapyXyHHas HEIaBHO aHW3OTPOIMA 3HEPIETHYECKOHW IIEIH B
BBICOKOTEMIICPACYPHBIX CBEPXIIPOBOAHMKAX OOBACHEHAa HE MOJIHOCTHIO
®KPaHHPOBAHHbIM B3aUMOICHCTBUEM HOCHTEIEH TOKa C ONTHYECKHMH
toHOHAMH.
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