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Abstract. The paper considers the dynamic disturbance decoupling problem for a discrete-time

nonlinear system locally around its equilibrium point. The complete solution to the problem, that is

necessary and sufficient conditions as well as the procedure for constructing the compensator, is

given both for the cases of measurableand unmeasurable input disturbances under certain regularity
assumptions of the equilibrium point. Under the mentioned regularity assumptions of the

equilibrium point the solvability conditions for the dynamic disturbance decoupling problem via

regular or nonregular dynamic state feedback are shown to be the same. Instrumental in the problem
solution are the two versions of the inversion algorithm for a discrete-time nonlinear system with

disturbances which define two finite sequences of uniquely defined integers, the so-called

invertibility indices, either with respect to both inputs or with respect to the controls only. Firstly,
the solvability conditions are expressed in terms of the invertibility indices. Secondly, the proof of

the existence and construction of the dynamic state feedback compensator relies on this algorithm.

Key words: discrete-time systems, nonlinear control systems, disturbance decoupling, inversion

algorithm, invertibility indices.

1. INTRODUCTION

In this paper we shall consider the disturbance decoupling problem with

the dynamic state feedback for discrete-time nonlinear systems. The

problem deals with the situation in which, by means of the dynamic state

feedback compensator, we want to achieve decoupling-between the input
disturbances entering the system and the outputs leaving the system.
Clearly, the dynamic disturbance decoupling problem (DDDP) is

essentially a nonlinear problem: for linear systems the DDDP is solvable if
and only if the disturbance decoupling problem is solvable by static state

feedback [l]. In [2] the DDDP has been solved locally around an

eguilibrium point of the discrete-time nonlinear system under two

* The results of this paper appeared partly in the Preprints of II IFAC Workshop on
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additional assumptions. The first assumption was that the original system
is square, that is the number of the controls equals the number of the

outputs. The second assumption was that the system under zero

disturbances is invertible. The solution (both for measurable and

unmeasurable disturbances) presented in [2] roughly says that the problem
is locally solvable if and only if it is solvable by means of a certain

compensator that is obtained from the inversion algorithm applied to the

system under zero disturbances. In [3] the earlier results have been

extended to nonsquare and noninvertible systems. The main result has

been formulated in terms of the certain functions appearing in the

inversion algorithm and, besides necessary and sufficient conditions, it

also provides a constructive procedure for solving the DDDP in the case of

unmeasurable disturbances (DDDPud).
The purpose of this paper is to give a complete solution (that is a

solution without any further assumption on the discrete-time nonlinear

system) of the DDDP also in the case of measurable disturbances

(DDDPmd). Another purpose of this paper is to translate necessary and

sufficient conditions for a local solvability of the DDDPud and the

DDDPmd (DDDP in the case of measurable disturbances) stated in terms

of certain functions appearing in the inversion algorithm into necessary
and sufficient conditions stated in terms of invertibility indices. Using the

vector space technique introduced in [4], it is not difficult to show that the

latter conditions are actually system — intrinsic and algorithm-independent
conditions stated in terms of a certain structure at infinity either of the

original system (for the DDDPmd) or some auxiliary system (for the

DDDPud).

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear plant P described by equations of

the form

x(t+lD)=f(x(t),u(t),w(t)),x(o)=ux,

y(t)=h(x(t)), ; (2.1)

where the states x(z) belong to an open subset X of R", the controls u(f)
belong to an open subset U of R™, the disturbances w(t) (either measurable

ог unmeasurable) belong to an open subset W of R’, and the outputs y(¢)
belong to an open subset Y of RP. The mappings fand h are supposed to be

real analytic. |
Throughout the paper we shall adopt a local viewpoint. However,

contrary to the continuous-time case, in the discrete-time case local study
is impossible around an arbitrary initial state, since even in one step the

state can move far away from the initial state regardless of the small

control and disturbance values. For this reason we shall work in a

neighbourhood of an equilibrium point of the system (2.1), that is around
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(x°, u®, w°) € Xx UxW such thatf(x°, u®, w°) = x°. Working around the

point (x°, u° w°) and on a finite-time interval 0 <7< tp, then, using the

control sequence u(0), u(1),
..., u(tz) with each u(z) sufficiently close to u°,

and provided that in the disturbance sequence w(0), w(l),
..., w(tz) each

w(t) is sufficiently close 10 w’, we can assure that the states x(f) are

sufficiently close to х° and the outputs у( are sufficiently close 10

y° = h(x%), both for 0 <z < Lo
We shall consider separately the cases of unmeasurable and measurable

disturbances. In the case of unmeasurable disturbances the compensator C

(dynamic state feedback) used to control the plant P is a discrete-time

nonlinear system described by the equations of the form

Z(t+ 1) = v(z(1), x(2), v(t), z(0) = z,,

u(t) = 0 (2(0), x(1), v(1)), (2.2)

with the state z () € Z, ап open subset of R*, with a new m-dimensional

control v (t) € V, an open subset ofR, and real analytic \у апа o .

We call the compensator C described by equation (2.2) regular if

the dynamical system
x(t+ 1) =f(x(1), o(z(2), x(2), v(9)), w(1)),

z(t+ 1) = у(2(7), x(1), v(1), (2.3)

u(r) = ¢ (z(1), x(1), v(1)

with inputsv(¢) and outputs u(z) is invertible (see [*3] for details about the

notion of invertibility), or equivalently that (2.3) defines a one-to-one

(x, z, w)-dependent correspondence between the input variable v and output
variable u. The analogous definition of regular dynamic state feedback for

continuous-time nonlinear systems has been used in [6].
The closed-loop system (2.1), (2.2), that is the system

x(t+ 1) =f(x(1), o(z(1), x(1), v(1)), w(1)),
z(t + 1) = v(z2(1), x(0), v(1)), (2.4)

y(t) = h(x(1)),

initialized at (x,, zo) is denoted by Pe C.

Definition2.l. Local dynamic disturbance decoupling problem
in the case of the unmeasurable disturbances (DDDPud). Given the

system (2.1) around an equilibrium point (x°, u°, w°) find, if possible, a

compensator C defined by equations of the form (2.2) together with an

initial state z, and neighbourhoods V,=2Z° x X° x V° of (2%, x° У°) @

Zx X x Vand V, of u® in U, being domain and codomain of C, as well as a

neighbourhood WP of w® so that the outputs ofthe closed-loop system

Yotk› Хо> 20y W (0)
„.,

W( t-1), v(0) (| -1))‚
1 <
. F
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do not depend on disturbances w(t) for every x, € X°, all v(t) € V°, ай

w(t) € WO, andfor some finite t. |
In the case of measurable disturbances the compensator C,, (dynamic

state feedback) used to control the plant is a discrete-time nonlinear

system described by
z(t+ 1) = y(z(@), x(2), v(0), w(1), z(0) =zo (2.5)

u(t) = Ф(2()), x(@), v(r), w(t))

with the state z(f) € ZcR", with a new m-dimensional control

у() € VcR" and real analytic v and ¢. Theregularity of (2.5)
means that the dynamical system

x(t+ 1) =f(x(@), oz(2), x(2), v(1), w0), w0),

z(t+ 1) = y(z(e), x(2), v(t), w(t)), (2.6)

u(t) = (z (1), x(1), v(r), w(t))

with the controls v(7) and the outputs u(z) is invertible, or equivalently that

it defines a one-to-one (x, z, w)-dependent correspondence between the

control variable v and the output variable u.

The closed-loop system (2.1), (2.5), that is the system

x(t+ 1) =fx@), (D), x(1), v(t), w0), w0),

z(t+l)= v(2(0), x(1), v (1), w0), ; (2.7)

y(t) = h (x(t)) |

initialized at (x,, z,) is denoted by Po C,,.
Definition 22. Local dynamic disturbance decoupling

problem in the case of the measurable disturbances (DDDPmd). Given

the system (2.1) around an equilibrium point (x°, u°, w°) find, ifpossible, a

compensator C,, defined by equations of the form (2.5) together with ап

initial state z, and neighbourhoods V, = 7° х ХЮ х V° x W° of (°, x°, v°, wY

inXxZxVxWandV,of u’ in U, being domain and codomain of C, so

that the outputs of the closed-loop system

P.C :

y — Y(t;xo 2o W0),
~

W -1), °(0),
...,
v-1)), #< ‘

do not depend on disturbances w(t) for every X, € Х° ‚
ай у() Е№°, ай

w(t) € WP, andfor some finite tr. |
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3. INVERSION ALGORITHM FOR SYSTEMS WITH DISTURBANCES.

INVERTIBILITY INDICES

The inversion algorithm for discrete-time nonlinear systems without

disturbances has been introduced in }s] and given in more general апа

simple form by Kotta and Nijmeijer [“]. For the system with disturbances
two versions of the inversion algorithm can be given [7]. The first version

accomplishes inversion with respect to both types of inputs — the controls

and the disturbances — whereas the other version considers disturbances as

system parameters and accomplishes inversion with respect to the controls

only. Note that the idea of using two versions of the inversion algorithm
was at first exploited in the continuous-time case by Moog, Perdon and

Conte [B]. In this paper we shall not repeat these two versions of the

inversion algorithm and in the following we shall use the notations of [7].
We can apply the inversion algorithm not necessarily in a

unigue way [7]. There exist, in general, different reorderings

(permutations) of output components $, (r+k+l) atstep k+l, k >O,

so —а! tt}e first Puw,k+l (ри, ’fiz rows of the matrix

2y ( т т ) .Õ[Ak,akH] /0(u, w) 5["1«““1] /0 (u) are linearly

independent. Different permutations of output components, that is,

different selections of y,,,(t + k + 1) in each step k + 1, k > 0, result in

different functions Ay,;(-) and W,,(:).

In the inversion algorithm, certain constant rank assumptions have been

imposed to ensure that the algorithm can be applied around a given
equilibrium point. We shall summarize these conditions in the definition of

regularity of an equilibrium point (associated with е inversion

algorithm). .
Definition 3.1. We call the equilibrium point (x°, u°, w°) of the

system (2.1) regular with respect to the inversion algorithm iffor some

specific application s of the inversion algorithm the constant rank

assumptions of the algorithm are satisfied. We call (x°, u®, w°) strongly
regular if the constant rank assumptions of the algorithm hold for each

application of the algorithm.
Using the inversion algorithm around the regular equilibrium point

(x°, u®, w°) of the system (2.1), we obtain a sequence of integers

OZPyw1<- SPywks 5P

(OSpu,ls...Spu,ks...Sp).
* *

Let Py > max{puw’ k,kz 1} (ри = тах{ Py, k,kz*l}) and*let
obe definedasthe smallest k€ N such thatp /= P, (Py ,=p,)-
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Though the result оЁ application of the inversion algorithm
apparently depends on the choice of admissible permutations made

at each step of the algorithm, it can be proved in analogy with the

case without input disturbances [2] that е integers

Puw, 12> Puw, ko e (pu’ PPy o ...) do not depend on the

particular permutation of the components of y(t + & + 1). Thus, around a

strongly regular equilibrium point of the system, these integers define

some structural properties of the system. On the analogy with [?], we call

the integers Рим, к›
k>l (ри, ‚ ›

к 1) the invertibility indices of the

system (2.1) with respect to both inputs (with respect to the controls).

Moreover, on the analogy with the case without disturbances [3] it can

be proved that around a regular equilibrium point the inversion algorithm
terminates at most n steps, that is

* *

p.uw = puw,n (ри 7 pu,n)'

4. PROBLEM SOLUTION: THE CASE OF UNMEASURABLE

DISTURBANCES

In [3] necessary and sufficient conditions for local solvability of the

DDDPud via regular compensator are derived in terms of certain functions

appearing in the inversion algorithm. By a little modification of the proof
in [3], the result can be formulated as in Theorem 4.1.

Theorem 4.1. Apply the inversion algorithm to P described by
eguations (2.1) with respect to the control u around a strongly regular
equilibrium point (x°, u°, w°). The DDDPud for system P is locally
solvable around (xX°, u°, w°) via regular dynamic state feedback C if and

onlyiffor 1< k< n

] ]

j ° .1)a, (x,u,w, {y;(t+j+l), I<i<k, i<j<k}) =0 (4
дk>э э 1 :

- Now we are going to translate necessary and sufficient conditions for
the solvability of the DDDPud via regular compensator, formulated by
Theorem 4.1 in terms of the inversion algorithm, into system-intrinsic and

algorithm-independent conditions stated in terms of the invertibility
indices of the so-called auxiliary system formed from the original system
by adding one-step backward shift (delay) operator into the control loop.
So, the auxiliary system P, with the states (x (), u (7)) and the inputs u,(?)
is defined as follows:

x(t+1)=f(x(1), u(t), w(t)),

и(;+ 1) = ид(?), (4.2)
oo y(t)=h(x(t)).
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The equilibrium point of P, is (х°, w°% u°,, w°) with u°, = u°. The idea of

delaying the inputs, as is done by the introduction of the auxiliary system
P,, was already employed forcontinuous-time systems in [l].

We need the following lemma.

Lemma 4.2. [7] Apply the inversion algorithm to P described by
equation (2.1) with respect to the control u around a strongly regular
equilibrium ройи (х°, и°, w°). Let the point (X°, u°, м°) be such that

(x%, % Ua W° with u°, = u® is a strongly regular equilibrium point ofP,
with respect to both versions ofthe inversion algorithm. Then at every step

о] the algorithm õaž(t) /ow =0 # апа опу #

риаш‚ k(Pa) = pua’k(Pa) forall k>l.

R e m ark 4.3. The continuous-time counterpart of Lemma 4.2 is

given in [l].
Now we are ready to formulate the main result of this section.

Theorem 4.4. Consider the system P described by equations (2.1)

around a strongly regular equilibrium point (x°, u®, wY) with respect to the

inversion algorithm with regard to the control. Let the point (x°, u®, wY) be

such that (xX°, u° u®, w° with u®;, = u® will be a strongly regular
equilibrium point of P, with respect to both versions of the inversion

algorithm. Then the regular DDDPudfor P will be locally solvable around

(x°% u® w® via regular dynamic feedback C if and only if for all

I<k<n+m

Puw k(P =Py 1 (Pg). (4.3)

Proo f. The proof of Theorem 4.4 follows easily from Theorem 4.1

and Lemma 4.2. ;

Theorem 4.5. Consider the system P described by eguations (2.1)

around a strongly regular eguilibrium point (x°, u°, w°) with respect to the

inversion algorithm with regard to the control. Let the point (x°, u°, w°) be

зисй Таг (х°, и°, u%, wY with w% = u will be a strongly regular

eguilibrium point of P, with respect to both versions of the inversion

algorithm. Then the DDDPud for P will be locally solvable if and only if
(4.3) holds.

Proof. Sufficiency. As inTheorem 4.1.

Necessity. Let us assume that there exists a dynamic state feedback of

the form (2.2) that locally around a strongly regular equilibrium point
(х°, и°, м°) оЁ (2.1) solves the DDDPud for (2.1). Apply the first step of the

inversion algorithm to P with respect 10 the control u only, considering
disturbances w as parameters:

y(t+l)=h(f(x(t), u(t), w(t)). (4.4)
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If we replace u(t) in (4.4) by the output of C, we can assert that equation
(4.4) does not depend on w any more since C defined by (2.2) solves the

DDDPud for (2.1). This means that either

Oh (f(x,u,w))
_

3
=0 (4.5)

everywhere around the point (x°, u®, w 0 or, if not, the compensator C

defined by (2.2) will guarantee the equality (4.5). The latter is impossible
around the strongly regular equilibrium point where by the definition

oh (f(x, u, w)) /0w is either equal to zero everywhere or different from

zero everywhere. This means that if oh (f(x, u, w)) /0w # 0, we cannot

make it ever equal to zero by the suitable choice of the compensator. This

implies that (4.5) holds which, by Lemma 4.2, means that also (4.3) holds

for k = 0. Applying this argument repeatedly, we can show that (4.3) holds

Гог&= 0,1, ...,л - 1.

Rem ark 4.6. Note that Theorem 4.5 does not require the regularity
of the compensator. So, the solvability conditions for the DDDPud via

regular or nonregular dynamic state feedback around the strongly regular
equilibrium point are the same. Of course, around the nonregular
equilibrium point the conditions (4.1) are not necessary for the solvability
of the DDDPud. Sometimes, if the conditions (4.1) are not satisfied, a

nonregular compensator can still be found that imposes the constraint (4.1)
and solves the DDDPud. For a continuous-time system this aspect of the

DDDPud has been studied in [!?]. Unfortunately, it has not been stated

clearly in [l9], that the possibility to guarantee (4.1) by the proper choice

of a nonregular compensator is not possible around the regular equilibrium
point of the system.

5. PROBLEM SOLUTION: THE CASE OF MEASURABLE

DISTURBANCES

In this section we shall consider the case of measurable disturbances.

We shall prove the following Theorem.

Theorem 5.1. Apply the inversion algorithm to (2.1) with respect to

the control u around a strongly regular equilibrium point (xX°, u°, w°). The

DDDPmd for the system (2.1) is locally solvable around (xX°, u®, w°) via

regular dynamic statefeedback C,, ifand only iffor 1 < k <n

0
-

äyk(x,w, {y;(t+)), I<i<k, i<j<k}) =O. (5.1)

Proof. Sufficiency. Notice at first that if (5.1) holds for 1< k < n, then

it holds for every k > 0. It follows from the fact that the inversion algorithm
terminates at most n steps. If (5.1) holds, then applying the second version

of the inversion algorithm to (2.1) gives at the nth step
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Y, = A (x(@),u(),w(@), {y;(t+)),l<isn-I,i+l<j<n}),
.

(5.2)
Ypa(t+n) = Y,(x(0), {y;(t+)),l<i<n,i<j<n}),
- -Т -Т -Т T

where Y, = [yl (7+ 1), у) (г + 2),..., У, (t+n)] and the matrix
ÖA, (t) /õu has full row rankp „

on a neighbourhood Oof (x°, u°, w9).
In [Ъе proof we shall denote P, k’ by py for simplicity. Fori =l, 2, Pp>
let £ + y; be the smallest time instant and £ + €; be the greatest time instant

in which y; appears in (5.2). Then we can rewrite (5.2) as

TA +
@[ypk—l+l(t+k), ...,ypk(t+k)] = ax(), u(),w(1), (y; (1+).

I<i<p,j, Y; +lsjsmin(k,e;) } ), & = 1,2,...,п. (5.3)

After a possible permutation of inputs we may assume that the Jacobian

matrix of the right-hand side of (5.3) with respect to u' = (uy, ... ,u_ )T
around the point (x°, ¥°, y°, ..., ¥°, w°) has full row rank Р Theret%"re,
equation (5.3) can be solved for u'(s) uniquely around the point

(х°, и°, у°, ..., y° wP) by applying the Implicit Function Theorem. Define

w = (uP„ +1 › ** 4m)". Then, from (5.3), we obtain

и! () = o0x(0), {y;(t+)),l sifip,,,v,-SjSS,.},u2 (), w(), (5.4)

which is such that fork=l, 2, ...,n

T

[ypk—l+l(t+k),...,ypk(t+k)] =

=ax(t),o(),(»;(t+), l<i<p,~
Y; +lsjsmin(k, e) ), »(D). (5.5)

Notice а! ф:\, —У, is analytic for some (possible small)

neighbourhoods V; and V, of (x° »° .., у’, w% wY in

x x (79Y" x U xW апа of u in U'°. This implies that (5.5) will hold

as long as (x(t), [yi(t+j), I<i=<p,, yiSszi] ,
u2(t),w(t)) eV,

and, defined by (5.4), u'(r) €V,. Of course, the identity (5.5) is lost if we

leave the neighbourhoods V, resp. V,.
Now construct the compensator for (2.1) in the following way. Let

Zi = 1 di goy _)Т‚ i =l, ..,p, bea vector of dimension €, -7, v a

vector of dimension m - p_, and consider the system

zi(t+ 1) = Aizi(t) +81.v,.(t),i = I,…‚рп‚
ul (1) = o(x(1), (z;(),l<j<e,~v,,v,(), 15i<p,),

› ›
”° (, » (1), (5.6)

и° () = У° (г)
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with the controls v! = (v,, У )T and v?, the disturbances w, the outputs
u=w"T u*"7T and (A;, B;) id Brunovsky canonical form

0 I

A = SN ов = (0...01)T
о 0

It can be shown that the compensator (5.6) is regular on a

neighbourhood of (x°, w% y°% wY. We omit the proof which is quite
analogous to the case with unmeasurable disturbances [3 , Lemma 3].

Now, it is easy to see that the compensator (5.6) with arbitrary initial

state, applied 10 (2.1) locally around (x°, u°, w°), yields fori=l, ..., p,

Y(i +i-1) = 2;(0), 7= ~ в; -,

which of course are independent from w(f). Moreover, y,(j) for 1 <i< P,
o<j<y,-1 and for p +l<i<p, j2O, being the components оЁ

9, (k) ,
do not depend on w(z) by assumption. Hence, the compensator

(5.6) solves the DDDPmd locally. _
Necessity. Let us assume that there exists a regular dynamic feedback

control defined by (2.5) for (2.1) that locally around the equilibrium point
(x®, u®, w°) solves the DDDPmd. Furthermore, assume that (5.1) does not

hold for k = 1, that is

g
.

-

ä;yl (x,w,y; (t+1)) #O.

Then, at the first step of the inversion algorithm, we have that ¥,(r + 1)

explicitly depends on w:

1(+1) =9, (x(),w(1),y; (1+1)). (5.7)

Since (2.5) solves the DDDPmd for (2.1) this w-dependence should

disappear, if we use the compensator (2.5). Since (5.7) does not depend on

the control, the only possibility is that (2.5) must be such that it imposes
the constraint

0
-

д_и‚)’l(х‚иг‚уl(г+l)) =€, (x,w,a,(x,u) =0

But this would imply the nonregularity of the compensator. So, (5.1) must

hold for k = 1. Following the same way, we prove the theorem.

Note that the result of Theorem 5.1 provides us with a constructive

procedure for solving the DDDPmd via regular compensator. Namely, we

proceed by applying the second version of the inversion algorithm to (2.1),
checking at every step 1< k< n if (5.1) holds. If (5.1) does not hold for

some k, we conclude that the DDDPmd is not solvable via regular
compensator. If (5.1) does hold for 1 < k < n, then the DDDPmd can be
solved by means of the regular compensator (5.6) with arbitrary initial
state.



157

Now we are going to translate necessary and sufficient conditions for
the solvability of the DDDPmd formulated by Theorem 5.1 in terms of the
inversion algorithm 10 system-intrinsic and algorithm-independent
conditions. For this ?urpose, we need the following lemma.

Lemma 5.2.["] Apply the inversion algorithm to P with respect to u

around an equilibrium point (x°, u°, w°). Suppose that the point (x°, u°, w°)
is strongly regular equilibrium point of P with respect to both versions of
е inversion algorithm. Then, at every step of the algorithm,
oy, (t+k) /0w = oif and only ЙРим к (P) = P, ‹ (Р) /ог ай К.

Now we are ready 10 formulate the main result of this section.
Theorem 5.3. Consider the plant P described by equations (2.1)

around a strongly regular equilibrium point (X°, u®, w°) associated with
both versions of the inversion algorithm. Then the DDDPmdfor system P
is locally solvable around (x°, u°, w°) via regular dynamic state feedback
Cyifandonlyiffori< k<n

Puw,x(P) =P, 1(P). (5.8)

The proof of Theorem 5.3 follows easily from Theorem 5.1 and Lemma
5.2.

Theorem 5.4. Consider the system P described by eguations (2.1)
around a strongly regular eguilibrium point (x°, u% w°) associated with
both versions of the inversion algorithm. Then the DDDPmdfor system P

is locally solvable around (x°, u°, w°) if and only if (5.8) holdsfor i < k < п.

Proof. Sufficiency. As in Theorem 5.1.

Necessity. Similar to the proof of Theorem 4.5.

6. CONCLUSIONS

We have considered the dynamic disturbance decoupling problem
(DDDP) for a discrete-time nonlinear system locally around its

equilibrium point. The complete solution of the DDDP, that is the solution

without any further assumption on the discrete-time nonlinear system, has

been given under certain regularity assumptions of the equilibrium point.
The cases of measurable and unmeasurable disturbances have been

considered separately. For both cases necessary and sufficient conditions
as well as the procedure for the construction of the compensator has been

given.
Instrumental in the problem solution are the two versions of the

inversion algorithm for discrete-time nonlinear system with input
disturbances. Every version of the inversion algorithm produces the finite

sequence of uniquely defined integers, the so-called invertibility indices,
either with respect to both inputs, controls and disturbances, or with

respect to controls, respectively. At first, the necessary and sufficient

conditions have been given in terms of certain functions appearing in the

inversion algorithm; then the equivalent conditions have been formulated

in terms of invertibility indices. Using the vector space technique
introduced by Grizzle, [4] it 18 not difficult to show that the latter
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conditions are actually system-intrinsic and algorithm-independent
conditions stated in terms of a certain structure at infinity either of the

original system (for the case of measurable disturbances) or some

auxiliary system (for the case of unmeasurable disturbances).
Under the aforementioned regularity assumptions of the equilibrium

point it has been shown that the solvability condition for the DDDP via

regular or nonregular dynamic state feedback are the same, being in full

accordance with the results for linear systems.
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HÄIRINGUTE DÜNAAMILINE KOMPENSEERIMINE

DISKREETSETES MITTELINEAARSETES SÜSTEEMIDES:
LAHENDUVUSTINGIMUSED SÜSTEEMI

STRUKTUURIPARAMEETRITE TERMINITES

Ulle KOTTA

Mittelineaarsete analiititiliste siisteemide klassi tarbeks on uuritud diinaami-

lise tagasiside kujul esitatava kompensaatori konstrueerimise iilesannet, mis

tagaks suletud siisteemi viljundite invariantsuse sisendhdiringute suhtes.

Kisitlust on leidnudnii moddetavate kui ka mittemdddetavate hdiringute juhud.
Ulesande lahenduvus pdhineb podramisalgoritmi kahel versioonil, mille abil

on voOimalik hdiringutega siisteemi jaoks leida kaks tdisarvuliste struktuuri-

parameetrite 10plikku hulka, nn. pooratavusindeksid ainult juhttoime kui ka

molema sisendi (s. t. juhttoime ja hdiringute) suhtes. Siisteemi tasakaalupunkti
iimbruses on leitud iilesande lokaalse lahenduvuse tarvilikud ja piisavad tingi-
mused, mis on formuleeritud pooratavusindeksite terminites. Leitud lahenduvus-

tingimused on iildisemad varasematest, mis on esitatud pooramisalgoritmi
rakendamise kidigus leitavate funktsioonide omaduste kaudu. Kuigi pédramis-
algoritmi rakendamise tulemus ei ole tildjuhul iihene, vaid soltub teatud valikutest

algoritmi igal sammul, on ndidatud, et podratavusindeksite vddrtus jaab muut-

matuks koigi voimalike lubatud valikute korral.
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ДИНАМИЧЕСКАЯ КОМПЕНСАЦИЯ БОЗМУЩЕНИЙ В

ДИСКРЕТНЫХ НЕЛИНЕЙНЫХ СИСТЕМАХ: РЕШЕНИЕ В

ТЕРМИНАХ СТРУКТУРНЫХ ПАРАМЕТРОВ СИСТЕМЫ

Юлле КОТТА

Для дискретных систем со многими входами H выходами

изучается задача построения компенсатора в виде динамической

обратной связи по состоянию, обеспечивающего инвариантность
выхода замкнутой системы по отношению к входным возмушениям.
Рассматриваются случаи измеряемых и неизмеряемых возмущений.
Решение задачи основывается на двух вариантах алгоритма
обращения, с помощью которых для системы с возмущениями
можно найти два конечных набора целочисленных структурных

параметров системы, так наз. индексы обратимости относительно

управления и обоих выходов (т. е. управлений и возмущений).
Найдены необходимые и достаточные условия разрешимости задачи

локально в OKPECTHOCTH точки равновесия системы, которые

сформулированы в терминах индексов обратимости. Найденные

условия более общие, чем ранние, которые были представлены в

терминах свойств некоторых функций, найденных при применении

алгоритма обращения. Хотя результат применения алгоритма
обращения в общем случае не единственный (однозначный) и

зависит от некоторых выборок на каждом шагу алгоритма, значения

индексов при всех возможных выборках не изменяются.
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