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Abstract. The paper considers the dynamic disturbance decoupling problem for a discrete-time
nonlinear system locally around its equilibrium point. The complete solution to the problem, that is
necessary and sufficient conditions as well as the procedure for constructing the compensator, is
given both for the cases of measurable and unmeasurable input disturbances under certain regularity
assumptions of the equilibrium point. Under the mentioned regularity assumptions of the
equilibrium point the solvability conditions for the dynamic disturbance decoupling problem via
regular or nonregular dynamic state feedback are shown to be the same. Instrumental in the problem
solution are the two versions of the inversion algorithm for a discrete-time nonlinear system with
disturbances which define two finite sequences of uniquely defined integers, the so-called
invertibility indices, either with respect to both inputs or with respect to the controls only. Firstly,
the solvability conditions are expressed in terms of the invertibility indices. Secondly, the proof of
the existence and construction of the dynamic state feedback compensator relies on this algorithm.

Key words: discrete-time systems, nonlinear control systems, disturbance decoupling, inversion
algorithm, invertibility indices.

1.INTRODUCTION

In this paper we shall consider the disturbance decoupling problem with
the dynamic state feedback for discrete-time nonlinear systems. The
problem deals with the situation in which, by means of the dynamic state
feedback compensator, we want to achieve decoupling.between the input
disturbances entering the system and the outputs leaving the system.
Clearly, the dynamic disturbance decoupling problem (DDDP) is
essentially a nonlinear problem: for linear systems the DDDP is solvable if
and only if the dlsturbance decoupling problem is solvable by static state
feedback [ ]. In [] the DDDP has been solved locally around an
equilibrium point of the discrete-time nonlinear system under two

* The results of this paper appeared partly in the Preprints of II IFAC Workshop on
System Structure and Control. Prague, 1992, 200-203. T;:\
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additional assumptions. The first assumption was that the original system
is square, that is the number of the controls equals the number of the
outputs. The second assumption was that the system under zero
disturbances is invertible. The soluuan (both for measurable and
unmeasurable disturbances) presented in [ ] roughly says that the problem
is locally solvable if and only if it is solvable by means of a certain
compensator that is obtained from the mverswn algorithm applied to the
system under zero disturbances. In [ ] the earlier results have been
extended to nonsquare and noninvertible systems. The main result has
been formulated in terms of the certain functions appearing in the
inversion algorithm and, besides necessary and sufficient conditions, it
also provides a constructive procedure for solving the DDDP in the case of
unmeasurable disturbances (DDDPud).

The purpose of this paper is to give a complete solution (that is a
solution without any further assumption on the discrete-time nonlinear
system) of the DDDP also in the case of measurable disturbances
(DDDPmd). Another purpose of this paper is to translate necessary and
sufficient conditions for a local solvability of the DDDPud and the
DDDPmd (DDDP in the case of measurable disturbances) stated in terms
of certain functions appearing in the inversion algorithm into necessary
and sufficient conditions stated in terms of mverublhty indices. Using the
vector space technique introduced in [*), it is not difficult to show that the
latter conditions are actually system — intrinsic and algorithm-independent
conditions stated in terms of a certain structure at infinity either of the
original system (for the DDDPmd) or some auxiliary system (for the
DDDPud).

2. PROBLEM STATEMENT

Consider a discrete-time nonlinear plant P described by equations of
the form

X(t+1)=f(X(t),u(t),W(t)),X(O)=XO,
y(£)=h(x(1)), ’ 2.1)

where the states x(z) belong to an open subset X of R", the controls u(t)
belong to an open subset U of R™, the disturbances w(f) (either measurable
or unmeasurable) belong to an open subset W of R’, and the outputs y()
belong to an open subset Y of RP. The mappings f and h are supposed to be
real analytic.

Throughout the paper we shall adopt a local viewpoint. However,
contrary to the continuous-time case, in the discrete-time case local study
is impossible around an arbitrary initial state, since even in one step the
state can move far away from the initial state regardless of the small
control and disturbance values. For this reason we shall work in a
neighbourhood of an equilibrium point of the system (2.1), that is around
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(x°, u®, w°) € Xx UxW such that f(x° u®, w°) = x°. Working around the
point (x°, u°, w°) and on a finite-time interval 0 <z<t,, then, using the
control sequence u(0), u(1), ..., u(tz) with each u(z) sufficiently close to u°,
and provided that in the disturbance sequence w(0), w(l), ..., w(zz) each
w(r) is sufficiently close to w® we can assure that the states x(7) are
sufficiently close to x° and the outputs y(s) are sufficiently close to
y? = h(x°), both for 0 < ¢ < .

We shall consider separately the cases of unmeasurable and measurable
disturbances. In the case of unmeasurable disturbances the compensator C

(dynamic state feedback) used to control the plant P is a discrete-time
nonlinear system described by the equations of the form

Z(t+ 1) = (), x(2), v(1), z(0) = z,,
u(t) = @ (z(1), x(2), v(1)), (2.2)

with the state z (1) € Z, an open subset of R*, with a new m-dimensional
control v (£) € V, an open subset of R™, and real analytic v and ¢ .

We call the compensator C described by equation (2.2) regular if
the dynamical system

x (t+ 1) =f(x(1), oz(1), x(1), v(1), w(1)),
z(t+ 1) = y(z(D), x(2), v(2)), (2.3)
u(t) = o (z(1), x(1), v(1)

with inputs v(#) and outputs u(z) is invertible (see [4' 5] for details about the
notion of invertibility), or equivalently that (2.3) defines a one-to-one
(x, z, w)-dependent correspondence between the input variable v and output
variable u. The analogous definition of regular dynamic state feedback for
continuous-time nonlinear systems has been used in [6].

The closed-loop system (2.1), (2.2), that is the system

x(t+1)=f(x(1), o(z(1), x(1), v(2)), w(1)),
Z(t+ 1) = y(z(1), x(1), (1)), (2.4)
y(#) = h(x(1)),

initialized at (x,, zo) is denoted by Po C.

Definition2.1. Local dynamic disturbance decoupling problem
in the case of the unmeasurable disturbances (DDDPud). Given the
system (2.1) around an equilibrium point (xX°, u°, w°) find, if possible, a
compensator C defined by equations of the form (2.2) together with an
initial state z, and neighbourhoods Vy=2° x X° x V° of (%, x% V") in
Zx X x Vand V,of u® in U, being domain and codomain of C, as well as a
neighbourhood WP of w° so that the outputs of the closed-loop system

yP E(t; xo, 29, W(O0), ..., w(t - 1), v(0), ..., v(t - 1)), t < by
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do not depend on disturbances w(t) for every x, € X°, all v(t) € V°, all
w(t) € WP, and for some finite tr.

In the case of measurable disturbances the compensator C,, (dynamic
state feedback) used to control the plant is a discrete-time nonlinear
system described by

z(t+ 1) = y(z(@®), x(1), v(®), w(®), z(0) =z, (2.5)

u(t) = o(z(1), x(1), v(r), w(t))

with the state z(f) € ZcR", with a new m-dimensional control
v(f) € VcR™ and real analytic v and ¢. Theregularity of (2.5)
means that the dynamical system

x(t+ 1) =f(x(0), oz (1), x (1), v(2), w(z)), w(b)),
z(t+ 1) = y(z(), x(1), v(1), w(1)), (2.6)
u(t) =0 (o), x(1), v(r), w(t))

with the controls v(f) and the outputs u(z) is invertible, or equivalently that
it defines a one-to-one (x, z, w)-dependent correspondence between the
control variable v and the output variable u.

The closed-loop system (2.1), (2.5), that is the system

x(t+ 1) =f(x@), ¢ (), x(@), v(D), w(®), w(?)),
z(t+ 1) = y(z(®), x (@), v(D), w(t)), : (2.7
y(t) =h(x()

initialized at (x,, z,) is denoted by Po C,,.

Definition 22. Local dynamic disturbance decoupling
problem in the case of the measurable disturbances (DDDPmd). Given
the system (2.1) around an equilibrium point (x°, u°, w°) find, if possible, a
compensator C,, defined by equations of the form (2.5) together with an
initial state z, and neighbourhoods V= Z° x X°x V° x W° of (z°, x°, v°, w?)
inXxZxVxWand V, of u° in U, being domain and codomain of C, so
that the outputs of the closed-loop system

P !
y  (t; xo, 200 W(0), ..., w(t - 1), v(0), ..., v(t- 1)), t < 7=

do not depend on disturbances w(t) for every Xy € XO , all v(t) eW, all
w(t) € WP, and for some finite ty.
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3. INVERSION ALGORITHM FOR SYSTEMS WITH DISTURBANCES.
INVERTIBILITY INDICES

The inversion algonthm for dlscrete time nonlinear systems without
disturbances has been introduced m} ] and given in more general and
simple form by Kotta and Nijmeijer [“]. For the system with disturbances
two versions of the inversion algorithm can be given [ ]. The first version
accomplishes inversion with respect to both types of inputs — the controls
and the disturbances — whereas the other version considers disturbances as
system parameters and accomplishes inversion with respect to the controls
only. Note that the idea of using two versions of the inversion algorithm
was at ﬁrst exploited in the continuous-time case by Moog, Perdon and
Conte [ ]. In this paper we shall not repeat these two versions of the
inversion algorithm and in the followmg we shall use the notations of [ ].

We can apply the inversion algorithm not necessarily in a

unique way [7]. There exist, in general, different reorderings
(permutations) of output components ¥, (r+k+1) at step k+1, k 20,
so that the first p w,k+1(p ) rows of the matrix
G[A ak+J /0 (u, w) ( [ 3 {+1] /a(u)) are linearly
independent. Different permutations of output components, that is,
different selections of y,,,(t + k + 1) in each step k + 1, k > 0, result in
different functions Ay, () and ., (-).

In the inversion algorithm, certain constant rank assumptions have been
imposed to ensure that the algorithm can be applied around a given
equilibrium point. We shall summarize these conditions in the definition of
regularity of an equilibrium point (associated with the inversion
algorithm).

Definition 3.1. We call the equilibrium point (x°, u®, w°) of the
system (2.1) regular with respect to the inversion algorithm if for some
specific application s of the inversion algorithm the constant rank
assumptions of the algorithm are satisfied. We call (x°, u°, w°) strongly
regular if the constant rank assumptions of the algorithm hold for each
application of the algorithm.

Using the inversion algorithm around the regular equilibrium point
(x°, u®, w°) of the system (2.1), we obtain a sequence of integers

0<pwl" puwk‘ - B

(OSpu’l_...Spu’k_...SP).

o be defined as the smallest k € N such that Pouw p (pu =P, )
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Though the result of application of the inversion algorithm
apparently depends on the choice of admissible permutations made
at each step of the algorithm, it can be proved in analogy with the
case ~ without input disturbances [?] that the integers

Puw, 12+ P ko o> (pu’l, s Py o ...) do not depend on the
particular permutation of the components of y;(z + k + 1). Thus, around a

strongly regular equilibrium point of the system, these integers define
some structural properlies of the system. On the analogy with (%], we call
the integers o 21 (p, P k> 1) the invertibility indices of the
system (2.1) w1th respect to both inputs (with respect to the controls).

Moreover, on the analogy with the case without disturbances [3] it can
be proved that around a regular equilibrium point the inversion algorithm
terminates at most n steps, that is

* *

puw = puw,n (pu - pu, n)'

4. PROBLEM SOLUTION: THE CASE OF UNMEASURABLE
DISTURBANCES

In [3] necessary and sufficient conditions for local solvability of the
DDDPud via regular compensator are derived in terms of certain functions
appearing in the inversion algorithm. By a little modification of the proof
in [3], the result can be formulated as in Theorem 4.1.

Theorem 4.1. Apply the inversion algorithm to P described by
equations (2.1) with respect to the control u around a strongly regular
equilibrium point (X°, u°, w°). The DDDPud for system P is locally
solvable around (xX°, u®, w°) via regular dynamic state feedback C if and
onlyiffor 1 < k< n

o 18 s oo gbthe megspste distyrbagers (DDDPRIAIMTG
ow k '

Now we are going to translate necessary and sufficient conditions for
the solvability of the DDDPud via regular compensator, formulated by
Theorem 4.1 in terms of the inversion algorithm, into system-intrinsic and
algorithm-independent conditions stated in terms of the invertibility
indices of the so-called auxiliary system formed from the original system
by adding one-step backward shift (delay) operator into the control loop.
So, the auxiliary system P, with the states (x (#), u (7)) and the inputs u,(?)
is defined as follows:

x(t+1D)=f(x(t), u(t),w(t)),
u(t+ 1) =uy(1), (4.2)
y(t)=h(x(1)).
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The equilibrium point of P, is (x°, u®°, u®;, w°) with u°, = u°. The idea of
delaying the inputs, as is done by the mtroducuan of the auxlhary system
P,, was already employed for continuous-time systems in [ ].

We need the followmg lemma.

Lemma 42. [ | Apply the inversion algorithm to P described by
equation (2.1) with respect to the control u around a strongly regular
equilibrium point (xX°, u®, w°). Let the point (X°, u°, w°) be such that
(0, u®, u®q, w°) with u°, = u° is a strongly regular equilibrium point of P,
with respect to both versions of the inversion algorithm. Then at every step
of the  algorithm 8a (®/ow=0 if and only if
pu " k(Pa) = pu k(P )forallk>l

Re m ark 4.3. The continuous-time counterpart of Lemma 4.2 is
given in [ ].

Now we are ready to formulate the main result of this section.

Theorem 4.4, Consider the system P described by equations (2.1)

around a strongly regular equilibrium point (x°, u®, w°) with respect to the
inversion algorithm with regard to the control. Let the point (X°, u®, w°) be
such that (x°, u° u°, w°) with u°; = u® will be a strongly regular
equilibrium point of P, with respect to both versions of the inversion
algorithm. Then the regular DDDPud for P will be locally solvable around
(x° u° w° via regular dynamic feedback C if and only if for all
1<k<n+m

Py w,k(Pa) ot .k(Pa)° 43)

Proo f. The proof of Theorem 4.4 follows easxly from Theorem 4.1
and Lemma 4.2.
Theorem 4.5. Consider the system P described by equations (2.1)

around a strongly regular equilibrium point (x°, u®, w°) with respect to the
inversion algorithm with regard to the control. Let the point (x°, u°, w°) be
such that (X°, u°, u®;, w°) with u°, = u°® will be a strongly regular
equilibrium point of P, with respect to both versions of the inversion
algorithm. Then the DDDPud for P will be locally solvable if and only if
(4.3) holds.

Proof. Sufficiency. As in Theorem 4.1.

Necessity. Let us assume that there exists a dynamic state feedback of
the form (2.2) that locally around a strongly regular equilibrium point
(«°, u®, w°) of (2.1) solves the DDDPud for (2.1). Apply the first step of the
inversion algorithm to P with respect to the control u only, considering
disturbances w as parameters:

y(+1D)=h(f(x(2),u(t),w(r))). (4.4)
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If we replace u(¢) in (4.4) by the output of C, we can assert that equation
(4.4) does not depend on w any more since C defined by (2.2) solves the
DDDPud for (2.1). This means that either

Oh (f(x,u,w)) _ 0 (4.5)
aw

everywhere around the point (x°, u®, w or, if not, the compensator C
defined by (2.2) will guarantee the equahty (4.5). The latter is impossible
around the strongly regular equilibrium point where by the definition
Oh (f (x, u, w)) /0w is either equal to zero everywhere or different from
zero everywhere. This means that if oh (f (x, u, w)) /0w # 0, we cannot
make it ever equal to zero by the suitable choice of the compensator. This
implies that (4.5) holds which, by Lemma 4.2, means that also (4.3) holds
for k = 0. Applying this argument repeatedly, we can show that (4.3) holds
fork=0,1,..,n-1.

Remark 4.6. Note that Theorem 4.5 does not require the regularity
of the compensator. So, the solvability conditions for the DDDPud via
regular or nonregular dynamic state feedback around the strongly regular
equilibrium point are the same. Of course, around the nonregular
equilibrium point the conditions (4.1) are not necessary for the solvability
of the DDDPud. Sometimes, if the conditions (4.1) are not satisfied, a
nonregular compensator can still be found that imposes the constraint (4.1)
and solves the DDDPud. For a contmuous time system this aspect of the
DDDPud has been studied in ['9]. Unfortunately, it has not been stated
clearly in ! ] that the pos31b111ty to guarantee (4.1) by the proper choice
of a nonregular compensator is not possible around the regular equilibrium
point of the system.

5. PROBLEM SOLUTION: THE CASE OF MEASURABLE
DISTURBANCES

In this section we shall consider the case of measurable disturbances.
We shall prove the following Theorem.

Theorem 5.1. Apply the inversion algorithm to (2.1) with respect to
the control u around a strongly regular equilibrium point (xX°, u°, w°). The
DDDPmd for the system (2.1) is locally solvable around (x°, u®, w°) via

regular dynamic state feedback C,, if and only iffor 1 < k <n

aijzk(x,w, {y;(t+)), 1<i<k, i<j<k}) =0. (5.1)
w

Proof. Sufficiency. Notice at first that if (5.1) holds for 1< k < n, then
it holds for every k > 0. It follows from the fact that the inversion algorithm
terminates at most n steps. If (5.1) holds, then applying the second version
of the inversion algorithm to (2.1) gives at the nth step
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Y, =A G@,u(@),w(), {y;¢+)),1<isn-1,i+1<j<n}),
4 (5.2)
Ja(t+n) = 9,(x(2), {y;(t+)),1<i<n,i<j<n}),

3 T T Jr T .
where Y, = [yl (3+1)sy5.(02),..50% (t+n)] and the matrix
0A, (1) /0u has full row rank p  on a neighbourhood Oy, of (x°, u®, w°).
In tie proof we shall denote P, k’ by py for simplicity. Fori =1, 2, S
let z + v; be the smallest time instant and ¢ + €; be the greatest time instant
in which y; appears in (5.2). Then we can rewrite (5.2) as

T P g ¢
[ypk_lﬂ(t+k),...,ypk(t+k)J = a(x(®),u(),w(),{y,(t+)),
1Si S iy A bbsp<mingt a0 1), £=112,. .n 53

After a possible permutation of inputs we may assume that the Jacobian
matrix of the right-hand side of (5.3) with respect to u' = (uy, ... ,u_ )T
around the point (x°, u° )", ..., y°, w°) has full row rank p . 'Iheret%'i'e,
equation (5.3) can be solved for u'(f) uniquely around the point
(x°% u® y°, ..., ¥°, w°) by applying the Implicit Function Theorem. Define
ut = (upn 41 - Up)". Then, from (5.3), we obtain
1 X . . 2

u (1) =olx(),{y;(t+)),1si<p,v;<jse},u (1),w(?)), (54)
which is such thatfork=1,2, ..., n

[p,., 4140y (4 B)] =

=, (x(0,0(), {y;(t+)), 1<i<p, .,
y,+1<jsmin(ke) ), w(d). (5.5

Notice that ¢:V, -V is analytic for some (possible small)
neighbourhoods V; and V, of (° »° .., »°, u* w% in
X0 x (YO)" x U2 xWP and of u'® in U'°. This implies that (5.5) will hold
as long as (x(7), {yi(t+j), l<isp,, yistSi}, u (,w(r)) € v
and, defined by (5.4), u'(r) €V,. Of course, the identity (5.5) is lost if we
leave the neighbourhoods V, resp. V,.

Now construct the compensator for (2.1) in the following way. Let

Homlniast,; Yi=il, .,p,, be a vector of dimension €, -v,, v a

vector of dimensiori m - p_, and consider the system

z,.(t+1) & Al.zl.(t) +Biv,.(t),i =1..9,
u' (1) = o(x(9, (z;(), 1<jse;~y; v, (), 1<i<p ),

v2 (1), w (1)), (5.6)

W (1) = v: (1)
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with the controls v! = (v, , ...,v_ )T and v, the disturbances w, the outputs
u=w"T,u*NT and (4; B;) 1 Brunovsky canonical form

0 1
A = &Nl B = (0...01)"

I
0 0
It can be shown that the compensator (5.6) is regular on a
neighbourhood of (x° u° y°, w°. We omit the proof which is quite
analogous to the case with unmeasurable disturbances [, Lemma 3].

Now, it is easy to see that the compensator (5.6) with arbitrary initial
state, applied to (2.1) locally around (x°, u°, w°), yields fori=1, ..., p,

AT B VI (1) W 1 W S A

y.(t+8.) = v.(t), O<t<tg,
which of course are independent from w(z). Moreover, y,(j) for 1 <i < P,
0<_]<'Yl—1 and for p,t1<i<p, j20, being the components of
9, (k) , do not depend on w(f) by assumption. Hence, the compensator
(5.6) solves the DDDPmd locally.

Necessity. Let us assume that there exists a regular dynamic feedback
control defined by (2.5) for (2.1) that locally around the equilibrium point
(x°, u®, w°) solves the DDDPmd. Furthermore, assume that (5.1) does not
hold for k = 1, that is

aiwj‘fl (x,w,y; (t+1)) #0.

Then, at the first step of the inversion algorithm, we have that §,(¢ + 1)
explicitly depends on w:

Jr+1) =9, (x(0),w(r),y, (1+1)). (5.7)

Since (2.5) solves the DDDPmd for (2.1) this w-dependence should
disappear, if we use the compensator (2.5). Since (5.7) does not depend on
the control, the only possibility is that (2.5) must be such that it imposes
the constraint

a%yl(LWJl(Hl)) =& (x,w,a;(x,u)) = 0.

But this would imply the nonregularity of the compensator. So, (5.1) must
hold for k = 1. Following the same way, we prove the theorem.

Note that the result of Theorem 5.1 provides us with a constructive
procedure for solving the DDDPmd via regular compensator. Namely, we
proceed by applying the second version of the inversion algorithm to (2.1),
checking at every step 1< k< n if (5.1) holds. If (5.1) does not hold for
some k, we conclude that the DDDPmd is not solvable via regular
compensator. If (5.1) does hold for 1 < k < n, then the DDDPmd can be
solved by means of the regular compensator (5.6) with arbitrary initial
state.
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Now we are going to translate necessary and sufficient conditions for
the solvability of the DDDPmd formulated by Theorem 5.1 in terms of the
inversion algorithm into system-intrinsic and algorithm-independent
conditions. For this ;I)urpose we need the following lemma.

Lemma 5.2.["] Apply the i znverszon algorithm to P with respect to u
around an equilibrium point (x°, u°, w°). Suppose that the point (x°, u°, w°)
is strongly regular equilibrium point of P with respect to both versions of
the inversion algorithm. Then, at every step of the algorithm,
O (t+k) /0w = 0 ifand only if p,, (P) = p, i (P)forall k.

Now we are ready to formulate the 1 mam result of [hlS section.

Theorem 5.3. Consider the plant P described by equations (2.1)
around a strongly regular equilibrium point (x°, u®, w®) associated with
both versions of the inversion algorithm. Then the DDDPmd for system P
is locally solvable around (X°, u°, w°) via regular dynamic state feedback
Cyifandonlyiffori< k<n

Pk (P) = P, (P). (58)

The proof of Theorem 5.3 follows easily from Theorem 5.1 and Lemma
Sots

Theorem 5.4. Consider the system P described by equations (2.1)
around a strongly regular equilibrium point (x°, u°, w°) associated with
both versions of the inversion algorithm. Then the DDDPmd for system P
is locally solvable around (xX°, u°, w°) if and only if (5.8) holds for i <k < n.

Proof. Sufficiency. As in Theorem 5.1.

Necessity. Similar to the proof of Theorem 4.5.

6. CONCLUSIONS

We have considered the dynamic disturbance decoupling problem
(DDDP) for a discrete-time nonlinear system locally around its
equilibrium point. The complete solution of the DDDP, that is the solution
without any further assumption on the discrete-time nonlinear system, has
been given under certain regularity assumptions of the equilibrium point.
The cases of measurable and unmeasurable disturbances have been
considered separately. For both cases necessary and sufficient conditions
as well as the procedure for the construction of the compensator has been
given.

Instrumental in the problem solution are the two versions of the
inversion algorithm for discrete-time nonlinear system with input
disturbances. Every version of the inversion algorithm produces the finite
sequence of uniquely defined integers, the so-called invertibility indices,
either with respect to both inputs, controls and disturbances, or with
respect to controls, respectively. At first, the necessary and sufficient
conditions have been given in terms of certain functions appearing in the
inversion algorithm; then the equivalent conditions have been formulated
in terms of mvemblhty indices. Using the vector space technique
introduced by Grizzle, [] it is not difficult to show that the latter

157



conditions are actually system-intrinsic and algorithm-independent
conditions stated in terms of a certain structure at infinity either of the
original system (for the case of measurable disturbances) or some
auxiliary system (for the case of unmeasurable disturbances).

Under the aforementioned regularity assumptions of the equilibrium
point it has been shown that the solvability condition for the DDDP via
regular or nonregular dynamic state feedback are the same, being in full
accordance with the results for linear systems.
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HAIRINGUTE DUNAAMILINE KOMPENSEERIMINE
DISKREETSETES MITTELINEAARSETES SUSTEEMIDES:
LAHENDUVUSTINGIMUSED SUSTEEMI
STRUKTUURIPARAMEETRITE TERMINITES

Ulle KOTTA

Mittelineaarsete analiiiitiliste siisteemide klassi tarbeks on uuritud diinaami-
lise tagasiside kujul esitatava kompensaatori konstrueerimise iilesannet, mis
tagaks suletud siisteemi viljundite invariantsuse sisendhdiringute suhtes.
Kisitlust on leidnud nii mdddetavate kui ka mittemdddetavate hiiringute juhud.

Ulesande lahenduvus péhineb podramisalgoritmi kahel versioonil, mille abil
on vdimalik hdiringutega siisteemi jaoks leida kaks tdisarvuliste struktuuri-
parameetrite 10plikku hulka, nn. pooratavusindeksid ainult juhttoime kui ka
molema sisendi (s. t. juhttoime ja hdiringute) suhtes. Siisteemi tasakaalupunkti
iimbruses on leitud iilesande lokaalse lahenduvuse tarvilikud ja piisavad tingi-
mused, mis on formuleeritud pooratavusindeksite terminites. Leitud lahenduvus-
tingimused on iildisemad varasematest, mis on esitatud podramisalgoritmi
rakendamise kdigus leitavate funktsioonide omaduste kaudu. Kuigi pooramis-
algoritmi rakendamise tulemus ei ole iildjuhul iihene, vaid soltub teatud valikutest
algoritmi igal sammul, on ndidatud, et pooratavusindeksite vdirtus jaab muut-
matuks koigi voimalike lubatud valikute korral.
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JTAHAMHUYECKASI KOMIIEHCALIMS CO3MYIIEHMH B
JUCKPETHBIX HENTHHEWHLIX CHCTEMAX: PEIIIEHHE B
TEPMHMHAX CTPYKTYPHBIX IIAPAMETPOB CHCTEMbI

IOme KOTTA

JU1s  OUCKPETHBIX CHCTEM CO MHOTMMM BXOINaMH M BBIXOZAMH
u3ydacTcs 3alaya IOCTPOCHHA KOMIIEHCaTopa B BHIE IMHAMHYECKOH
obpaTHOH CBA3M 10 COCTOSHHIO, OOECICYMBAIOIIEIO HHBAPHAHTHOCTH
BbIXOJa 3aMKHYTOH CHCTEMBI 10 OTHOLUEHHIO K BXOAHBIM BO3MYLICHMSIM.
PaccMaTpuBaloTCs Ciiydau HM3MEPSEMBIX M HCU3MEPSACMBIX BO3MYLICHMIA
Pemienue 3aga4yd  OCHOBBIBa€TCS Ha JIByX BapHaHTaXx alloOpUTMa
obpalleHus, ¢ TMOMOILBI0 KOTOPBIX IS CHCTEMBI C BO3MYLUCHHAMH
MOXHO HaWTH IBa KOHEYHBIX Habopa LENIOYHCIICHHLIX CTPYKTYPHBIX
[IapaMETPOB CHCTEMBI, TaK Ha3. MHACKCHl OOPaTHMOCTH OTHOCHTEIBHO
yrpaBiicHuss ¥ OOOMX BBIXOAOB (T. €. YNPABICHHH W BO3MYILCHHIA).
Haiinensl HeOOXONMMBIE H HOCTATOYHBIC YCJIOBHS Pa3peIIMMOCTH 3ala4yy
JIOKQJIBHO B OKPECTHOCTH TOYKHM PpaBHOBECHA CHCTEMBI, KOTOpBIC
copMyIMpOBaHbl B TEpMHHaX MHAEKcoB oOparuMoctH. Haiinenmnsie
ycnoBust Gosiee obime, 4eM paHHHE, KOTOpble OBUIM TNpENCTaB/ICHBI B
TCPMHHAX CBOMCTB HCKOTOPBIX (DYHKUMH, HaWACHHBIX NPH NPUMEHEHUH
aropuT™Ma  obpaiieHus. XOTS  pe3yinbTaT NPUMECHEHHS alIropuTMa
obpamienus B oOmeM ciiyyac He €IMHCTBEHHBIH (OXHO3HAYHBIA) M
3aBUCHUT OT HEKOTOPBIX BBIOOPOK Ha KaXJIOM IIary airOpUTMa, 3HaYCHHUs
MHICKCOB TIPH BCEX BO3MOXHBIX BBIOOpKaX HE H3MEHSAIOTCA.
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