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ON THE DIGITAL CONTROLLER DESIGN
WITH A FREE PARAMETER

(Presented by U. Jaaksoo)
1. Introduction

The modal controller design is a classical task very well known for
both continuous and discrete linear dynamic systems [']. Starting from
characteristic polynomials of the plant and the desired closed-loop system,
a state feedback will be found which guarantees the desired poles of the
closed-loop system. Often the problem is not concerned with the exact
matching of poles but with the appropriate gains of the feedback vector.
That is why a free parameter in the modal control procedure is of a great
practical importance.

In the following, we will introduce a linear-fractional mapping on
the complex plane which transforms the unit circle into itself. Thereby
the mapping with a free parameter does not alter the stability properties
of a discrete system. Making use of the modal control algorithm a
digital controller with a free parameter will be designed.

2. Problem statement

Let us consider a linear single-input plant in the state space form

x(t41)=Ax(t)+bu(t). (1)
We have to find a state feedback
u(t)=k"x(t) ) (2)

such that closed-loop system
x(t+41) = (A+bk") x(2) (3)

will be stable, and the feedback gain vector £ has the minimal norm
|£ ()| with respect to a free parameter &.

First of all, we have to find a mapping with a free parameter & on
the parameter space of the closed-loop system such that the stability is
guaranteed for large variations of the free parameter § & [Emin, Emax].
Next we have to modify some controller design algorithm so that the
feedback gain vector £ would depend on this free parameter £ in an
explicit form £(&). Finally, we have to choose a proper £* and calculate
k(7).

* Eesti Teaduste Akadeemia Kiiberneetika Instituut (Institute of Cybernetics, Estonian
Academy on Sciences). EE0108 Tallinn, Akadeemia tee 21. Estonia.
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3. Linear-fractional mapping on the unit circle

It is well known in the theory of complex functions that the linear-
fractional mapping

P S el
1—T

where A\ eC, peC, teC, g =R, £ — conjugate of &, |E| <1 transforms
the unit circle into itself [?], i.e., |m|<C1 if |A]<<l. Because the poles
of a linear dynamic system must be placed symmetrically with respect to
the real axis, we are interested only in such mappings which transform
the real axis of the unit circle into itself, i.e., pe= (—1,1) if A= (—1,1).
It can be easily shown that by ¢=0 and § = (—1, 1) this requirement is
satisfied.
Let us now consider a polynomial

pi(2) =542, .G =R
i=0

with roots A; in the unit circle, |Ai| <1, i=1, ..., n. We are seeking for
another polynomial

po(z)=§b,—z", bi=R
such that its roots p; satisfy the relation A
it . e
Ol —En
If £ (—1, 1), then, according to the abovementioned results, || <1, to
a real root A; corresponds a real p;, and to a pair of conjugate roots A:

and A; corresponds also a pair of conjugates p; and H,-.
From the assumption (4) it follows

Zn,' i ('—E’j_—u—)‘ =0,

i i=1,...,n. (4)

im0 1+En
or %az(§+u)i(1+§u)"“=0
for all p;, i=1, ..., n. By the use of the Newton binomial formula we

obtain

- Efiy .. i fn—i
Saz () ewE (")) rw=o,
bost) o0 4 k=0
where (l) — binomial coefficient. Multiplying the polynomials and
rearranging the resulting polynomial in accordance with the powers of
the root p, we obtain the following equation
w5 LY qagN B
= 3 3 (17])(]) e-map=o (5)
i=0 j=0 k=0 i—k/ \k

Since the equation (5) is satisfied for all wi(§), i=1, ..., n, we can
claim that the coefficients of the polynomial ps(z) have the following
representation

=3 BN (D wrm, o

j=0 k=0
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4. Modal controller with a free parameter

If the plant (1) is controllable then the state feedback (2) exists
such that arbitrary closed-loop poles are available in the unit circle.
Let characteristic polynomials of the plant

Pa(2)= 2";,') a2, weER, a=l
and the desired closed-loop system (3)
pe(2)= gjﬁiz‘l pieER, Pa=1

be given. Then a feedback gain vector £ can be found as a solution to
the equation [2]

TevV=pTP ; (7)
where
e"=[ao—Po, ..., Gn—1— Brn-1],
B0 S e 5Nty
(05} [ | g ] 0

Ly O e s
(ln—]l o L o 0
1 ) Bt 0

and R=[b, Ab, ..., A 'b] — the controllability matrix of the plant.
For a controllable plant rank R=n and that is why P! exists. From (7)
we obtain :

k=P le.

Let us now vary the closed-loop characteristic polynomial coeificients
according to the equation (6).

Denoting
= 3 (PI) (1) erme
p(e)=/=04=0 (8)
%E”"ﬂl

we can claim that En=1 and the polynomial
p;(2)= ZBi(2)2
i=0

has its roots in the unit circle. Therefore the feedback gain vector
k(E)=Pe(2), (9)

where e(&)=[ao—Bo(E), ..., @r—1— Bn-1(E)] stabilizes the closed-loop
system (3) for all E=(—1,1) by the assumtion that the roots of the
polynomial pg(z) lie in the unit circle.

In many control systems actuator constraints of the type |u(f) | <Ctmax
for all ¢ have to be considered. One approach to treat this constraint
indirectly is to avoid the saturation by using small feedback gains [*].
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Fig. 1. Output response for different values of the parameter &.

u(t)

-Ao o

Fig. 2. Input signals for different values of the parameter &.

Assuming that all state variables have been normalized to their maxi-

mum value, the norm |k|=7Yk"k can be used as a measure for |u|. This
provides a criterion for the selection of a gain from the admissible set:

choose the point closest to the origin.
The minimization of the norm of the feedback gain vector

i |k(8) | =[e"(5") (PT)~'P-'e (g ]
is a complicated task. For practical reasons let us mention the following:
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1. The desired behaviour of the closed-loop system is defined by the

polynomial pg(2). It means that great variations in coefficients f:(g) are
not allowed. .

2. For £¢=0 we obtain from the equation (8) B:(§)=p: i=1, ..., n.
It means that usually we have a restiction § = (—§, 9), 6<<1.

3. For real control systems the absolute minimum of |k(E)] is rarely
of a great importance. More often a compromise between control action
amplitudes (feedback gains) and closed-loop dynamics (poles placement)
has to be found.

Example. Let us have a second-order plant

—8.05 l(1)]"(')+[8.1 ] u(t)

with complex poles Aj»=0.54i0.5, i.e., ag=0,5; a;=—1. We are inte-

rested in a nonoscillating closed-loop step response and that is why we

choose “dead-beat control” algorithm as a basic one, i.e., fo=8:=0.
Using formulas (7)—(9) we obtain

k(E) = [0.5 — E2, — 10 — 20&] ™.

Minimizing |k(g)| we find £*=-—0.5 and k(§*)=[0.25; 0]". For “dead-
beat control” %£(0) =[0.5; —10]".

On the Figs. 1 and 2, the output response y(¢f)=/[1 0]x(f{) and the
control action u(f) to the initial state x(0)=[1 1]* are presented for
E=0; —0.3; —0.5. Obviously the ‘“dead-beat control” (§=0) has the
fastest response, but it needs large input signals. By §&=—0.5 the maximal
input is small, but the response is slow. By ¢&=—0.3 we have a reason-
able compromise.

x(t+1)=

5. Conclusions

A digital controller design procedure with a free parameter & has
been proposed. Following the modal control algorithm and making use
of the linear-fractional mapping on the system parameter space, it was
shown that the stability of the closed-loop system is guaranteed for all
ge=(—1,1). For the sake of simplicity of the presentation, only the single-
input-control has been considered. The design procedure works also with
multi-input plants. The state feedback control law with a free parameter
is well suited for CAD procedures. .

In a similar manner, one can find a law for permissible plant para-
meter changes. It means that this design procedure is suitable also for
robust control.
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Ulo NURGES
VABA PARAMEETRIGA DIGITAALREGULAATORI SUNTEES

On esitatud digitaalregulaatori siinteesi algoritm, mis sisaldab {iht vabalt valitavat
parameetrit. Kasutades siisteemi parameetrite ruumis murdlineaarset teisendust on néi-
datud, et suletud siisteem jddb stabiilseks parameetri & muutumisel piirides & & (—I, 1).
Tagasiside vektor s6ltub ilmutatud kujul parameetrist § mis voimaldab & jirgi minimee-
rida juhtimiseks kulutatud energiat.

Or0 HYPTEC
O CHUHTE3E UH®POBOIO PEryJISITOPA CO CBOBOJHbIM NMAPAMETPOM

ITpeanoxena npoueaypa CHHTE3a peryJsitopa JJsi JHHEHHOro o6bekTa
x(t41)=Ax(t)+bu(t),

HCXO/Asi U3 METOAHMKH MOJAAJIbHOIO YyINpaBJICHHS. ”CﬂOJ’leyﬂ llpO6H0-JlHHeﬁHOe HP606p330-
BaHHe

A—§
=,
1—EM
B NPOCTPAHCTBE MapaMeTpoB CHCTEMBI (A — TOJIOC CHCTEeMbl) HaiileH 3aKOH YNpaBJeHus

u(t)=k*(§)x (1),
obecneynBaoUIHil YCTOHYHBOCTL 3aMKHYTOI cuctembl npu § & (-1, 1). Bekrop obpathoii
cBsi3H k(E) 3aBHcHT OT napamerpa § B SIBHOM BHJe

k(§)=P-1&(E),

rae BekTop &(§) npobHo-panHonanbuas pynkuus or § (8).
ITapamerp § Moxer ObiThb BbIOpaH HCXOAsi M3 TpeGOBaHWs MHHHMH3AlIHMH 3aTpaT Ha
ynpabJieHHe.

234



	b10720984-1992-3 no. 3 01.07.1992
	Chapter
	ON THE DISCRETE STABILITY OF CONSTRAINED MINIMA
	ON DETERMINING EXTREMAL PIEZOMETRIC HEADS IN ONE-DIMENSIONAL MODEL OF GROUNDWATER FLOW
	Untitled

	О НЕКОТОРЫХ КЛАССАХ СТРУКТУРНЫХ АВТОМАТОВ, ТЕСТИРУЕМЫХ ДВУМЯ ВХОДНЫМИ НАБОРАМИ
	На рис. 2 показана функциональная схема этого автомата.
	Рис. 1. Автомат @\. !
	Puc. 3. ABromar Q.
	Puc. 4. :
	Puc. 5
	CTATHCTHKH С ПРОИЗВОЛЬНЫМ МАКСИМАЛЬНО ДОПУСТИМЫМ ЧИСЛОМ ЧАСТИЦ В ЯЧЕЙКЕ ФАЗОВОГО ПРОСТРАНСТВА (МЕТОДИЧЕСКАЯ ЗАМЕТКА)
	КВАНТОВОЕ ИЗЛУЧЕНИЕ СРЕДЫ С ИЗМЕНЯЮЩИМСЯ ВО ВРЕМЕНИ ПОКАЗАТЕЛЕМ ПРЕЛОМЛЕНИЯ
	DEPENDENCE OF THE SHAPE OF A SPECTRAL HOLE ON THE RATES OF SWITCH-IN AND SWITCH-OFF AND DURATION OF THE BURNING LIGHT
	Fig. 1. The dependence of the burning light intensity 7(#)=S(f,f) on time
	Fig. 2. SHB efficiency P(x) on different switch-in durations: A=y (dotted line); Ai=2y (dashed line, long dashes); Ai=4y (solid line); A;=6y (dashed line, short dashes). Parameters: Ap=lo%, T=6y~!, B=l, –
	Fig. 3. The characteristic part of temporal response R?(f) on different switch-in durations: Ai=vy (dotted line); A;=2¥ (long dashes); A;=4y (solid line); Ai=6y (short dashes). Parameters: Ag=lo%, T=6y~!, B=l. The time # 18 given in y7'.
	Fi%. 4. SHB efficiencies Pr(x), Po(x) and P(x), calculated by (14) (short dashes), (6b) (solid line) and (6a) (dotted line if A;=4y and long dashes if Ai=y). Para_ meters: Ао== 10%у, T=6y—!, В==l.


	PERSISTENT HIGH-TEMPERATURE SPECTRAL HOLE BURNING IN A NEUTRON-COLOURED DIAMOND
	Fig. 1. Absorption spectrum of the neutron-irradiated diamond in the red spectral range at room and LHe temperatures, respectively.
	Fig. 2. Phototransformation of the spectrum оп pulse-laser irradiation. a — initial spectrum at room temperature, b — the same spectrum at LHeT; ¢ — spectrum after irradiating by 644.2 пт dye laser pulses for 20 min at the average power of 1.5 W/cm? d — the same spectrum after irradiating by 650 nm pulses for 12 min at the average power of 0.5 W/cm?2 Irradiation and measuring at 5 K. For better observation the curves ¢, d are shifted from a, b.
	Fig. 3. a and b — Temperature dependence of the 681 nm line in absorption and luminescence spectrum, respectively. Luminescence was excited by a He-Ne laser at the . power of 1 W/cm2.
	Fig. 4. a and b — Temperature behaviour of the spectral holes burnt in at 5 K in 655 апа 681 пт lines, respectively.
	Fig. 5. Spectral holes burnt in the neutron-irradiated diamond by using single-frequency dye laser (linewidth 2 MHz). a — Dependence of the width of hole in 649.5 nm line versus on the exposition doze; b — the same for hole burnt in 681 nm line. In both cases the laser beam was focussed into the pinhole with diameter 0.5 mm.

	ON THE DIGITAL CONTROLLER DESIGN WITH A FREE PARAMETER
	Fig. 1. Output response for different values of the parameter Е.
	Fig. 2. Input signals for different values of the parameter £.

	KROONIKAT
	Ilmar Opik 75
	Untitled
	List



	Illustrations
	На рис. 2 показана функциональная схема этого автомата.
	Рис. 1. Автомат @\. !
	Puc. 3. ABromar Q.
	Puc. 4. :
	Puc. 5
	Fig. 1. The dependence of the burning light intensity 7(#)=S(f,f) on time
	Fig. 2. SHB efficiency P(x) on different switch-in durations: A=y (dotted line); Ai=2y (dashed line, long dashes); Ai=4y (solid line); A;=6y (dashed line, short dashes). Parameters: Ap=lo%, T=6y~!, B=l, –
	Fig. 3. The characteristic part of temporal response R?(f) on different switch-in durations: Ai=vy (dotted line); A;=2¥ (long dashes); A;=4y (solid line); Ai=6y (short dashes). Parameters: Ag=lo%, T=6y~!, B=l. The time # 18 given in y7'.
	Fi%. 4. SHB efficiencies Pr(x), Po(x) and P(x), calculated by (14) (short dashes), (6b) (solid line) and (6a) (dotted line if A;=4y and long dashes if Ai=y). Para_ meters: Ао== 10%у, T=6y—!, В==l.
	Fig. 1. Absorption spectrum of the neutron-irradiated diamond in the red spectral range at room and LHe temperatures, respectively.
	Fig. 2. Phototransformation of the spectrum оп pulse-laser irradiation. a — initial spectrum at room temperature, b — the same spectrum at LHeT; ¢ — spectrum after irradiating by 644.2 пт dye laser pulses for 20 min at the average power of 1.5 W/cm? d — the same spectrum after irradiating by 650 nm pulses for 12 min at the average power of 0.5 W/cm?2 Irradiation and measuring at 5 K. For better observation the curves ¢, d are shifted from a, b.
	Fig. 3. a and b — Temperature dependence of the 681 nm line in absorption and luminescence spectrum, respectively. Luminescence was excited by a He-Ne laser at the . power of 1 W/cm2.
	Fig. 4. a and b — Temperature behaviour of the spectral holes burnt in at 5 K in 655 апа 681 пт lines, respectively.
	Fig. 5. Spectral holes burnt in the neutron-irradiated diamond by using single-frequency dye laser (linewidth 2 MHz). a — Dependence of the width of hole in 649.5 nm line versus on the exposition doze; b — the same for hole burnt in 681 nm line. In both cases the laser beam was focussed into the pinhole with diameter 0.5 mm.
	Fig. 1. Output response for different values of the parameter Е.
	Fig. 2. Input signals for different values of the parameter £.
	Untitled

	Tables
	Untitled




