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ON DETERMINING EXTREMAL PIEZOMETRIC HEADS IN
ONE-DIMENSIONAL MODEL OF GROUNDWATER FLOW

(Presented by J. Engelbrecht)

A problem of determining extremums of the corresponding set of piezometric neads is
discussed on the assumption that the permeability in the one-dimensional model of
groundwater flow is varied between given bounds. Sufficient conditions for the extre-
mums are obtained as well as an existence theorem is proved. Methods are suggested
for solving this problem in some particular cases of practical interest.

Introduction

At the present time, the intensity of industrial use of groundwater is
rapidly increasing. Therefore, it is necessary to prognosticate possible
changes in a process of flow in case conditions of exploitation are chan-
ged. Usually a state of groundwater is described by the piezometric head
h which is a solution of the equation of balance

—div(k'V h)=Ff. (0.1)

The porosity of a medium is characterized by the coefficient of permeabi-
lity &, and the density of sources is described by the absolute term f. We
have f>0 in sources of influx and f<C0 in sources of reflux. In order to
solve Eq. (0.1), the functions &, f must be given ahead. Also, some
boundary information about h is needed to guarantee the uniqueness of
the solution.

The coefficient £ can be obtained in two ways. It can be measured in
some points of a medium and interpolated after that, or it can be obtained
as a result of solving an inverse problem on the basis of some measured
state of h, f (see ['~®]). Often these two approximations are quite diffe-
rent. This is due to a rapid variability of the coefficient £ which behaves
as a second-order derivative of 4 in the multidimensional case, and as A’
in the one-dimensional case (see [*]). Both the interpolation and the
solution of the inverse problem yield inaccurate results. How to overcome
this difficulty? We suggest to discuss the problem in a relaxed formula-
tion. Suppose that there are some bounds k, k (not necessary constant)

available for the coefficient &, i.e., we do not know the exact k& but we
know that £ << k << k. For instance, £, k can be chosen as a smallest

possible and a greatest possible permé_abilities in a substance considered.
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If an error of the interpolation 6k has been estimated, then we can take
k=FkIl — 8k, k=FkI+ 5k, where kI is the interpolant. Finally, it is possible

to take k, k as the mentioned above measured interpolation and the
solution of the inverse problem, respectively. The objective is to find a
set J¢ that would contain all the solutions of the Eq. (0.1) in case &
variates in the band [k, k]. Evidently, J is described by its bounds

h(y)=inf {h(y)lIh =X}, k(y)=sup {h(y)lh & X}. Having computed £,

h we obtain the lowest possible and the highest possible piezometric
heads at each point of a domain considered.

In this paper, we shall study the posed problem in the one-dimensio-
nal case. The strict mathematical formulation will be given in the next
section.

1. Problem formulation

Let us rewrite the one-dimensional analogue of (0.1) in the form
— (k') =g, (1.1)
where we assume that
geL2(0,1), suppg’ < (0,1), (1.2)

ke L>(0,1). The condition about supp g’ implies that the sources are
separated from the boundary. Eq. (1.1) represents an equality of distri-

butions in 9’ (0, /) with generalized derivatives. Add the following boun-
dary conditions
Frh= ([aih(y)— Bk (9) W' (9) ] |y=0, [ah(y) 4Bk (9) 1 (y)]]y=1) =
= (y1, y2) =V, (1.3)
where

a1, 0y, B, P2=0, a24al#0, «24p2=1, i=12 (1.4)

It is easy to become convinced of the fact that the problem (1.1), (1.3)
has a unique solution in the class

Ur={ues H' (0, 1)||ku’ is continuous in some
neighbourhoods of 0 and [}, (1.5)

provided k2(y) =a>0 a.e. in (0,1) and (1.2), (1.4) hold. Indeed, let there
exist h = U, satisfying (1.1), (1.3). Then (1.1) yields :

kW' =—g+C, in L2(0,0), (1.6)
y Yy

h(y)=—f-,§dz+clf—‘;—z-+cz in H'(0,1). (1.7)
0 0

Due to (1.5), (1.6) the function g is continuous at y=0, y=1. Taking
(1.6), (1.7) at y=0, y=1 and replacing them into (1.3) we obtain a
linear system for C;, Co. Due to (1.4) the system is regular and provides
unique constants for (1.7). The uniqueness has been proved. To show the
existence of a solution, consider the function (2.3), where e, rr are
expressed by (2.1). (2.5). Evidently, h. = H'(0,1). The condition (1.2)
implies that g is constant in some neighbourhoods of 0 and /. Hence,
kh! is continuous in the same neighbourhoods and hx & Ug. Fulfilling

(1.1), (1.3) can be verified immediately.
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Now we introduce two functions
k, ke L>(0,1), k(y)=k(y)=a>0 a.e in (0,1), (1.8)

and define the set
¥={k |l k — measurable, k(y) <k(y)<k(y), y= (0,1)}. (1.9)
According to what has been given above we have the mapping
X=k>h.eU,c H(0,1), h* satisfies (1.1), (1.3). (1.10)
Denote the set of images by X, i.e.

K= {he |l k =X}, (1.11)
and pose the following extremum problem: for some x& (0,[) find
h(x)=suph(x), h(x)=inih(x). (1.12)
heje 3 heje

Since we have not established the boundedness of the mapping (1.10),
it is not excluded that A=o00 or h=-—o0 at some point. Nevertheless,

the boundedness of A, & follows from the theory presented in the next
section. i

2. Basic results
Let us denote by ex(x,y) the solution of -(1.1), (1.3) in case g’'=

=08(y —x), y=0. Making use of the boundary conditions we determine
the constants Cy, C; in (1.7) and reach the following analytic expressions:

((11 d—:+ﬁl)(a2f%+ﬁ2), y<<x,
ex (X, y) =rs- / - ’ = (2.1)
(o b ) (o] Ften). >
Y
l

—a%-ek(x»y)=wij)“ fk(azf‘d—;‘;-i-ﬁz) —B(y—x)], (2.2)

]
d
— [ 8@) - ex (9, 2 dz-tra| By — Brva— B2 0) — 2 (1) +
0

1
o (it Bag (0) (v — g () [ 55|, 23)
Yy
i
) =] —e i wa [ £ deta et pg ) —
0
—asty—pig(0)) ) |- (24)
]
— (wprtospitae [2=) (25)

0
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Define

Sa (X, y) = —0(y—x). (2.6)

o.—I—a

Theorem 1. Let (1.2), (1.4), (1.8) be fulfilled and let x be some
number in (0,1). If there exists k* & X such that

k*(y)=k(y) in {yll sa(x, y)h,. (y) >0},

21
B W) =F@) in {yllsa(x, 9)h,. (5) <0}, i
then
h(x)=h, (x). (2.8)
Proof. Provided ¢ & D(0,!) from (1.1) we obtain
<p(x)=fk(y)Tisk(x,y)q)’(y)dy- (29)

Let A be an arbitrary function in H'(0,/). There exists an approximate

sequence ¢, < D(0, /) so that

yh(l)+(1l—y)h(0) ||
l

,H,(OJ)—>0 as n—» oo,

¢n(y)— h(y)

Replacing ¢. into (2.9) and taking the limit we obtain

Pl xh (1) + (l—x)h(O) fk ekh’dy—
]
0 h(l)— h(0)
—ofk-—a—tj~£kdy-——-—l——————.

The formula (2.2) yields

y=0

0
b ex=—0(y— 1)+ o4

0
ay ———O(y—x)-l—kwsk it +l

Hence, we reach the equality

xh(l)

h(x)—fkTekhd +

h(l) f[—e( —x)+k-—ek -|—l]dy+ (l—);)h(o)ﬂ-
h(0 0
+—(T)—f[——(-)(y—x)+k—a—y—ek y=o]dy=
ST W
J -——-ekh dy— k—a—y—skh e (2.10)
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Replacing h,,, he into (2.10) and subtracting we obtain

k*?

(e — ) (x)—f (k—-k*)——ekh' dy+S, (2.11)

where

o [ e iy g e N Ly [T

afl Wek.( v — kR )dy— o er(h,, —he) |, _,
Since

(k*h, — kh!)" =0
we have
k', — ki —=const= (k*H),, — k()| _, = (k*h, — k)|, _,

and

S=[8k k‘h' —kh')-—k ek(hk* (2.12)

Define an operator Fr: Up— R? by the formula

Fe: = ([Brutarku’] | y=o [Bote— azku’]|y=1).

Let sl , vell Computing the following difference of scalar
products m R? we 1mmed1ate1y obtain

=l

$klu-$kzv—$klu.$kzv= (vkyu" — ukyv”) war g (2.13)

Here the coefficients a;, B: fall out because of the condition (1.4). Now
the equalities (2.12), (2.13) yield

S=%F ey (:‘;—k'hk' — Frhe) —Frer: (Frohpr — Fehe) =0.
(F eohis —Fehi) — Frer (v —y) =0 (2.14)

in consequence of what from (2.11) we obtain

* a 7
(s — ) (x) = 0f (k— k) 5~ ex;. dy. (2.15)
Define
. u-|u|=', u0,
s1gn U= 0 5lb.

It follows from (2.2), (1.4), (1.8) that
d
sign & (y) —éz_ek (x, y)=signsa(x,y) VkeX. (2.16)

Let (2.7) hold. Due to (1.8), (1.9), (2.16) the integrand in (2.15) is
nonnegative in case of any k£ & X. Hence,

(hes— he) (x) =0 VkeX,
which implies that (2.8) holds.
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Thegrem 2. Let (1.2), (1.4), (1.8) be fulfilleq and let x be some
number in (0,1). If there exists k. =X such that

ka(y) =EK(y) in {yllsa(x,y)k, (y) >0},
3 (2.17)
ke(g)=k(y) in {yllsa(x,y)h, (y) <O},
then
_ff(x)=hk (x). (2.18)

Proof. The functions ve=—h, satisfy (1.1), (1.3) with —g", —vy.
Moreover, (2.17) yields

ki=Fk if sqa-v;, <0, k.=k if sa'v; =>0.

It follows from Theorem 1 that

v, (x)=supve(x).
¢ ke X
Hence,
h(x)= inf hg (x)=—sup (—he(x)) =—sup ve(x)=—v, (x)=h, (x).
rEX reX, keX ’ )

Now we must show the existence of £*, k. in Theorems 1, 2. Define the
following sets

Qf={yll sa(x, y) (—g(y)+n) >0},

2.
@ —{y Il sa(x, y) (—€ (1) +1) <0} e
and multivalued functions
{k(y)}, y=Qt, {F@»), yeot
Kiu(y)= { {kW)}, y=Q, Koul(y)= 4 (1)}, yEQ,
[2(y), E(y)], elsewhere, l[_lg(y), E(y)], elsewhere.
O (2.20)

Also define

Kip={k |l k — measurable, k(y) €Xin(y), y= (0,1)}, i=1,2,  (2.21)

l
aits [ - dz-tan (vt Bag () — o i — 12 0))
0

pr=" . (2.22)

1
dz
a|ﬁ2+0-2[31+(11(12fT
0

Si(n)={pel kek,)}, i=1,2. (2.23)
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If there exist pi, pe2 such that

e Fi(w), pee T(p), (2.24)
then the functions &* k. satisfying
k*EJCl,U'I’ ks E'Kzuz' Pee=W1, P,,=MW2 (2.25)

realize the extremums &, h at the point y=ux. Indeed, comparing (2.4),
(2.5) with (2.22), (2.25) we see that

—g(W)+m=k" . (4), —gH) Fp=k (WK, (¥).

The inequalities (2.19) and the definitions (2.20) yleld (2.7}, (217)"in
Theorems 1, 2.

Theorem 3. Provided (1.4), (1.8) hold and g = L'(0,1) the inclu-
sions (2.24) have solutions.

Proof. First of all let us show that the sets ;(n) are connected and
compact in R!. Fix some p & (—o0, ), i=1, 2, and denote

= (0, )\(QfURQ;). (2.26)

The case E=( is trivial. The set :(p) contains only a point. Let
Es#+J. 1t follows from (2.19) that either

g(y)=n yekE ~ i (2.27)

or :
Jyo = E : sq(x, yo) =0. (2.28)

If (2.28) holds, then (2.6), (1.4) yield ajae=0. Therefore, p, is a con-

stant functional in JC,M and &;(p) contains only a point. Let (2.27) hold.

Define

dz o
Q= f—k", R={orll k= X,,}.
E

Evidently, R is a connected compact subset of R!. From (2.27) we obtain
!
0

Replacing (2.29) into (2.22) we obtain a function of the argument g.
Due to (1.4), (1.8) this function is continuous in R. Hence, the range
F:(n) is a connected compact set, i.e. it is either a closed interval or
contains only a point.

Let us establish properties of continuity and boundedness of the

multivalued functions &:(pn), —oco<<pu<<oo, i=1,2. Fix some p.E
& (—o0, o) and define

Yuly | —g (1) +r=0 V |p—p|<|—g(y)+nl}.

l
d ! dz
de= [ Larppo [Z= [ Fte @29)
9+UQ‘ 0 Q:UQ;

&g

We have

maxXu(y) <max X —(y), y< Yy

(2.30)
min'}(’i:ﬂ(y)Zmin *K"’](!/)» ye yl»"‘
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Indeed, in case —g(y)+;=0 V Sa(x,y)=0 the statement (2.30) is
trivial. If

lp—nl<|—gW)+n| & salx, y) #0,
then

[sa(x,y) (n—p) | <|sa(x,y) (—g(y)+n)|
and

Y E QL= sa(x,y) (n— 1) <Sa(x, 4) (—g (4) +1) =
= sa(%,y) (—&(y)+1) >0=>y = Qt, (2.31)

Y& Q= sa(x, y) (b —p) < —Sa(x, y) (—& (4) +n) =
=5a(x, y) (—g (W) Fp)<0=>yes Q. (2.32)
The implications (2.31), (2.32) yield (2.30) even with an equality. Let

us fix i=1,2 and choose some sequence k,e X, p—pn. Because of

(2.30) we have k. (y) E.K,‘.;(y), y < Y, Define I;,. EJO(:‘.,I so that I;u(y) =
=ku(y), y = Y, At the same time

m o ky AL
Since
meas [ (0, [)\Y,] =meas {y || —g (y) +n+#0 &
& |—g@+rI<|lp—nl|} >0 as p—>p
and
|(—,‘;’—u—-)()|\| IR
we obtain

dz+o(l) as p-—»;.

[ fam [ £

aroloq

Analogously,
] !
d d e
f—z—>f~—°—z—+o(l) as  p— .
s et B
n
Hence,

p, =p; +o(l) as p—p
[ 0
Since koue:f,i; we have T, EPE(I;) and
g ®
min 9:(p)—o(1)<p, <max$i(n)4o(l) as p—>pu.
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Recall that k, was chosen arbitrarily in Je,-,,;: Consequently, the multi-

valued functions 9;(u), i=1, 2, satisfy the following conditions of conti-
nuity:

lim max ¢ (n) <max :(p),

Ty

limmin #4(p) = min §;(n), pe (—oo, ). (2.33)
[y

Observe that the sets

{ 2 dz |ke:m} {f = Je}

are bounded. Because of (1.4), (1.8) the set §={p« | k= X} is bounded

too. Since F:(n) = 7, i=1,2, —oo<<p<< oo, the sets ¥;(n) are uniformly
bounded: there exist m,, m; & (—oo, 00) so that

Fi(n) = [m,m], i=1,2, —oo<<p<<oo. (2.34)

Let us fix some i=1,2 again. It follows from (2.34) that p<<
< min $;(n) if p is small enough and u>max Fi(pn) if p is large
enough. Hence, we can define

wi== sup {p [l p°<< min F;(n°), p'<<p}<<oo:

According to this supremum for each &>0 there exist pe so that wi<<
sp*<wi+e and e = mind; (pe). Moreover, choose some sequence p/
converging to w; from the left as j— oo. Due to (2.33)

ut = min F;(p®) = min ;(p;)—o(l) as e—0,
w<<min §;(p') < max (/) < max F;(n:;)4o(l) as j—oo. S
Taking the limits in (2.35) we obtain

min () < <max & (pi).

Since 9;(p;) is connected, w; & (i), i.e. p; is a solution of the consi-
dered inclusion. &

The posed extremum problem has been reduced to the inclusions
(2.24). In next sections we shall provide methods of finding solutions
in some particular cases of practical interest.

3. Mixed soundary conditions of the first and second kind

Let us consider the posed extremum problem when the condition of
the first kind is given at y=0 and the condition of the second kind is
given at y=I. Then

a=P=1, a=p=0, (3.1)
in the operator (1.3). From (2.6), (2.22) we obtain
Sa(%,y)=1—0(y—x)=0(x—y) a.e,
pr=g (I) +y2.=const.
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The solution of (2.24) is
m=p2=g (/) +v:
and the definition (2.19) yields
QF ={ylly<x & g()—g(y)+v:>0},

Q ={ylly<x & g()—g(y) +v<0}, i=1,2. (32)

Each function in Jé;,u , =1, 2, realize an extremum of & at y=vx, i.e.
h(x)=h, (x), ek, h@®)=h,(x), kX, . (33)

Note that the extremums do not depend on the condition of the first kind
yi. Moreover, since QI UQ; = (0, x), the functions k;, R in (3.3) can

be chosen arbitrarily in the subinterval (x, /). For instance, we can extend
the functions K; from Qt U Q; into

{ylly>x & g(l)—g(y) +v27#0}
so that
k(y), g(1)—g(y) +v2>0,
k*(y) =ki(y) =4k (y), g(1)— g (y)+v=<0, (3.4)
k°(y), elsewhere,

k(y), g(1)—g(y)+v>0,
ke (y) =ke(y) = k(y), g()— &) +v.<0, (3.5)
ko(y), elsewhere,

with arbitrary k°, ko X. This particular case is very imPortant b'ecause
the functions (3.4), (3.5) are independent of x. Hence, k*, k. realize the
extremums at any point x< (0,1), i.e.

R(x)=h, (x), h(x)=h, (), Vx&(0)).

4. Boundary conditions of the first kind

Now we shall discuss the posed problem when the condition of the
first kind is given at both bounds y=0, [. In (1.3) we have

a=0=1, PBr=p=0, (4.1)

and hence,

Sa (%, y)=—;——9(y—x), (4.2)

!

g
f—dz‘l“\’?—"\h
. k

P 7
rdz
k

0
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In comparison with the case analyzed in Section 3, the problem with
conditions of the first kind is much more complicated. Nevertheless, this
problem is essentially simplified if we restrict the class of considered
functions of sources g’. Our studies will be carried out in three subcases
of practical interest.

4.1. Weak sources. Let the inequality
l

l/g(z)—g(y)‘dz <|lve—vi|, ae ye(0,1), Veek, (4.3)
3 k(2)

be fulfilled. For instance, g’ =0. The condition (4.3) implies that either

1 ,
fwdz>yl—yg, a.e. y=(0,1), VkeX, (4.4)
0

k(2)
or
L
M'dzgyl—yg, a.e. ye(0,l), Yekek. (45)
0 k(z)
It follows from (2.4), (4.1) that (4.4), (4.5) are equivalent to
h(y)=0 a.e ye(0,l), VREX, (4.6)
h, (y)<0, a.e. y(0,1), vk e X, (4.7)
respectively. Due to (4.2) and Theorems 1, 2 the functions
k(y), y<x, {I'c(y), y<x,
Py P {t 5 Uy 18
1 k(y), y=>x, 3 k(y), y>x, i

realize the extremums &, E atg=x,1.e.
h(x)‘=hkl (%), _l_t(x)=hk‘__ (x), if (4.6) holds,
h(x)=h, (x), h(x)=h, (x), i (4.6) holds.

The physical nature of the inequality (4.3) can be explained in the
following manner. A direction of flow corresponds to a direction of
decreasing the piezometric head. When the flow is free of sources
(g’=0), then the boundary conditions create a summary decrease of
the head in the interval and the direction of the flow corresponds to this
decrease at any point of the interval (to the right if y,>w,, to the left if
yi1<<y2). In case g’=0 the inequalities (4.6), (4.7) mean that the sources
are too weak to change the direction of free flow wherever in (0, /).

4.2. Reflux. Let the function g be monotonically decreasing:
g)=gly), O<z<y<l (4.9)

Fix an arbitrary ¢ & D (0, [), ¢==0. Making use of the second law of mean
we obtain

l l l
g’ w>=—0f 8¢’ dy=—0f (gy)—e))y dy—ofg(l)fp’ dy=

=—[eO—2g0]-f¢ dy—g () 0=—[2(0)—&()]-¢() <O,
te= [0, 1].
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Thus, the monotony (4.9) implies that g’ is «nonpositive», i.e. only
sources of reflux are located in (0,!). We shall show that %&*, k. can be
chosen by cutting (0, /) into three parts and setting k* k. equal to k or
k in each subinterval.

Let s be some point in [0, /]. Define
ms=min {x, s}, Ms=max {x, s}, (4.10)

I k, ms<y<Ms,

k! (y)=
E 0<<y<<ms \V/ Ms<<y<l,
4.11
IE' ms<y<Ms, ( )
k2 (y)=
lf, 0<y<msV Ms<y<l.
Consider the functions
]
2)—g(s |
ri(s)= ;/-—g—(——l)ai(—zg)'(—)dz—{—\’z—'w, i=1{.2 (412)
s

It is easy to become convinced of the fact that r;, i=1, 2,.are monotoni-
cally increasing in [0, []. Therefore, there exist s; & [0, (], i=1,2, so that

ri(s)<<0 if s<<si, ri(s)=0 if s>si (4.13)

We have determined certain points s;, i=1,2, in the interval [0,!].
It appears that the corresponding coefficients

=kt p=h,

defined on the basis of (4.10), (4.11) realize the extremums &, h at
Yy=x, i.e.
R(x)=hw, (x), h(x)=he (x). (4.14)

Let us prove this statement. The formula (2.4) yields

f dzt+vs—mi
k(y)h, (y) =—g (y) +—— . (4.15)

d
e

a:-lvq

and due to (4.12)

B ) =—e ) +eO+—C ) ye 0. (416)

d
|-

i
0 s

The functions
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are continuous in [0, /]. Therefore, there exists

lim & (y) hs (y) =k (y)h'f ¥, ye=I0,1]. (4.17)
It follows from (4.16), (4.9), (4.13), (4.17) that
kL (y)h’« (y)= lim k! (y)h’ (y) <0 if y<s,, (4.18)
s—+s,—0
kL (y)h’ (y)= lim k! (y)h’ (y)<0 if y>s.. (4.19)
§—>s,;+0

Considering (4.18), (4.19), (4.2), (4.10), (4.11) we see that k*=k' ,
k.=Fk? satisfy Theorems 1, 2. Consequently, (4.14) holds.
Since r; is monotonically increasing, there are three possibilities:

1° ri(s) =0, s=|[0,1],
2° ri(s) <0, s=[0,1],
3 ri(0)<<0, ri(l)>0.
In cases 1°,2° we can take s;=0, s;=1, respectively. Then the function
k:‘ is of the type (4.8). When 3° holds then the point s; can easily be

computed by means of the method of bisection.

The theory developed in this section can easily be extended to the case
of influx:

gr)<g(y), O<z<y<l
Then we have

h(x) = max hx (x) =—min [—he(x)],
rex kxR

E(x) = min A (x) =—max [—he(x)]. (4.20)

ke X, ke X,
Since
—[k(—he)']"=g’

and —g satisfies (4.9), the extremums on the right hand of (4.20) can be
found by means of the method presented above.

4.3. Singular point sources. Let
g’=2;ai6(y—y;), <) <yp< ... <yn<l (4.21)
=

The points x, y; cut the interval (0,[/) into some subintervals. We shall
show that k* k. can be chosen among the functions which are equal to
k or k in each subinterval.

The formula (4.21) implies that

g)=3aby—y). >
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Define

bl=lélal. i=1, «eey n, bo=0, yo=0, Ynrr==l,

l 1
b+|=[B[E%)—J—dz+lv2—v||]-[!—%—]_l. (4.23)
The function g is piecewise constant:
gy)=b; y<y<yiy, j=0,...,n. (4.24)
Let us rearrange the vector (0, 1, ..., n+41) so that b; grow in a new

ordering, i.e. introduce

in€A0, .../ k1), m=0,1; ..., mdl,

such that
jm. ¢jm;’ m|¢m2,
b/ >b1 o m=0, ..., n—1, ) (4.25)
jarr=n+41,
Denote
d,=bl, r=0, .., n+1,
Y= (yi,’ yi,+l)-’ r=0, ..., n.
Define the sets
u,= U Y, Ut= U Y, m=0,...,n,
osr<m m<r<n
“ad (4.26)
n+l =(0,0), (/ﬁ+4' <,
and the functions &! , k2 , m=0, .:., n+1:
k, (y)=k, £ (9)=Fk it y=[U; N0,x)]UULN (D]

B (y)=Fk kK (y)=Fk it y=[ULN 00UV, NED)] .(4.27)

Consider the quantities

fg(z)‘ ™ dzdya—yi, m=0, ..., n+l, i=12 (4.28)

Since
kinﬂ (y)1=kfn (y), ye=(0,)\dYn, m=0,...,n,
we obtain
s dr_dm+l dr‘_"dm ] B
hd o= f[ ki gl . —
r=0 l" m+1 m
!
= (dm—dm+1)* f.iz gie=l 0, B = (4.29)
0 km+l
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Due to (4.25), (4.23)

r‘;n+l—r‘m <0,  .m=0,...,n—1, « i=1,2, r':l+1<0, ds=1.2.
Consequently, there exist m; = {0, ..., n+1}, i=1, 2, such that
rt =0 if m<m;, r <0 if m>=m,. (4.30)

As a result of presented discussions we have determined certain para-
meters m;, i=1,2, and the functions kin., i=1,2, in (4.27). It appears

that these functions realize the extremums %k, h at y==x. Indeed, taking
into consideration (4.15), (4.28) we obtain

ri
k"'n‘ (y)h’k:“ (y) =—d+dm +— , iy Y, . PE=0.l..,n - (431)
' dz
s &
and due to (4.29)
rt '
m;—1 .
K ()W, (y) =—drt+dm 14— , ye¥, r=0,.:.,n" (439)
theary 4 ot
2 ko,

i

The inequalities (4.30), (4.25) and (4.31), (4.32) yield
B,k (9)<0, ye¥, r=m i 0<Smi<n,  (433)

and

k() (9)=0, yeY, r<m if 0<m<ntl. (434)
i ml

It follows from (4.33), (4.34), (4.26), (4.27), (4.2) that k*=Fk! satisfy
Theorem 1 and k,.=k'fnz satisfy Theorem 2, i.e.

R)=hy (x), h(x)=hs (2).

Example. Let a point source be located in (0,/), and let maximal
and minimal values of the piezometric head be found at this point. Thus,
the absolute term in (1.1) will be

g'=a-d(y—x)

and h, h will be determined at the singular point y==x. The collection
(4.27) contains only four different functions. They are &, £ and

]_k, yE (x1),

ll?, ye (x,1),
%l(y)=l

%2(y) =
|

kE, ye (0,x), f ye (0,.x).
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Define

dz
PI==" N

-

can be found in the following Table.

hx)=h, (x)

X 1 L
QLT " g s dz o dz
’ p2 6[ E ) :’3 ;‘/. E ) P4 [ E .

Evidently, pi<<p:<<ps<<ps. The coefficients realizing
h(x)=h,, (¥),

t=—Y'I—E|£ signa B ke
+ ; R %2
t>py
e A2 1
o _}E Ao
P3<t<<pa
L %o .’E
- k k
pa<t<<ps
- k k
+ _’f %1
PI<<t<p:
e b % f
2 %2 %1
t<<p:
x i %1 )
REFERENCES

N

Janno, J. Eesti TA Toim. Fiiiis. Matem., 1991, 40, 4, 258—265.
Kunish, K., White. L, W. SIAM J. Contr. Opt., 1987, 25, 2, 279—297.
Tai, X. C. Parallel computing with splitting-up methods and the distributed para-

meter identification problems, Jyvdskyld, University of Jyviskyld, 1991.
Richter, G. R. SIAM J. Appl. Math., 1981, 41, 2, 210—221.

Received
December 24, 1991

197



Jaan JANNO

EKSTREMAALSETE PIESOMEETRILISTE SURUKORGUSTE MAARAMISEST
UHEDIMENSIOONILISES FILTRATSIOONIMUDELIS

On uuritud piesomeetriliste surukorguste hulga ekstreemumite leidmise iilesannet iihe-
dimensioonilises filtratsioonimudelis eeldusel, et vastav filtratsioonikordaja varieerub ette-
antud piirides. On tuletatud piisavad tingimused ekstreemumite jaoks ja tGestatud ole-
masoluteoreem. On esitatud meetodid antud iilesande lahendamiseks moningatel praktika
seisukohalt huvipakkuvatel erijuhtudel.

Han IHHO

OB ONMPEAEJNIEHHHA 3KCTPEMAJIbHBIX NMbE3OMETPHYECKHX HAMNOPOB
B OJJHOMEPHOH MOJEJH ®HJIbTPALLUH

HcenenoBana 3anaua onpejeseHusi 5KCTPEMYMOB MHOXECTBA TNbe30MeTPHYECKHX Ha-
NOPOB B OJHOMEPHONH Mo/JenH (HAbTPALHH B NPEANOJOXKEeHHH, YTO COOTBETCTBYIOUIHE KO3(-
(uuHenTH (UABTPAIHH H3MEHSIOTCS B 3aJaHHbIX npejenax. IToayuyeHbl nOCTaTOYHBIE YCJO-
BHS JUIS SKCTPEMYMOB M JOKasaHa Teopema cyulecTBoBaHHfA. Ilpeasoxkenbl MeToas s
pellieHHs TOCTaBJIEHHON 3a/layd B HEKOTOPbIX YaCTHBIX cJydYasX, NPeACTaBJsIOIHX Npak-
THYECKHH HHTepec.
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