Изв. АН Эстонии. Физ. Матем., 1991, 40, № 3, 221—227 https://doi.org/10.3176/phys.math.1991.3.10

УДК 535.33/34:621.373.8

Станислав БОНДАРЕВ*, Сергей БАЧИЛО*, Сергей ТИХОМИРОВ*

ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ НИЖНЕГО СИНГЛЕТНО-ВОЗБУЖДЕННОГО СОСТОЯНИЯ В РЕТИНОИДАХ, ДИФЕНИЛПОЛИЕНАХ И *β*-КАРОТИНЕ

(Представил К. К. Ребане)

Исследованы спектральные, поляризационные и временные характеристики нижнего синглетно-возбужденного S_1 -состояния в ретиноидах, дифенилполиенах и β -каротине. Показано, что в исследованных полиенах состояние S_1 характеризуется четной симметрией. Обнаруженная при 77 и 4,2 К в β -каротине чрезвычайно слабая флуоресценция с квантовым выходом $\leq 10^{-4}$ и временем жизни $\leq 10^{-13}$ с происходит из S_2 -состояния, а время жизни состояния S_1 составляет 10^{-11} с в жидких растворах и полиеных матрицах при 293 и 173 К. Смещения спектров поглощения $S_2 \leftarrow S_0$ и $S_n \leftarrow S_1$ β -каротина и дифенилполиенов в разных растворителях обусловлены универсальными межмолекулярными взаимодействиями. Для Шиффова основания ретиналя реализуются специфические взаимодействия с протонсодержащими растворителями, приводящие к переносу протона от этанола к ретиноиду в возбужденном состоянии.

Ретиноиды и каротиноиды являются биологически важными полиеновыми соединениями, которые участвуют в процессах зрения человека и животных, фотосинтеза в растениях и бактериях [^{1, 2}]. Синтетические дифенилполиены используются в качестве сцинтилляторов [³] и флуоресцентных мембранных зондов [⁴]. Важнейшую роль в данных фотофизических, фотохимических и фотобиологических процессах играют нижние возбужденные состояния S_1 . Симметрия полиеновых молекул обычно рассматривается в приближении линейных полиенов, имеющих центр инверсии (точечная группа C_{2h}). В ряде теоретических [^{5, 6}] и экспериментальных [^{1, 7–9}] работ показано, что для полиеновых молекул с числом двойных связей N > 2 нижним возбужденным синглетным состоянием является четное состояние ${}^{1}_{g}$. Основное состояние S_0 также четное (${}^{1}A_{g}^{-}$), и однофотонный переход $S_1 \leftrightarrow S_0$ запрещен по симметрии.

Интенсивное однофотонное поглощение в полиенах осуществляется в результате перехода из основного состояния S_0 в нечетное состояние ${}^{1}B_{u}^{+*}$, которое для молекул с N > 2 располагается выше S_1 на несколько тысяч см⁻¹ [^{1, 8}]. Разрешенное двухфотонное поглощение ретиноидов и дифенилполиенов исследовалось в [^{1, 10}]. Переход $S_1 \leftrightarrow S_0$ также проявлялся в случае однофотонного возбуждения для дифенилполиенов в матрицах Шпольского при 4,2 К [⁸]. Квазилинейчатые спектры Шпольского для дифенилполиенов до настоящего времени не зарегистрированы из-за значительного неоднородного [¹¹] и однородного [¹²] уширения, обусловленного структурными особенностями этих соединений. Нижнее синглетное возбужденное состояние $S_1({}^{4}A_{g}^{-*})$ в β -каротине и родственных ему соединениях β -каротиноидах было обнаружено методами пикосекундного лазерного фотолиза [¹³] и резонансного комбинационного рассеяния [¹⁴].

В настоящей работе продолжено изучение методами лазерной спектроскопии природы нижнего S₁-состояния в полиеновых соединениях. Ее осо-

^{*} Институт физики АН БССР. 220602 Минск, Ленинский пр. 70. БССР.

бенностями являются спектрально-поляризационные исследования внутримолекулярных переходов S₂ - S₁ и S_n - S₁ и межмолекулярных универсальных и специфических взаимодействий с участием S₁ в дифенилполиенах, ретиноидах и β-каротине.

Подробное описание методик измерений поляризационных и временных характеристик электронно-возбужденных состояний полиенов дано в [^{15–17}]. Чистота соединений контролировалась спектральными и хроматографическими методами. Их химические структуры соответствовали полностью транс-изомерам. Для краткости будем опускать это обозначение в названиях соединений.

Рис. 1. Спектры флуоресценции $S_1 \rightarrow S_0$ (2) и поглощений $S_2 \leftarrow S_0$ и $S_2 \leftarrow S_1$ (3—5) ретинилацетата (1—3), ДФО (4) и ДФГ (5) в *н*-гексане при 293 К.

Для ретиноидов характерно значительное уширение спектров поглощения и флуоресценции (рис. 1). Поэтому для локализации четных состояний в ретиноидах целесообразно использовать двухфотонную спектроскопию. Нами был использован метод двухфотонного возбуждения люминесценции и были определены такие важные характеристики двухфотонного поглощения, как сечение двухфотонного поглощения δ , поляризационное отношение Ω (отношение сечений двухфотонного поглощения света круговой и линейной поляризаций), а также степени поляризации флуоресценции при двухфотонном (P_2) и однофотонном (P_1) возбуждениях [¹⁵]. Люминесценция возбуждалась первой гармоникой рубинового лазера ($\lambda = 694$ нм) с интенсивностью импульса возбуждения $F \sim 1.5 \cdot 10^{26}$ фот · с⁻¹ · см⁻² и длительностью 30 нс.

Таблица 1

	Ретинилацетат			Ретиналь
	н-гексан	эпип	ЭПИП	Этанол
	293 K	293 K	77 K	293 K
Сечение б	[13] в резонат	ного фотолиза		
×10-50 см4.с.	26 ± 6	29±9	.["]_BHHR90	27±7
ϕ от · молек · Ω	$0,70\pm0,04$	$0,73 \pm 0,04$	$0,71 \pm 0,06$ 0.60 ± 0.03	$0,70\pm0,05$

Характеристики двухфотонного поглощения ретинилацетата и ретиналя на длине волны 694 нм

Как видно из табл. 1, значения δ и Ω для ретинилацетата и ретиналя совпадают, несмотря на различные положения максимумов полос поглощения этих соединений (Amax = 325 нм и 385 нм) по отношению к двойной частоте возбуждения (λ =347 нм). Измеренные нами значения δ для ретинилацетата в *н*-гексане и ЭПИП (петролейный эфир+диэтиловый эфир-изопропанол в соотношении 5:5:2) при 293 К находятся в хорошем соответствии с δ для ретинола при 77 К и λ_{возб.}=704 нм [1]. Значение б для ретиналя не согласуется с теоретическими расчетами работы [8], согласно которой должно отсутствовать электронное состояние с энергией около 3, 5 эВ, обеспечивающее δ>10⁻⁴⁹ см⁴ · с · фот⁻¹× × молек-1. Полученное нами значение 8 может быть связано с наличием некоторого электронного состояния ¹Аg-типа, не учтенного в [¹⁸], либо может быть обусловлено большим сечением двухфотонного поглощения в состояние ${}^{1}B_{u}^{-*}$ (S₃), расположенное несколько выше S₂. Расчет величины $\delta = 3 \cdot 10^{-50} \text{ см}^4 \cdot \text{с} \cdot \phi \text{от}^{-1} \cdot \text{молек}^{-1}$ для перехода в $S_3[^{18}]$ нельзя считать достаточно достоверным, так как расчетная сила осциллятора однофотонного поглощения в это состояние [18] отличается от экспериментальных данных [19] более чем на два порядка. В случае ретинилацетата исследованное нами двухфотонное поглощение происходит главным образом в состояние S₁.

Значения степени поляризации люминесценции при двухфотонном (P_2) и однофотонном (P_1) возбуждениях (табл. 1) с учетом одного промежуточного состояния ${}^{1}B_{u}^{+*}(S_2)$ в двухфотонных переходах позволяют рассчитать угол между осцилляторами переходов $S_1 \leftrightarrow S_0$, и $S_2 \leftrightarrow S_0$, который для ретинилацетата оказался близок к 15°. Осцилляторы переходов $S_2 \leftrightarrow S_0$ и $S_2 \leftrightarrow S_1$ при этом практически сонаправлены. Небольшая величина угла между осцилляторами переходов $S_1 \leftrightarrow S_0$, и $S_2 \leftrightarrow S_0$ подтверждается результатами [¹⁹] по дихроизму поглощения в монокристаллах ретиналя и его изомеров.

Нечетное состояние S_2 (${}^{1}B_u^{+*}$) в ретиноидах и дифенилполиенах с N > 2 расположено выше состояния S_1 , и энергетический зазор $\Delta E(S_1 - S_2)$ изменяется в диапазоне 1000—4000 см⁻¹ [^{7, 19}]. Оптический переход $S_2 \leftarrow S_1$ разрешен по симметрии и создаваемое им поглощение должно располагаться в ближней ИК-области. Для обнаружения и исследования спектрально-поляризационных характеристик этого перехода и переходов в более высокие возбужденные электронные состояния в ретинилацетате, альдимине ретиналя (Шиффово основание ретиналя) и дифенилолиенах 1,8-дифенилоктатетраене (ДФО), 1,6-дифенилгексатриене (ДФГ) и 1,4-дифенилбутадиене (ДФБ) нами была использована методика прямой регистрации поглощения света молекулами в состоянии S_1 [^{16, 20}]. Возбуждение в состояние S_1 проводилось второй гармоникой рубинового лазера (347 нм) с длительностью импульса около 25 нс, а для зондирования использовалась импульсная газоразрядная лампа.

Спектр наведенного поглощения из S_1 -состояния ретинилацетата (рис. 1, кривая 3) имеет широкий максимум при 1,5 мкм. Для ДФО был зарегистрирован коротковолновый вибронный максимум спектра поглощения $S_n \leftarrow S_1$ (кривая 4), у ДФГ зарегистрирован только край ИК-полосы поглощения (кривая 5), а в случае ДФБ соответствующее ИК-поглощение вообще отсутствовало. Регистрация при $\lambda > 1,66$ мкм была невозможна из-за поглощения растворителей и резкого падения чувствительности фотоприемника в этой области. Оценки максимального коэффициента экстинкции (~1000 моль $dm^{-3} \cdot cm^{-1}$), силы осциллятора (~0,05) и дипольного момента перехода (~ $10 \cdot c^{-29}$ Кл·м) для полосы поглощения ретинилацетата в *н*-гексане при 293 К с $\lambda_{max} = 1,5$ мкм позволили отнести его к разрешенному $\pi - \pi^*$ -переходу. Грубая оценка частоты 0—0-перехода для этой полосы дает 3 000±1 000 см⁻¹. Дихроизм наведенного поглощения для данного перехода совпадает со степенью

Таблица 2

Батохромный сдвиг максимумов спектров S₂ ← S₀ и S₂ ← S₁ в ДФО при изменении показателя преломления растворителя и температуры относительно максимумов в *н*-гексане при 293 К.

Растворитель,	ΔE , cm	ΔE , см ⁻¹		
температура	S₂←S₀	$S_2 \leftarrow S_1$		
Толуол, 293 К	560 ± 25	570 ± 60		
Гексан+толуол (1:1), 293 К	280 ± 25	320 ± 60		
<i>н</i> -гексан, 236 К	280±25 ≤	210±60		
Диэтиловый эфир, 208 К	480±25	450±60		

поляризации люминесценции $S_1 \rightarrow S_0$ при одинаковых условиях регистрации [¹⁶]. Так как результаты двухфотонной спектроскопии указывают на наличие нижнего четного S_1 -состояния, то наблюдавшееся поглощение обусловлено переходом между близколежащими синглетными возбужденными состояниями различной четности, т. е. между S_1 и S_2 . Аналогичный вывод можно сделать относительно переходов из S_1 в ДФО и ДФГ [²⁰]. Переход $S_2 \leftarrow S_1$ аналогичен переходу $S_2 \leftarrow S_0$. Изменение температуры и/или растворителя вызывает одинаковые смещения данных полос поглощения (табл. 2). Данное совпадение объясняется существованием зависимости энергии состояния S_2 (относительно основного состояния S_0) от условий окружения и отсутствием такой зависимости $S_2 \leftarrow S_0$ и «неподвижности» спектров флуоресценции $S_1 \rightarrow S_0$.

При увеличении длины полиеновой цепи, т. е. переходя от дифенилполиенов и ретиноидов к β-каротину, спектры поглощения полиенов испытывают батохромное смещение, а флуоресценция становится крайне слабой, и ее регистрация затруднена даже при 77 и 4,2 К. Нами была зарегистрирована флуоресценция β-каротина и определены ее квантовые выходы в изопентане при 77 и 4,2 К при стационарном возбуждении. Зеркальная симметрия спектра флуоресценции спектру поглощения

 $S_2 \leftarrow S_0$ и очень малый для полиенов стоксов сдвиг (рис. 2) позволяют связать данное испускание с переходом $S_2 \rightarrow S_0$. Времена жизни состояния S_2 , оцененные из квантовых выходов флуоресцении $(4\pm 2) \cdot 10^{-5}$ при 77 К и $(8\pm 3) \cdot 10^{-5}$ при 4,2 К и естественной длительности флуоресценции 10^{-9} с, составили $(4\pm 2) \cdot 10^{-13}$ с и $(8\pm 3) \cdot 10^{-13}$ с при 77 и 4,2 К [²¹]. Чрезвычайно короткое время жизни состояния S_2 обусловлено эффективной безызлучательной конверсией в близкорасположенное состояние S_1 .

Методом пикосекундного лазерного фотолиза нами [17, 22] было исследовано поглощение из состояния S_1 β -каротина в ряде растворителей и полимерных пленках при 293 и 173 К. Изображенные на рис. 2 спектры $S_n \leftarrow S_1$ -поглощения (кривые 3, 4) претерпевают батохромное смещение при переходе от растворителей с малым коэффициентом преломления n (*н*-гексан, n=1,375) к растворителям с большими n (1,498—толуол и 1,623 — хинолин). Такое смещение спектров может быть обусловлено универсальными межмолекулярными взаимодействиями растворенных молекул с молекулами растворителя. Время жизни S_1 -состояния β -каротина в толуоле, *н*-гексане, хинолине и вазелиновом масле при 293 К составило 10 ± 2 пс. Оно не менялось также при внедрении β -каротина в полимерную матрицу поливинилбутираля и понижении температуры раствора до 173 К. Такая независимость времени позволяет предполагать, что скорость внутренней конверсии β -каротина из состояния S_1 in vivo также составляет величину 10^{11} с⁻¹.

Максимальный коэффициент экстинции $S_n \leftarrow S_1$ -поглощения, по нашим оценкам, был не менее половины максимального коэффициента поглощения из основного состояния. Поэтому переход $S_n \leftarrow S_1$ должен быть разрешен, п он происходит между состояниями разной четности. Полагая, что S_1 -состояние четное, S_n -состояние должно быть нечетным. Скорее всего конечным состоянием S_n в переходе $S_n \leftarrow S_1$ будет то состояние, которсе можно наблюдать и в переходе $S_n \leftarrow S_1$ будет то состояние, которсе можно наблюдать и в переходе $S_n \leftarrow S_1$ будет то состояния. Максимум спектра коротковолнового $S_n \leftarrow S_0$ -поглощения β -каротина расположен при 275 нм (36 500 см⁻¹, рис. 2). Отметим, что интенсивный переход $S_n \leftarrow S_1$ в β -каротине аналогичен $S_n \leftarrow S_1$ -переходу в дифенилполиенах, для которых соответствующее состояние S_n также, вероятно, проявляется во второй по интенсивности полосе поглощения из основного состояния. Частотный промежуток между максимумами $S_n \leftarrow S_1$ и $S_n \leftarrow S_0$ спектров составляет для β -каротина в гексане около 18 500 см⁻¹,

что должно быть близко к энергии S₁-состояния. В то же время самый длинноволновый максимум в спектре S₂ ← S₀-поглощения располагается при 20 800 см $^{-1}$, что представляет оценку энергии S_2 -состояния. Отсюда видно, что состояние S_1 располагается на несколько тысяч см⁻¹ ниже, чем обусловливающее поглощение состояние S_2 (${}^{1}B_{+}^{+*}$).

Если для молекул β-каротина и дифенилполиенов, не имеющих В своем составе гетероатомов, характерны в основном универсальные межмолекулярные взаимодействия с растворителем, то для ретиноидов, в состав которых входят атомы кислорода и азота, возможны специфические взаимодействия с молекулами растворителей. Особенно наглядно это проявляется в случае образования водородной связи ретиноида со спиртами. Наши пикосекундные исследования н-бутиламинового Шиффова основания (альдимина) ретиналя при комнатной температуре показали значительное смещение спектров S_n - S₁-поглощения при переходе от н-гексана к этанолу. Как видно на рис. 3, спектр поглощения $S_2 \leftarrow S_0$ в этаноле батохромно сдвигается по отношению к спектру в *н*-гексане на 20 нм, а для спектров S_n ← S₁-поглощения это смещение достигает 115 нм. Длительности распада поглощения Sn - S1 составили 30 ± 5 пс в *н*-гексане и 40 ± 5 пс в этаноле, а $\lambda_{max} - 460$ и 575 нм соответственно. Спектр наведенного поглощения $S_n \leftarrow S_1$ альдимина ретиналя в *н*-гексане с λ_{max} = 465 нм при 290 К был ранее зарегистрирован в [²³], а время распада данного поглощения составляло 21±5 пс.

Известно, что альдимин ретиналя в основном состоянии образует водородные связи с этанолом [²⁴]. На это указывают батохромное смещение спектра поглощения в этаноле (рис. 3) и полное исчезновение в нем колебательной структуры, слабо выраженной в спектре в *н*-гексане. Факт значительно большего смещения спектров S_n - S₁-поглощения при переходе от н-гексана к этанолу может быть связан с усилением протоноакцепторных свойств молекулы ретиноида в состоянии S1, которое должно сопровождаться значительным смещением электронной плотности при возбуждении в S₁. Действительно, в [²⁵] отмечалось сильное смещение отрицательного заряда к атому азота альдимина ретиналя в состоянии S₁, и дипольный момент S₁-состояния в результате этого увеличивался на 10 Д по отношению к основному состоянию.

Чтобы оценить степень переноса протона от молекулы этанола молекуле альдимина ретиналя в S₁-состоянии, мы зарегистрировали спектр S_n - S₁-поглощения альдимина ретиналя, протонированного парами трифторуксусной кислоты. Спектр поглощения $S_n \leftarrow S_1$ протонированного альдимина ретиналя совпал по положению и ширине со спектром альдимина ретиналя в этаноле (рис. 3), что позволяет сделать вывод о практически полном переносе протона при возбуждении альдимина ретиналя в комплексе с этанолом.

ЛИТЕРАТУРА

- Birge, R. R. Biochim. Biophys. Acta, 1990, 1016, 293-327.
 Sieferman-Harms, D. Biochim. Biophys. Acta, 1985, 811, 325-340.
 Koski, W. S., Thomas, C. O. J. Chem. Phys., 1951, 19, 10, 1286-1290.
 Lakowich, J. R. Principles of Fluorescence Spectroscopy. New York, Plenum Press, 1983.

- 5. Schulten, K., Karplus, M. Chem. Phys. Lett., 1982, 14, 3, 305-309.
 6. Birge, R. R., Hubbard, L. M. J. Amer. Chem. Soc., 1980, 102, 7, 2195-2209.
 7. Hudson, B. S., Kohler, B. E. J. Chem. Phys., 1973, 59, 5, 4984-5002.
 8. Никитина А. Н., Тер-Саркисян Г. С., Михайлов Б. Н., Минченкова Л. Е. Опт. и спектр., 1963, 14, 5, 655-663.
 9. Непорент Б. С. Изв. АН СССР. Сер. физическая, 1984, 48, 3, 453-461.
 10. Holtom, G. R., Bocian, W. M. Chem. Phys. Lett., 1976, 44, 3, 436-439.
 11. Birge, R. R., Bocian, D. F., Hubbard, L. M. J. Amer. Chem. Soc., 1982, 104, 5, 1196-1207

- 1196 1207.

- 12. Myers, A. B., Trulson, M. O., Pardoen, J. A., Heerremaps, C., Lugtenburg, J., Mathies, R. A. J. Chem. Phys., 1986, 84, 2, 633—640.
 Wasielewski, M. R., Kispert, L. D. Chem. Phys. Lett., 1986, 128, 3, 238—243.
 Thrash, R. J., Fang, H. L. B., Leroi, G. E. J. Chem. Phys., 1977, 67, 12, 5930—5933.
 Бачило С. М., Бондарев С. Л. Ж. прикл. спектр., 1986, 45, 4, 623—629.

- Бачило С. М., Бондарев С. Л. Ж. прикл. спектр., 1986, 45, 4, 623—629.
 Бачило С. М., Бондарев С. Л. Опт. и спектр., 1987, 62, 3, 532—537.
 Bondarev, S. L., Bachilo, S. M., Dvornikov, S. S., Tikhomirov, S. A. Photochem. Photobiol., 1989, 46, 3, 315—322.
 Birge, R. R., Pierce, B. M. J. Chem. Phys., 1979, 70, 1, 165—178.
 Dricos, J., Ruppel, H. Photochem. Photobiol., 1984, 40, 1, 93—104.
 Бачило С. М., Бондарев С. Л. Опт. и спектр., 1988, 65, 2, 295—300.
 Бондарев С. Л., Бачило С. М., Дворников С. С. Опт. и спектр., 1988, 64, 2, 448— 450

- 450.
- 22. Бачило С. М., Бондарев С. Л., Тихомиров С. А. Ж. прикл. спектр., 1989, 50, 3, 426-430.
- Everaert, J., Rentzepis, P. M. Photochem. Photobiol., 1982, 36, 5, 543-550.
 Das, P. K., Kogan, G., Becker, R. S. Photochem. Photobiol., 1979, 30, 6, 689-695.
 Mathies, R., Stryer, L. Proc. Natl. Ac. Sci. USA, 1976, 73, 7, 2169-2173.

Поступила в редакцию 12/II 1991

Stanislav BONDAREV, Sergei BATŠILO, Sergei TIHHOMIROV

ESIMESE ERGASTATUD SINGLETTOLEKU LASERSPEKTROSKOOPIA RETINOIDIDES, DIFENÜÜLPOLÜEENIDES JA B-KAROTIINIS

On uuritud madalaima ergastatud singlettseisundi S_1 spektraal-, polarisatsiooni- ja ajakarakteristikuid retinoidides, difenüülpolüeenides ja β-karotiinis ning näidatud, et uuritud polüeenides on S_1 -seisund paarisseisund. On leitud, et temperatuuril 77 ja 4,2 K lähtub β -karotiini S_2 -seisundist ülinõrk fluorestsents kvantsaagisega $<10^{-4}$ ja elueaga lahtub p-karotinii S₂-seisundist unnork nuorestsents kvantsaagisega $< 10^{-13}$ s. β-karotinii S₁-seisundi eluiga vedellahustes ja polümeermaatriksites tempe-ratuuril 293 ja 173 K on 10^{-11} s. $S_2 \leftarrow S_0$ ja $S_n \leftarrow S_0$ üleminekutega seotud neeldumis-spektrite nihked erinevates lahustites on β-karotiini ja difenüülpolüeenide korral põhjus-tatud universaalsetest vastastikmõjudest molekulide vahel. Retinaali Schiffi aluse kor-ral realiseerub spetsiifiline vastastikmõju protoonse lahustiga, mis põhjustab prootoni ülekande etanoolilt retinoidile viimase ergastatud seisundis.

Stanislav BONDAREV, Sergei BACHILO, and Sergei TIKHOMIROV

LASER SPECTROSCOPY OF THE LOW-LYING EXCITED SINGLET STATE IN RETINOIDS, DIPHENYLPOLYENES, AND B-KAROTENE

Using the methods of nanosecond and picosecond laser spectroscopy, spectral, polarization and temporal characteristics of the lowest singlet-excited state S_1 have been studied in a vision chromophore retinal, natural pigment β -carotene, diphenylpolyenes (1,4-diphenylbutadiene, 1,6-diphenylhexatriene and 1,8-diphenyloctatriene), and their analogues. Based on the spectral-polarization characteristics of two-photon-excited luminescence of retinal and retinyl acetate and of transient $S_n \leftarrow S_1$ absorption in retinoids and diphenylpolyenes, it is concluded that the lowest S_1 state is even $({}^{1}A^{-*})$

in character in the investigated polyenes.

We have registered fluorescence of β -carotene occurring from an odd $S_2(^{1}B^{+*})$

state in isopentane at 4.2 K and 77 K, and $S_n \leftarrow S_1$ absorption in different solvents. The very short lifetime of the S_2 state ($\leq 10^{-13}$ s) and extremely low fluorescence quantum yield from the latter ($\leq 10^{-4}$) are due to the effective internal conversion to the lower S_1 state, whose lifetime is 10^{-11} s in liquid solutions and polymer matrices at 293 K and 173 K. The $S_n \leftarrow S_1$ absorption in β -carotene is caused by the transition from the lowest excited singlet state $S_1(A^{*})$ to the higher excited state S_n that is also present

in the $S_n \leftarrow S_0$ absorption spectrum.

The transient picosecond $S_n \leftarrow S_1$ absorption spectra of the Schiff base of retinal (retinal analogue bound with protein amino acid in rhodopsin and other biosystems) at 293 K undergo a significant batochromic shift as one goes from *n*-hexane ($\lambda_{max} = = 460 \text{ nm}$) to ethanol ($\lambda_{max} = 575 \text{ nm}$). This is attributed to practically full transition of the proton from ethanol to retinoid in the excited state.